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Abstract

We prove the existence of domain walls for the Bénard-Rayleigh convection problem. Our

approach relies upon a spatial dynamics formulation of the hydrodynamic problem, a center

manifold reduction, and a normal forms analysis of an eight-dimensional reduced system.

Domain walls are constructed as heteroclinic solutions connecting suitably chosen periodic

solutions of this reduced system.
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1 Introduction

The Bénard-Rayleigh convection is one of the most studied, both analytically and experimentally,

and perhaps best understood, pattern-forming system. This hydrodynamic problem is concerned

with the flow of a viscous fluid filling the region between two horizontal planes and heated from

below. The difference of temperature between the two horizontal planes modifies the fluid

density, tending to place the lighter fluid below the heavier one. Having an opposite effect,

gravity induces, through the Archimedian force, an instability of the simple “conduction regime”

leading to a “convective regime”. While the fluid is at rest and the temperature depends linearly

on the vertical coordinate in the conduction regime, various steady regular patterns, such as rolls,

hexagons, or squares, are formed in the convective regime. The fluid viscosity prevents this

instability up to a certain level, and there is a critical value of the temperature difference, below

which nothing happens and above which a steady convective regime bifurcates. In dimensionless

variables, this bifurcation occurs at a critical value of the Rayleigh number Rc. The value Rc,
which depends on the chosen boundary conditions, has already been computed in the forties by

1



Pellew and Southwell [22]. Starting from the sixties, there has been extensive study of regular

convective patterns and numerous mathematical existence results have been obtained. Without

being exhaustive, we refer to the first works by Yudovich et al [27, 30, 31, 32], Rabinowitz [23],

Görtler et al [7]; see also [16, 25], the monograph [17] for further references, and the recent work

[2] on existence of quasipatterns.

The governing equations of the Bénard-Rayleigh convection consist of the Navier-Stokes

system completed with an equation for energy conservation. We consider the Boussinesq ap-

proximation in which the dependency of the fluid density ρ on the temperature T is given by

the relationship

ρ = ρ0 (1− γ(T − T0)) ,

where γ is the (constant) volume expansion coefficient, T0 and ρ0 are the temperature and the

density, respectively, at the lower plane. In Cartesian coordinates (x, y, z) ∈ R3, where (x, y)

are the horizontal coordinates and z is the vertical coordinate, after rescaling variables, the fluid

occupies the domain R2 × (0, 1). Inside this domain, the particle velocity V = (Vx, Vy, Vz), the

deviation of the temperature from the conduction profile θ, and the pressure p satisfy the system

R−1/2∆V + θez − P−1(V · ∇)V −∇p = 0, (1.1)

R−1/2∆θ + Vz − (V · ∇)θ = 0, (1.2)

∇ ·V = 0. (1.3)

Here ez = (0, 0, 1) is the unit vertical vector, and the dimensionless constants R and P are the

Rayleigh and the Prandtl numbers, respectively, defined as

R =
γgd3(T0 − T1)

νκ
, P =

ν

κ
, (1.4)

where ν is the kinematic viscosity, κ the thermal diffusivity, g the gravitational constant, d

the distance between the planes, and T1 the temperature at the upper plane. For notational

simplicity, we set

µ = R1/2.

This system is a steady version of the formulation derived in [17] in which V and θ are rescaled

by R1/2 and R, respectively. The equations (1.1)-(1.3) are completed by boundary conditions,

and we consider here either the case of “rigid-rigid” boundary conditions:

V|z=0,1 = 0, θ|z=0,1 = 0, (1.5)

or the case of “free-free” boundary conditions:

Vz|z=0,1 = ∂zVx|z=0,1 = ∂zVy|z=0,1 = 0, θ|z=0,1 = 0. (1.6)

With these boundary conditions, the equations (1.1)-(1.3) are invariant under horizontal trans-

lations, reflections, and rotations, and the vertical reflection symmetry z 7→ 1 − z. These

symmetries play an important role in our analysis. We point out that the vertical symmetry
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only exists in these two cases where the boundary conditions are of the same type (“rigid-rigid”

or “free-free”), the symmetry being lost in the case of “rigid-free” boundary conditions. We

refer to [14, Vol. II] for a very complete discussion and bibliography on this problem, and in

particular on the various geometries and boundary conditions.

At least locally, the most frequently observed patterns are convective rolls aligned along a

certain direction (see Figure 1.1 (a) and (c)). However, such a pattern is only observed in a part

of the apparatus, while the rolls take another direction in another part of the apparatus. The

connection between the two regimes is quite sharp, occurring along a plane, and the two regimes

of rolls make a definite angle between them (see Figure 1.1(b) and [11, 18, 4, 1] for experimental

evidences not all on pure Bénard-Rayleigh convection). These line defects are referred to as

domain walls or grain boundaries. In the present paper, we consider the case where two systems

of rolls connect symmetrically with respect to a plane, even though such a perfectly symmetric

pattern is not yet observed experimentally.

x

y
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x

y

(b)

y

z

(c)

Figure 1.1: In Cartesian coordinates (x, y, z), schematic plots of two-dimensional rolls (periodic in y

and constant in x), rotated rolls, and domain walls. In the (x, y)-horizontal plane, (a) two-dimensional

rolls (dashed lines) and rolls rotated by an angle α (solid lines); (b) symmetric domain walls constructed

as heteroclinic connections between rolls rotated by opposite angles ±α. (c) In the vertical (y, z)-plane,

streamlines of two-dimensional rolls (cross-section through the dashed lines in (a)).

The aim of this paper is to prove mathematically that such domain walls are indeed solutions

of the steady Navier-Stokes-Boussinesq equations (1.1)-(1.3). Despite constant interest over

the years, there is so far no existence result for these fluid dynamics equations. Many works

gave tentative justifications of the existence of such patterns using formally derived amplitude

equations (see [21, 20, 6] and the references therein). Beyond amplitude equations, the only

mathematical results have been obtained for the Swift-Hohenberg equation, a toy model which

exhibits many of the properties of the Bénard-Rayleigh convection problem [10, 26] (see also

[19]). The domain walls constructed in [10] are symmetric, connecting rolls rotated by opposite

angles ±α, for α ∈ (0, π/3). This result has been extended to arbitrary angles α ∈ (0, π/2) in

[26]. We point out that there are no such results for domain walls which are not symmetric.

For the existence proof, we extend to the Navier-Stokes-Boussinesq system (1.1)-(1.3) the

spatial dynamics approach used in [10] for the Swift-Hohenberg equation. The starting point

of the analysis is a formulation of the steady problem as an infinite-dimensional dynamical sys-
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tem, in which one of the horizontal variables is taken as evolutionary variable. This idea goes

back to the work of Kirchgässner [15], and since then it has been extensively used to prove

the existence of nonlinear waves and patterns in many concrete problems arising in applied sci-

ences, and in particular in fluid mechanics (see for instance [8] and the references therein). This

infinite-dimensional dynamical system is typically ill-posed, but of interest are its small bounded

solutions. An efficient way of finding these solutions is with the help of center-manifold tech-

niques which reduce the infinite-dimensional system to a locally equivalent finite-dimensional

dynamical system. An important property of this reduced system is that it preserves the sym-

metries of the original problem. Then normal forms and dynamical systems methods can be

employed to construct bounded solutions of this reduced system.

We construct the domain walls as solutions of the steady Navier-Stokes-Boussinesq equations

(1.1)-(1.3) which are periodic in the horizontal coordinate y (see Figure 1.1(b)). In our spatial

dynamics formulation, we take as evolutionary variable the horizontal coordinate x and the

boundary conditions, including the periodicity in y, determine the choice of the associated

phase space and domain of definition of operators. An infinite-dimensional dynamical system is

obtained as in the case of the Navier-Stokes equations in [12]. The rolls which are periodic in

y and independent of x are then equilibria of this infinite-dimensional dynamical system, and

through horizontal rotations they provide a family of periodic solutions. Domain walls are found

as heteroclinic solutions of this infinite-dimensional dynamical system connecting two symmetric

periodic solutions in this family.

We expect domain walls to bifurcate in the convective regime, at the same critical value Rc
of the Rayleigh number as the rolls. In the bifurcation problem, we take the Rayleigh number

R as bifurcation parameter, fix the Prandtl number P and also fix the wavenumber ky in y of

the solutions. We choose ky = kc cosα, where kc is the wavenumber of the two-dimensional

rolls bifurcating at Rc in the classical convection problem and α is a rotation angle. Then ky
represents the wavenumber in y of these bifurcating rolls rotated by the angle α.

The nature of the bifurcation is determined by the purely imaginary spectrum of the operator

obtained by linearizing the dynamical system at the state of rest. Here, this operator has purely

point spectrum and the number of its purely imaginary eigenvalues depends on the rotation

angle α. We restrict to the simplest situation in which α ∈ (0, π/3). Then the linear operator

possesses two pairs of complex conjugated purely imaginary eigenvalues ±ikc, ±ikx, where ±ikc
are algebraically double and geometrically simple, and ±ikx are algebraically quadruple and

geometrically double. In addition, 0 is a simple eigenvalue due to an invariance of our spatial

dynamics formulation. (See Figure 1.2 for a plot of these eigenvalues and their continuation

for Rayleigh numbers R close to Rc). Except for the 0 eigenvalue, the other purely imaginary

eigenvalues are of the same type as those found for the Swift-Hohenberg equation in [10]. Upon

increasing the angle α in the interval (π/3, π/2), the number of purely imaginary eigenvalues

increases, and there are infinitely many eigenvalues when α = π/2. For the Swift-Hohenberg

equation, this case has been considered in [26].

The next step of our analysis is a center manifold reduction. The dimension of the reduced

system being equal to the sum of the algebraic multiplicities of the purely imaginary above,
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Figure 1.2: Spectrum of the linearized operator Lµ lying on or near the imaginary axis, for a wave

number ky = kc cosα with α ∈ (0, π/3): (a) for R < Rc, (b) for R = Rc, (c) for R > Rc. Eigenvalues

are either simple, double or quadruple denoted by a dot, a simple cross or a double cross, respectively.

we obtain here a reduced system of dimension 13. Due to the absence of the eigenvalue 0,

the dimension of this reduced system was equal to 12 for the Swift-Hohenberg equation [10].

However, this additional dimension is easily eliminated, and then in the cases of “rigid-rigid”

and “free-free” boundary conditions we use the reflection in the vertical coordinate to further

eliminate 4 dimensions. This additional reduction of the dimension of the system has not been

done in [10], but it is very helpful here, our reduced equations being much more complicated.

The resulting system is 8-dimensional and the question of existence of domain walls consists

now in the construction of a heteroclinic connection for this system.

In contrast to the Swift-Hohenberg equation, where the leading order terms of the reduced

system have been computed explicitly, here the Navier-Stokes-Boussinesq equations are far too

complicated to compute all these terms. We therefore need to extend the normal forms analysis of

the particular reduced system found in [10] to a normal forms analysis for general 8-dimensional

vector fields. On the other hand, the dimension of the reduced vector field being 8, it is too

difficult to use the same methods for finding a general normal form, to any order, as usually

done for lower dimensional vector fields (as for instance for four-dimensional vector fields in [8]).

Instead, we restrict our computation of the normal form to cubic order, and using a standard

normal form characterization, and the symmetries of the reduced system, we directly identify

all possible resonant monomials, those which appear in the normal form. By this method it is

not possible to obtain a normal form to any order, but a cubic normal form is enough for our

purposes, and often in problems of this type.

The remaining part of the existence proof is based on the arguments from [10]. An appro-

priate change of variables allows us to identify a leading order system, determined by the cubic

order terms of the normal form, for which the existence of a heteroclinic connection has been

proved in [28]. Based on a variational method [24], this existence result requires that the quotient

g of two coefficients in the cubic normal form is larger than 1. In [10] this quotient was equal

to 2 and it was easily computed. Here, g depends on the angle α and on the Prandtl number

P through complicated formulas (see (B.12)). We prove analytically that its value in the limit

angle α = 0 is also equal to 2, and for arbitrary angles and Prandtl numbers, we determine its

numerical values using the package Maple. It turns out that indeed the condition g > 1 holds for
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all angles α ∈ (0, π/3) and all positive Prandtl numbers P, for both “rigid-rigid” and “free-free”

boundary conditions. The final step consists in showing that this heteroclinic connection found

for the leading order system persists for the full system. We extend the persistence result in

[10] from the case g = 2 to values g ∈ (1, 4 +
√

13), which implies the existence of domain walls

for any Prandtl numbers P and any angles α ∈ (0, α∗(P)), for some positive α∗(P) 6 π/3. A

Maple computation allows us to identify the angles α and the Prandtl numbers P for which this

property holds (see Figures 6.1 and 8.1). We point out that the persistence of the heteroclinic

connection for g > 4 +
√

13 remains an open problem. We summarize our main result in the

next theorem.

Theorem 1. Consider the Navier-Stokes-Boussinesq system (1.1)-(1.3) with either “rigid-rigid”

boundary conditions (1.5) or “free-free” boundary conditions (1.6). Denote by Rc the critical

Rayleigh number at which convective rolls with wavenumbers kc bifurcate from the conduction

state. Then for any Prandtl number P, there exists a positive number α∗(P) 6 π/3 such that

for angles α ∈ (0, α∗(P)), a symmetric domain wall bifurcates for Rayleigh numbers R = Rc+ε,

with ε > 0 sufficiently small. The domain wall connects two rotated rolls which are the rotations

by opposite angles ±(α+O(ε)) of a roll with wavenumber kc +O(ε), continuously linked to the

amplitude which is of order O(ε1/2).

In our presentation we focus on the case of “rigid-rigid” boundary conditions. In Section 2

we briefly recall the classical convection problem and give a short proof of the existence of

convective rolls. The spatial dynamics formulation is given in Section 3 and the bifurcation

problem is analyzed in Section 4. The center manifold reduction is done in Section 5 and the

normal forms analysis in Section 6. The existence of the heteroclinic connection is proved in

Section 7. Finally, in Section 8, we discuss the differences which occur in the case of “free-free”

boundary conditions, and briefly comment on the case of “rigid-free” boundary conditions. Some

technical results, including the proof of the cubic normal form and the formula for g, are given

in Appendices A and B.

Acknowledgments. M.H. was partially supported by the EUR EIPHI program (Contract No.

ANR-17-EURE-0002). The authors thank the referee for the careful reading of the manuscript

and the constructive comments and suggestions.

2 The classical Bénard-Rayleigh convection

In the classical approach, the steady system (1.1)-(1.3) is written in the form

Lµu + B(u,u) = 0, (2.1)

where u = (V, θ) lies in a suitable function space of divergence free velocity fields V and the

pressure term in (1.1) is eliminated via a projection on the divergence free vector field (see,

for instance, [8, Chapter 5]). Then Lµu is the linear part and B(u,u) is the nonlinear part,

quadratic in (V, θ), of the equations (1.1) and (1.2). The Prandtl number P which only appears
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in the quadratic part is kept fixed, and the square root µ of the Rayleigh number is taken as

bifurcation parameter. We recall below some of the basic results which are used later in the

paper.

2.1 Two-dimensional convection

The simple classical convection problem restricts to velocity fields V = (0, Vy, Vz) which are

two-dimensional and functions which are independent of x and periodic in y. The corresponding

function space for the system (2.1) is

H = {u ∈ {0} × (L2
per(Ω))3 ; ∇ ·V = 0, Vz = 0 on z = 0, 1},

where Ω = R× (0, 1) and the subscript per means that the functions are 2π/k-periodic in y, for

some fixed k > 0. The boundary conditions (1.5) are included in the domain D of the linear

operator Lµ by taking

D = {u ∈ {0} × (H2
per(Ω))3 ; ∇ ·V = 0, Vy = Vz = θ = 0 on z = 0, 1}.

In this setting, the linear operator Lµ is selfadjoint with compact resolvent and the quadratic

operator B in (2.1) is symmetric and bounded from D to H.

As a consequence of the invariance of the equations (1.1)-(1.3) under horizontal translations

and reflections, the system (2.1) isO(2)-equivariant: both its linear and quadratic parts commute

with the one-parameter family of linear maps (τa)a∈R/2πZ and the discrete symmetry S2 defined

through

τau(y, z) = u(y + a/k, z), S2u(y, z) = (0,−Vy, Vz, θ)(−y, z),

for any u ∈ H, and satisfying

τaS2 = S2τ−a, τ0 = τ2π = I.

An additional equivariance, under the action of the symmetry S3 defined through

S3u(y, z) = (0, Vy,−Vz,−θ)(y, 1− z),

which commutes with τa and S2, is obtained from the invariance of the equations (1.1)-(1.3)

under the vertical reflection z 7→ 1− z.
Instabilities and bifurcations are determined by the kernel of Lµ. Elements in the kernel of

Lµ are found by looking for solutions of the form eikyûk(z) for the linear equation

Lµu = 0, (2.2)

and the boundary conditions Vy = Vz = θ = 0 on z = 0, 1. A direct computation (see also [3])

gives

eikyûk(z) = eiky


0

i
kDV

V

θ

 , (2.3)
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where D = d/dz denotes the derivative with respect to z, and the functions V = V (z) and

θ = θ(z) are real-valued solutions of the boundary value problem

(D2 − k2)2V = µk2θ, V = DV = 0 in z = 0, 1, (2.4)

(D2 − k2)θ = −µV, θ = 0 in z = 0, 1. (2.5)

Yudovich [30] showed that, for any fixed k > 0, there is a countable sequence of parameter

values µ0(k) < µ1(k) < µ2(k) < . . . for which the boundary value problem (2.4)-(2.5) has a

unique, up to a multiplicative constant, nontrivial solution (Vj , θj), and that the function V0

is positive for µ = µ0(k). The vertical reflection symmetry z 7→ 1 − z further implies that

V0 is symmetric with respect to z = 1/2. The functions µj(k) are analytic in k and in an

analogous case Yudovich [29] showed that they tend to ∞ as k tends to 0 or ∞. Of particular

interest for the classical bifurcation problem, and also in our context, is the global minimum of

µ0(k). Combining analytical arguments and numerical calculations, Pellew and Southwell [22]

computed a unique global minimum µc = µ0(kc), for some k = kc, but a complete analytical

proof of this property is not available, so far. Solving the boundary value problem (2.4)-(2.5)

using the symbolic package Maple leads to the numerical values

kc ≈ 3.116, µc ≈ 41.325, µ′′0(kc) ≈ 6.265, (2.6)

which are consistent with the ones found in [22].

Going back to the kernel of Lµ, as expected by the general theory ofO(2)-equivariant systems,

for µ = µ0(k) and any k sufficiently close to the minimum kc, the kernel of Lµ0(k) is two-

dimensional and spanned by the vectors

ξ0 = eikyûk(z), ξ0 = e−ikyûk(z), (2.7)

satisfying

τaξ0 = eiaξ0, S2ξ0 = ξ0, S3ξ0 = −ξ0.

Since the operator has compact resolvent, this shows that 0 is an isolated double semi-simple

eigenvalue of Lµ0(k). Furthermore, all other eigenvalues are negative, so that the selfadjoint

operator Lµ0(k) is nonpositive with a two-dimensional kernel. This property is a key ingredient

in the proof of existence of rolls, which bifurcate from the trivial solution at µ = µ0(k), for any

fixed k sufficiently close to kc, in a steady bifurcation with O(2) symmetry.

2.2 Existence of rolls

We give below a short and simple proof of the existence of convective rolls. This type of proof

was first made by Yudovich [31].

The O(2) symmetry of the system (2.1) allows to restrict the existence proof to solutions u

which are invariant under the action of S2, and then the one-parameter family of linear maps

(τa)a∈R/2πZ gives the non-symmetric solutions (a “circle” of solutions). Using the Lyapunov-

Schmidt method, symmetric rolls can be constructed as convergent series in D, under the form

u =
∑
n∈N

δnun, for µ = µ0(k) +
∑
n∈N

δnµn, (2.8)
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and fixed k close enough to kc. We insert these expansions into (2.1), and solve the resulting

equations at orders δ, δ2 and δ3.

The equality at order δ shows that u1 belongs to the kernel of L0 = Lµ0(k), which by the

restriction to symmetric solutions is one-dimensional, so that

u1 = ξ0 + ξ0. (2.9)

Next, by taking the L2-scalar product of the equality found at order δ2 with u1, we find

µ1〈L1u1,u1〉 = −〈B(u1,u1),u1〉,

where L1 = d
dµ Lµ

∣∣
µ=µ0(k)

. A direct computation gives (dropping the index 0 in V0 and θ0)

〈L1u1,u1〉 = 2 Re〈L1ξ0, ξ0〉 =
2

k2µ2
〈(D2−k2)V, (D2−k2)V 〉+ 2

µ2
(‖Dθ‖2 +k2‖θ‖2) > 0, (2.10)

and a remarkable property of the Navier-Stokes equations is that

〈B(u,u),u〉 = 0, (2.11)

for any real-valued u ∈ D. Consequently, µ1 = 0 and then u2 is a symmetric solution of

L0u2 = −B(u1,u1).

Without loss of generality, u2 may be chosen orthogonal to u1. Finally, the scalar product of

the equality found at order δ3 with u1, leads to

µ2〈L1u1,u1〉 = −〈2B(u1,u2),u1〉.

Writing the equality (2.11) for u = u1 + tu2 and taking the term linear in t we find

〈2B(u1,u2),u1〉+ 〈B(u1,u1),u2〉 = 0,

hence

µ2 =
〈B(u1,u1),u2〉
〈L1u1,u1〉

= −〈L0u2,u2〉
〈L1u1,u1〉

. (2.12)

The sign of µ2 determines the type of the bifurcation. We have 〈L1u1,u1〉 > 0 by (2.10),

and 〈L0u2,u2〉 < 0, since L0 is a nonpositive selfadjoint operator and u2 is orthogonal to its

kernel. Consequently, µ2 > 0, implying that rolls bifurcate supercritically, for µ > µ0(k) (see

Figure 2.1(a)). Summarizing, for any fixed k close enough to kc, for any µ > µ0(k), sufficiently

close to µ0(k), there exists a “circle” of rolls τa(uk,µ), a ∈ R/2πZ, in which uk,µ and τπ(uk,µ)

are invariant under the action of S2 and exchanged by the action of S3. These two solutions

correspond to values δ in the expansion (2.8) with opposite signs, and we choose δ > 0 for

uk,µ. For the convection problem, we obtain a periodic pattern with adjacent cells, with vertical

separations, having half the period (see Figure 1.1(c)).
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Figure 2.1: (a) Graph of µ0(k). Two-dimensional rolls bifurcate into the shaded region situated

above the curve µ0(k). For µ > µc sufficiently close to µc, two-dimensional rolls exist for wavenumbers

k ∈ (k1, k2) with µ = µ0(k1) = µ0(k2). (b) Plot of the wavenumbers ky = k cosα in y of the rolls rotated

by angles α ∈ (0, π/2), for k = k1, kc, k2. For µ > µc sufficiently close to µc, rotated rolls exist in the

shaded region. In the bifurcation analysis we fix ky = kc cosα, for some α ∈ (0, π/3).

3 Spatial dynamics

The starting point of our analysis is a formulation of the steady system (1.1)-(1.3) as a dynamical

system in which the evolutionary variable is the horizontal spatial coordinate x.

Set V = (Vx, V⊥), where V⊥ = (Vy, Vz), and consider the new variables

W = µ−1∂xV − pex, φ = ∂xθ, (3.1)

in which we write W = (Wx,W⊥), and W⊥ = (Wy,Wz). Using the equation (1.3) we obtain the

formula for the pressure,

p = −µ−1∇⊥ · V⊥ −Wx. (3.2)

Then we write the system (1.1)-(1.3) in the form

∂xU = LµU + Bµ(U,U), (3.3)

in which U is the 8-components vector

U = (Vx, V⊥,Wx,W⊥, θ, φ),

and the operators Lµ and Bµ are linear and quadratic, respectively, defined by

LµU =



−∇⊥ · V⊥
µW⊥

−µ−1∆⊥Vx

−µ−1∆⊥V⊥ − θez − µ−1∇⊥(∇⊥ · V⊥)−∇⊥Wx

φ

−∆⊥θ − µVz


,
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Bµ(U,U) =



0

0

P−1
(
(V⊥ · ∇⊥)Vx − Vx(∇⊥ · V⊥)

)
P−1

(
(V⊥ · ∇⊥)V⊥ + µVxW⊥

)
0

µ
(
(V⊥ · ∇⊥)θ + Vxφ

)


.

We look for solutions of (3.3) which are periodic in y and satisfy the boundary conditions

(1.5) or (1.6). For such solutions we have

d

dx

∫
Ωper

Vx dy dz = −
∫

Ωper

∇⊥ · V⊥ dy dz = −
∫
∂Ωper

n · V⊥ ds = 0,

where the subscript per means that the integration domain is restricted to one period. This

property implies that the flux

F(x) =

∫
Ωper

Vx dy dz

is constant, or, equivalently, that the dynamical system (3.3) leaves invariant the subspace

orthogonal to the vector ψ0 = (1, 0, 0, 0, 0, 0, 0, 0). We restrict to this subspace, hence fixing the

constant flux to 0. Including this property and the boundary conditions (1.5) in the definition

of the phase space X of the dynamical system (3.3) we take

X =
{
U ∈ (H1

per(Ω))3 × (L2
per(Ω))3 ×H1

per(Ω)× L2
per(Ω) ;

Vx = V⊥ = θ = 0 on z = 0, 1, and

∫
Ωper

Vx dy dz = 0
}
.

As in Section 2, Ω = R×(0, 1) and the subscript per means that the functions are 2π/ky-periodic

in y, for some fixed ky > 0. (In order to distinguish between periodicity in x and y, we add the

subscript y in the notation of the wavenumber k.) The phase space X is a closed subspace of

the Hilbert space

X̃ = (H1
per(Ω))3 × (L2

per(Ω))3 ×H1
per(Ω)× L2

per(Ω),

so that it is a Hilbert space endowed with the usual scalar product of X̃ . Accordingly, we define

the domain of definition Z of the linear operator Lµ by

Z =
{
U ∈ X ∩ (H2

per(Ω))3 × (H1
per(Ω))3 ×H2

per(Ω)×H1
per(Ω) ;

∇⊥ · V⊥ = W⊥ = φ = 0 on z = 0, 1
}
,

so that Lµ is closed and its domain Z is dense and compactly embedded in X . In particular,

this latter property implies that Lµ has purely point spectrum consisting of isolated eigenvalues

with finite algebraic multiplicity.

The dynamical system (3.3) inherits the symmetries of the original system (1.1)-(1.5). As

for the two-dimensional convection, horizontal translations y → y + a/ky along the y direction

give a one-parameter family of linear maps (τa)a∈ R/2πZ defined on X through

τaU(y, z) = U(y + a/ky, z), (3.4)
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and which commute with Lµ and Bµ. The reflection x 7→ −x now gives a reversibility symmetry

S1U(y, z) = (−Vx, V⊥,Wx,−W⊥, θ,−φ)(y, z),

for U ∈ X , which anti-commutes with Lµ and Bµ, and the reflections y 7→ −y and z 7→ 1 − z
give the symmetries

S2U(y, z) = (Vx,−Vy, Vz,Wx,−Wy,Wz, θ, φ)(−y, z),
S3U(y, z) = (Vx, Vy,−Vz,Wx,Wy,−Wz,−θ,−φ)(y, 1− z),

for U ∈ X , which both commute with Lµ and Bµ. Notice that

τaS2 = S2τ−a, τ0 = τ2π = I,

so that the system (3.3) is O(2)-equivariant, and that S3 commutes with τa.

In addition to these symmetries inherited from the original system (1.1) -(1.5), the dynamical

system (3.3) has a specific invariance due to the new variable W = (Wx,W⊥) in (3.1). While W⊥
satisfies the same boundary conditions as V⊥, included in the domain of definition Z of the linear

operator, there are no such conditions for Wx because the pressure p in the definition of Wx is

only defined up to a constant. As a consequence, the dynamical system is invariant upon adding

any constant to Wx, i.e., the vector field is invariant under the action of the one-parameter

family of maps (Tb)b∈R, defined on X through

TbU = U + bϕ0, ϕ0 = (0, 0, 0, 1, 0, 0, 0, 0)t. (3.5)

This invariance introduces the vector ϕ0 in the kernel of Lµ (see Lemma 4.1 below).

4 The bifurcation problem

As for the two-dimensional convection, we fix the Prandtl number P and take the square root

µ of the Rayleigh number as bifurcation parameter.

4.1 Domain walls as heteroclinic solutions

The equilibria U ∈ Z of the dynamical system (3.3) can be found as solutions u ∈ D of the

two-dimensional problem in Section 2, through the projection

u = ΠU = (Vx, V⊥, θ). (4.1)

The remaining components of an equilibrium U are obtained from (3.1),

(Wx,W⊥, φ) = (−p, 0, 0, 0),

with the pressure p determined, up to a constant, from the equation (1.1). In particular, for any

ky = k > 0 fixed close enough to kc, the rolls in Section 2 give a circle of equilibria τa(U
∗
k,µ), for

a ∈ R/2πZ, which bifurcate for µ > µ0(k) sufficiently close to µ0(k), belong to D, and satisfy

S1U
∗
k,µ = S2U

∗
k,µ = U∗k,µ, S3U

∗
k,µ = τπU

∗
k,µ. (4.2)
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Due to the rotation invariance of the three-dimensional problem (2.1), horizontally rotated

rolls are solutions of (2.1) and also of the dynamical system (3.3). For any angle α ∈ R/2πZ,

we have the rotated rolls RαU∗k,µ, where the horizontal rotation Rα acts on the 4-components

vector u = ΠU through

Rαu(x, y, z) = (Rα(Vx, Vy), Vz, θ)(R−α(x, y), z), (4.3)

in which

Rα(x, y) = (x cosα− y sinα, x sinα+ y cosα).

(We do not need here the more complicated representation formula for the 8-components vector

U.) These rotated rolls are periodic functions in both x and y with wavenumbers k sinα and

k cosα, respectively. As solutions of the dynamical system (3.3), they belong to the phase

space X provided ky = k cosα, and in this case they are 2π/k sinα-periodic solutions in x (see

Figure 2.1(b) for a plot of the possible wavenumbers ky in y for µ > µc sufficiently close to µc).

For the particular angles α = 0 and α = π the rotated rolls are equilibria in the phase-space X
with ky = k. For the orthogonal angles α = π/2 and α = 3π/2, they are solutions 2π/k-periodic

in x, for any ky > 0.

The invariance of U∗k,µ under the action of the symmetry S2 implies that rolls rotated by

angles α and π + α coincide,

RαU∗k,µ =Rπ+αU∗k,µ.

Upon rotation, rolls loose their invariance under the horizontal reflections x→ −x and y → −y,

the actions of S1 and S2 on a roll rotated by an angle α /∈ {0, π} gives the same roll but rotated

by the opposite angle,

S1(RαU∗k,µ(x)) =R−αU∗k,µ(−x), S2RαU∗k,µ = R−αU∗k,µ.

These equalities imply that rotated rolls keep a reversibility symmetry,

S1S2(RαU∗k,µ(x)) =RαU∗k,µ(−x). (4.4)

The last equality in (4.2) remains valid for angles α /∈ {π/2, 3π/2}, whereas for angles α = π/2

and α = 3π/2 the rotated rolls are invariant under the action of the entire family of linear maps

(τa)a∈ R/2πZ.

We construct the domain walls as reversible heteroclinic solutions of the dynamical system

(3.3) connecting two rotated rolls, RαU∗k,µ at x = −∞ and R−αU∗k,µ at x = ∞. In the

bifurcation problem, we will suitably fix ky ∈ (0, kc) and take µ, close to µc, as bifurcation

parameter. The next step of our analysis is to determine the purely imaginary eigenvalues of

the linear operator Lµc .

4.2 Connection with the classical linear problem

Solutions U = (Vx, V⊥,Wx,W⊥, θ, φ) ∈ Z of the eigenvalue problem

LµU = iωU, (4.5)
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are linear combinations of vectors of the form Uω,n(y, z) = einkyyÛω,n(z), with n ∈ Z, due to

periodicity in y. Projecting with Π given by (4.1), we obtain a solution

uω,n(x, y, z) = ei(ωx+nkyy) ΠÛω,n(z),

of the linearized three-dimensional classical problem (2.1), and rotating by a suitable angle α

we find a solution eikyûk(z) of the linear equation (2.2), with

k2 = ω2 + n2k2
y. (4.6)

The angle α is determined by the equalities

ω = k sinα, nky = k cosα, (4.7)

and we have the relationship

ΠÛω,n(z) =R−αûk(z).

Consequently, for a given ky > 0, the eigenvectors Uω,n associated with purely imaginary eigen-

values ν = iω of Lµ are obtained by rotating with R−α the elements in the kernel of Lµ given

by (2.3), through the relationship (4.7) and

ΠUω,n(y, z) = einkyyΠÛω,n(z) = einkyyR−αûk(z). (4.8)

This holds for all eigenvectors Uω,n such that ΠUω,n 6= 0. We obtain in this way all purely

imaginary eigenvalues of Lµ with associated eigenvectors U such that ΠU 6= 0. Using the

properties of the kernel of Lµ in Section 2.1, we obtain the following result, for µ = µ0(k).

Lemma 4.1. Assume that ky and k are positive numbers. Then the linear operator Lµ0(k) has

the complex conjugated purely imaginary eigenvalues

±iωn(k), ωn(k) =
√
k2 − n2k2

y > 0, (4.9)

for any integer 0 6 n < k/ky, and the following properties hold.1

(i) For n = 0, ω0(k) = k and the complex conjugated eigenvalues ±ik are geometrically simple

with associated eigenvector of the form

Uk,0(y, z) = Ûk,0(z),

for the eigenvalue ik, and the complex conjugated vector for the eigenvalue −ik.

(ii) For 0 < n < k/ky, the complex conjugated eigenvalues ±iωn(k) are geometrically double

with associated eigenvectors of the form

Uωn(k),±n(y, z) = e±inkyyÛωn(k),±n(z),

for the eigenvalue iωn(k), and the complex conjugated vectors for the eigenvalue −iωn(k).

1If k/ky ∈ N, then the linear operator has an additional eigenvalue 0 which is geometrically triple. This

situation is excluded from our bifurcation analysis.
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(iii) If the derivative µ′0(k) does not vanish, then the eigenvalues are semi-simple.

(iv) The vectors Ûk,0(z) and Ûω1(k),±1(z) are given by 2

Ûk,0(z) =



i
kDVk

0

Vk

− 1
µ0(k)k2

D3Vk

0
ik

µ0(k)Vk
1

µ0(k)k2
(D2 − k2)2Vk

i
µ0(k)k (D2 − k2)2Vk


, Ûω1(k),±1(z) =



iω1(k)
k2

DVk

± iky
k2
DVk

Vk

− 1
µ0(k)k2

(D2 − k2
y)DVk

∓kyω1(k)
µ0(k)k2

DVk
iω1(k)
µ0(k) Vk

1
µ0(k)k2

(D2 − k2)2Vk
iω1(k)
µ0(k)k2

(D2 − k2)2Vk


,

where the function Vk is a real-valued solution of the boundary value problem

(D2 − k2)3Vk + µ0(k)2k2Vk = 0, Vk = DVk = (D2 − k2)2Vk = 0 in z = 0, 1. (4.10)

Proof. First, notice that for eigenvectors U with ΠU = 0, the eigenvalue problem (4.5) is

reduced to the system

µW⊥ = 0

0 = iωWx

−∇⊥Wx = 0

φ = 0

for the variables (Wx,W⊥, φ). The only nontrivial solution of this system is (Wx, 0, 0, 0), with

Wx a constant function, when ω = 0. This implies that 0 is an eigenvalue of Lµ with associated

eigenvector ϕ0 given by (3.5), and that all other eigenvalues have associated eigenvectors U

with ΠU 6= 0. In particular, nonzero purely imaginary eigenvalues of Lµ and their associated

eigenvectors are all determined from the properties of the kernel of the operator Lµ in Section 2.1

through the equalities (4.6), (4.7), and (4.8).

For µ = µ0(k), we obtain the eigenvalues given by (4.9). The uniqueness, up to a multiplica-

tive constant, of the element in the kernel of Lµ0(k) given by (2.3), implies that the eigenvalues

±ik, for n = 0, are geometrically simple, and since opposite numbers ±n give the same pair of

eigenvalues ±iωn(k), for n 6= 0, these eigenvalues are geometrically double. This proves (i) and

(ii). In Appendix A.2, we show that in the case µ′0(k) 6= 0 the algebraic multiplicity of each of

these eigenvalues is equal to its geometric multiplicity, which proves (iii). Finally, the equalities

(4.8) and (2.3), allow to compute the projections ΠUk,0 and ΠUωn(k),±n of the eigenvectors and

the remaining components (W, φ) are found from (3.1) and (3.2). We obtain the formulas in

(iv), which completes the proof of the lemma.

2For our purposes, we do not need the explicit formulas for n > 1.
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4.3 The center spectrum of Lµc

Lemma 4.1 shows that the linear operator Lµc has the purely imaginary eigenvalues

±i
√
k2
c − n2k2

y,

for positive integers n such that 0 6 n < kc/ky. Upon decreasing ky, the number of pairs of

eigenvalues increases. For ky > kc, there is one pair of purely imaginary eigenvalues with n = 0,

for kc > ky > kc/2 there are two pairs with n = 0,±1, and more generally for kc/N > ky >

kc/(N + 1) there are N + 1 pairs with n = 0,±1, . . . ,±N . For the construction of domain walls

we need at least one pair of purely imaginary eigenvalues with opposite Fourier modes ±n 6= 0.

We restrict here to the simplest situation when kc > ky > kc/2 and Lµc has two pairs of purely

imaginary eigenvalues: ±ikc, for n = 0, and ±i
√
k2
c − k2

y, for n = ±1.

For notational convenience, we set

ky = kc cosα, kx = kc sinα, (4.11)

and take α ∈ (0, π/3). In the following lemma we give a complete description of the purely

imaginary spectrum of the linear operator Lµc .

Lemma 4.2. Assume that ky = kc cosα with α ∈ (0, π/3). Then the center spectrum σc(Lµc)
of the linear operator Lµc consists of five eigenvalues,

σc(Lµc) = {0,±ikc,±ikx}, kx = kc sinα, (4.12)

with the following properties.

(i) The eigenvalue 0 is simple with associated eigenvector ϕ0 given by (3.5), which is invariant

under the actions of S1, S2, S3, and τa.

(ii) The complex conjugated eigenvalues ±ikc are algebraically double and geometrically simple

with associated generalized eigenvectors of the form

ζ0(y, z) = Û0(z), Ψ0(y, z) = Ψ̂0(z),

for the eigenvalue ikc, and the complex conjugated vectors for the eigenvalue −ikc, such

that

(Lµc − ikc)ζ0 = 0, (Lµc − ikc)Ψ0 = ζ0,

and

S1ζ0 = ζ0, S2ζ0 = ζ0, S3ζ0 = −ζ0, τaζ0 = ζ0,

S1Ψ0 = −Ψ0, S2Ψ0 = Ψ0, S3Ψ0 = −Ψ0, τa Ψ0 = Ψ0.
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(iii) The complex conjugated eigenvalues ±ikx are algebraically quadruple and geometrically

double with associated generalized eigenvectors of the form

ζ±(y, z) = e±ikyyÛ±(z), Ψ±(y, z) = e±ikyyΨ̂±(z), (4.13)

for the eigenvalue ikx, and the complex conjugated vectors for the eigenvalue −ikx, such

that

(Lµc − ikx)ζ± = 0, (Lµc − ikx)Ψ± = ζ±,

and

S1ζ+ = ζ−, S2ζ+ = ζ−, S3ζ+ = −ζ+, τaζ+ = eiaζ+,

S1ζ− = ζ+, S2ζ− = ζ+, S3ζ− = −ζ−, τaζ− = e−iaζ−,

S1Ψ+ = −Ψ−, S2Ψ+ = Ψ−, S3Ψ+ = −Ψ+, τa Ψ+ = eiaΨ+,

S1Ψ− = −Ψ+, S2Ψ− = Ψ+, S3Ψ− = −Ψ−, τa Ψ− = e−iaΨ−.

Proof. The result in Lemma 4.1 shows that ±ikc and ±ikx are purely imaginary eigenvalues

of Lµc and the first part of its proof implies that 0 is an eigenvalue of Lµc . Since µc is the

unique global minimum of µ0(k), there are no other eigenvalues with zero real part. This proves

the property (4.12). Furthermore, the eigenvalue 0 is geometrically simple, with associated

eigenvector ϕ0 given by (3.5), and the eigenvalues ±ikc and ±ikx have geometric multiplicities

one and two, respectively. The associated eigenvectors ζ0 and ζ± are computed from the formulas

in Lemma 4.1, by taking n = 0 and n = ±1, respectively, for k = kc and ky = kc cosα. We

obtain

ζ0(y, z) = Û0(z), ζ±(y, z) = e±ikyyÛ±(z),

where

Û0(z) =



i
kc
DV

0

V

− 1
µck2c

D3V

0
ikc
µc
V

1
µck2c

(D2 − k2
c )

2V
i

µckc
(D2 − k2

c )
2V


, Û±(z) =



i sinα
kc

DV

± i cosα
kc

DV

V

− 1
µck2c

(D2 − k2
c cos2 α)DV

∓ sinα cosα
µc

DV
ikc sinα
µc

V
1

µck2c
(D2 − k2

c )
2V

i sinα
µckc

(D2 − k2
c )

2V


, (4.14)

and the function V is a real-valued solution of the boundary value problem

(D2 − k2
c )

3V + µ2
ck

2
cV = 0, V = DV = (D2 − k2

c )
2V = 0 in z = 0, 1. (4.15)

This boundary value problem being equivalent to (2.4)-(2.5) for µ = µc, the function V is

positive and symmetric with respect to z = 1/2. The latter property and the explicit formulas

above imply the symmetry properties of ζ0 and ζ± in (ii) and (iii).
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Next, the algebraic multiplicity of the eigenvalue 0 is directly determined by solving the

equation

Lµcϕ1 = ϕ0.

Up to an element in the kernel of Lµc , we find

ϕ1 =
(µc

2
z(1− z), 0, 0, 0, 0, 0, 0, 0

)t
.

The first component of ϕ1 does not satisfy the zero average condition in the definition of the

phase space X , which implies that ϕ1 /∈ X and proves that 0 is an algebraically simple eigenvalue.

The invariance of ϕ0 under the actions of S1, S2, S3, and τa is easily checked, which completes

the proof of part (i).

For the algebraic multiplicities of the nonzero eigenvalues ±ikc and ±ikx, we use their con-

tinuation as eigenvalues of Lµ, for µ > µc close to kc. For any µ > µc sufficiently close to µc,

there are precisely two values k1 and k2 such that µ = µ0(k1) = µ0(k2) (see Figure 2.1(a)),

and the spectrum close to the imaginary axis of Lµ consists of the purely imaginary eigenvalues

of the operators Lµ0(k1) and Lµ0(k2) in Lemma 4.1. Since µ′0(k) 6= 0 for k close to kc, these

eigenvalues are semi-simple, ±ik1 and ±ik2 which are algebraically simple, and ±iω1(k1) and

±iω1(k2) which are algebraically double. Taking the limit µ → µc, the values k1 and k2 tend

to kc, and a standard continuation argument then shows that the eigenvalues ±ikc and ±ikx of

Lµc are algebraically double and quadruple, respectively.

Finally, we compute the generalized eigenvectors Ψ0 and Ψ± associated with the eigenvalues

ikc and ikx, respectively, from the eigenvectors associated with the eigenvalues ik and iω1(k) of

Lµ0(k) given in Lemma 4.1. Differentiating the eigenvalue problems

Lµ0(k)Uk,0 = ikUk,0, Lµ0(k)Uω1(k),±1 = iω1(k)Uω1(k),±1,

with respect to k at k = kc, and using the properties

µ′0(kc) = 0, ω′1(kc) =
kc√
k2
c − k2

y

=
1

sinα
,

we obtain the equalities

(Lµc − ikc)
(
d

dk
Uk,0

∣∣
k=kc

)
= iζ0,

(Lµc − ikx)

(
d

dk
Uω1(k),±1

∣∣
k=kc

)
=

i

sinα
ζ±.

Consequently, the generalized eigenvectors are given by

Ψ0 = −i
(
d

dk
Uk,0

∣∣
k=kc

)
, Ψ± = −i sinα

(
d

dk
Uω1(k),±1

) ∣∣
k=kc

. (4.16)

In particular, they have the same form

Ψ0(y, z) = Ψ̂0(z), Ψ±(y, z) = e±ikyyΨ̂±(z),
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as the eigenvectors Uk,0 and Uω1(k),±1 given in Lemma 4.1. Furthermore, since the function Vk
in the expressions of Ûk,0(z) and Ûω1(k),±1(z) is symmetric with respect to z = 1/2, just as the

function V in (4.15), the eigenvectors Uk,0 and Uω1(k),±1 have the same symmetry properties

as the eigenvectors ζ0 and ζ±, respectively. Together with the formulas (4.16), this implies that

Ψ0 and Ψ± have the symmetry properties given in (ii) and (iii), and completes the proof of the

lemma.

5 Reduction of the nonlinear problem

The next step of our analysis is the center manifold reduction. Using the symmetries of the

system (3.3), we identify an eight-dimensional invariant submanifold of the center manifold,

which contains the heteroclinic solutions of (3.3) corresponding to domain walls.

5.1 Center manifold reduction

We set ε = µ− µc and write the dynamical system (3.3) in the form

∂xU = LµcU +R( U, ε), (5.1)

where

R(U, ε) = (Lµ − Lµc)U + Bµ(U,U)

is a smooth map from Z × Ic, Ic = (−µc,∞), into X . Furthermore,

R(0, ε) = 0, DUR(0, 0) = 0,

so that R satisfies the hypotheses of the center manifold theorem (see [8, Section 2.3.1]). We also

have to check two hypotheses on the linear operator Lµc . The first one requires that the center

spectrum of Lµc consists of finitely many purely imaginary eigenvalues with finite algebraic

multiplicity and the result in Lemma 4.2 shows that this hypothesis holds. The second one is

the estimate on the norm of resolvent of Lµc obtained by taking µ = µc in the lemma below.

Lemma 5.1. For any µ > 0, there exist positive constants Cµ and ωµ such that

‖(Lµ − iω)−1‖L(X ) 6
Cµ
|ω|

, (5.2)

for any real number ω, with |ω| > ωµ.

Proof. We write Lµ = Aµ + Cµ, where

AµU =



−∇⊥ · V⊥
µW⊥

−µ−1∆⊥Vx
−µ−1∆⊥V⊥ − µ−1∇⊥(∇⊥ · V⊥)−∇⊥Wx

φ

−∆⊥θ


, CµU =



0

0

0

−θez
0

−µVz


.
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Since the operator Cµ is bounded in X , the resolvent equality

(Lµ − iω)−1 = (I + (Aµ − iω)−1Cµ)(Aµ − iω)−1,

implies that it is enough to prove the result for Aµ. The action of Aµ on the components

(V,W) and (θ, φ) of U being decoupled, the operator is diagonal, Aµ = diag(ASt
µ ,Aso

µ ), where

ASt
µ acting on (V,W) is a Stokes operator and Aso

µ acting on (θ, φ) is a Laplace operator. The

estimate (5.2) has been proved for the Stokes operator ASt
µ in [12, Appendix 2], and it is easily

obtained for the Laplace operator Aso
µ . This implies the result for Aµ and completes the proof

of the lemma.

Denote by Xc the spectral subspace associated with the center spectrum of Lµc , by Pc the

corresponding spectral projection, and set Zh = (I−Pc)Z. Applying the center manifold theorem

[8, Section 2.3.1], for any arbitrary, but fixed, k > 3, there exists a map Φ ∈ Ck(Xc × Ic,Zh),

with

Φ(0, ε) = 0, DUΦ(0, 0) = 0, (5.3)

and a neighborhood U1 × U2 of (0, 0) in Z × Ic such that for any ε ∈ U2, the manifold

Mc(ε) = {Uc + Φ(Uc, ε) ; Uc ∈ Xc}, (5.4)

has the following properties:

(i) Mc(ε) is locally invariant, i.e., if U is a solution of (5.1) satisfying U(0) ∈ Mc(ε) ∩ U1

and U(x) ∈ U1 for all x ∈ [0, L], then U(x) ∈Mc(ε) for all x ∈ [0, L];

(ii) Mc(ε) contains the set of bounded solutions of (5.1) staying in U1 for all x ∈ R, i.e., if U

is a solution of (5.1) satisfying U(x) ∈ U1 for all x ∈ R, then U(0) ∈Mc(ε);

(iii) the invariant dynamics on the center manifold is determined by the reduced system

dUc

dx
= Lµc

∣∣
XcUc + PcR(Uc + Φ(Uc, ε), ε)

def
= f(Uc, ε), (5.5)

where

f(0, ε) = 0, DUcf(0, 0) = Lµc
∣∣
Xc ;

(iv) the reduced system (5.5) inherits the symmetries of (5.1), i.e., the reduced vector field

f(·, ε) anti-commutes with S1, commutes with S2, S3, and τa, and is invariant under the

action of Tb.

An immediate consequence of these properties is that the heteroclinic solutions of (5.1)

representing domain walls belong to the center manifoldMc(ε), for sufficiently small ε, and can

be constructed as solutions of the reduced system (5.5).
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5.2 Reduced system

According to Lemma 4.2, the center space Xc has dimension 13 and we can write

Uc = wϕ0 +A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ− (5.6)

+A0ζ0 +B0Ψ0 +A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ−,

where w ∈ R and X = (A0, B0, A+, B+, A−, B−) ∈ C6. Then the reduced system (5.5) takes the

form

dw

dx
= h(w,X,X, ε), (5.7)

dX

dx
= F (w,X,X, ε), (5.8)

in which h is real-valued and F = (f0, g0, f+, g+, f−, g−) has six complex-valued components.

This system is completed by the complex conjugated equation of (5.8) for X. Notice that the

symmetries of the reduced system act on these variables through

S1(w,A0, B0, A+, B+, A−, B−) = (w,A0,−B0, A−,−B−, A+,−B+),

S2(w,A0, B0, A+, B+, A−, B−) = (w,A0, B0, A−, B−, A+, B+),

S3(w,A0, B0, A+, B+, A−, B−) = (w,−A0,−B0,−A+,−B+,−A−,−B−),

τa(w,A0, B0, A+, B+, A−, B−) = (w,A0, B0, e
iaA+, e

iaB+, e
−iaA−, e

−iaB−),

Tb(w,A0, B0, A+, B+, A−, B−) = (w + b, A0, B0, A+, B+, A−, B−).

Using the last three symmetries above, we obtain the following result.

Lemma 5.2. For any ε sufficiently small, the reduced system (5.7)-(5.8) has the following

properties:

(i) the reduced vector field (h, F ) does not depend on w;

(ii) the components (f0, g0) of F are odd functions in the variables (A0, B0, A0, B0) and even

functions in the variables (A+, B+, A−, B−, A+, B+, A−, B−);

(iii) the components (f+, g+, f−, g−) of F are even functions in the variables (A0, B0, A0, B0)

and odd functions in the variables (A+, B+, A−, B−, A+, B+, A−, B−).

Proof. Due to the invariance of the reduced system (5.7)- (5.8) under the action of Tb, the

vector field (h, F ) satisfies

(h, F )(w + b,X,X, ε) = (h, F )(w,X,X, ε),

for any real number b. This implies that (h, F ) does not depend on w and proves (i).
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Next, the vector field F , which only depends on X and X, commutes with the symmetries

τπ and S3τπ acting on these components through

τπ(A0, B0, A+, B+, A−, B−) = (A0, B0,−A+,−B+,−A−,−B−),

S3τπ(A0, B0, A+, B+, A−, B−) = (−A0,−B0, A+, B+, A−, B−).

The first equality implies the parity properties of the components (f0, g0, f+, g+, f−, g−) of F in

the variables (A+, B+, A−, B−, A+, B+, A−, B−) and the second one implies the parity properties

in the variables (A0, B0, A0, B0). This proves the properties (ii) and (iii).

An immediate consequence of the first property in the lemma above being that the two

equations (5.7) and (5.8) are decoupled, we can first solve (5.8) for X, and then integrate (5.7)

to determine w. We therefore restrict our existence analysis to the equation

dX

dx
= F (X,X, ε), (5.9)

which together with the complex conjugate equation for X form a 12-dimensional system. For

this system, the parity properties of the vector field F in Lemma 5.2, imply that there exist two

invariant subspaces:

E0 =
{

(X,X), X ∈ C6 ; (A+, B+, A−, B−) = 0
}
,

which is 4-dimensional, and

E± =
{

(X,X), X ∈ C6 ; (A0, B0) = 0
}
,

which is 8-dimensional. Each of these subspaces gives an invariant submanifold of the center

manifold.

Solutions in the submanifold associated with E0 are invariant under the action of the family

of maps (τa)a∈ R/2πZ and therefore correspond to solutions of the full dynamical system (3.3)

which do not depend on y. Solutions in the submanifold associated with E± are invariant

under the action of S3τπ and correspond to three-dimensional solutions of the full dynamical

system (3.3). For the construction of domain walls we restrict to this 8-dimensional invariant

submanifold.

6 Leading order dynamics

We determine the leading order dynamics of the restriction to E± of the reduced system (5.9)

with the help of a normal forms transformation to cubic order, followed by suitable scalings of

variables. For the resulting systems, we identify particular solutions which correspond to rotated

rolls.
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6.1 Cubic normal form of the reduced system

We write the reduced system (5.9) restricted to the invariant 8-dimensional subspace E± in the

from
dY

dx
= G(Y, Y , ε), (6.1)

in which Y = (A+, B+, A−, B−) ∈ C4. Taking into account the properties of the reduced system

(5.5), the formula (5.6), and the choice for the generalized eigenvectors in Lemma 4.2, we find

G(0, 0, ε) = 0, DYG(0, 0, 0) = L0, DYG(0, 0, 0) = 0,

where L0 is a Jordan matrix acting on Y through

L0 =


ikx 1 0 0

0 ikx 0 0

0 0 ikx 1

0 0 0 ikx

 . (6.2)

Using a general normal forms theorem for parameter-dependent vector fields in the presence of

symmetries (e.g., see [8, Chapter 3]), we determine a normal form of the system (6.1) up to

cubic order.

Lemma 6.1. For any k > 3, there exist neighborhoods V1 and V2 of 0 in C4 and R, respectively,

such that for any ε ∈ V2, there is a polynomial Pε : C4 × C4 → C4 of degree 3 in the variables

(Z,Z), such that for Z ∈ V1, the polynomial change of variable

Y = Z + Pε(Z,Z), (6.3)

transforms the equation (6.1) into the normal form

dZ

dx
= L0Z +N(Z,Z, ε) + ρ(Z,Z, ε), (6.4)

with the following properties:

(i) the map ρ belongs to Ck(V1 × V1 × V2,C4), and

ρ(Z,Z, ε) = O(|ε|2‖Z‖+ ε‖Z‖3 + ‖Z‖5);

(ii) both N(·, ·, ε) and ρ(·, ·, ε) anti-commute with S1 and commute with S2, S3, and τa, for

any ε ∈ V2;

(iii) the four components (N+,M+, N−,M−) of N are of the form

N+ = iA+P+ +A−R+

M+ = iB+P+ +B−R+ +A+Q+ + iA−S+

N− = iA−P− −A+R+

M− = iB−P− −B+R+ +A−Q− − iA+S+
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in which

P+ = β0ε+ β1A+A+ + iβ2(A+B+ −A+B+) + β3A−A− + iβ4(A−B− −A−B−)

P− = β0ε+ β3A+A+ + iβ4(A+B+ −A+B+) + β1A−A− + iβ2(A−B− −A−B−)

Q+ = b0ε+ b1A+A+ + ib2(A+B+ −A+B+) + b3A−A− + ib4(A−B− −A−B−)

Q− = b0ε+ b3A+A+ + ib4(A+B+ −A+B+) + b1A−A− + ib2(A−B− −A−B−)

R+ = γ5(A+B− −A−B+), S+ = c5(A+B− −A−B+),

where (A+, B+, A−, B−) are the four components of Z and the coefficients βj, bj, γ5 and

c5 are all real.

The proof of this lemma can be found in Appendix B.1. We point out that the result is valid

for any system of the form (6.1) which has a linear part as in (6.2) and the symmetries S1, S2,

S3, and τa given in Section 5.2.

6.2 Rotated rolls as periodic solutions

The normal form (6.4) truncated at cubic order has the property to leave invariant the two

4-dimensional subspaces

E+ =
{

(Z,Z), Z ∈ C4 ; (A−, B−) = 0
}
, E− =

{
(Z,Z), Z ∈ C4 ; (A+, B+) = 0

}
,

which is not the case for the full system (6.4). The systems obtained by restricting the normal

form truncated at cubic order to E+ and E− being similar, we consider the one restricted to E+,

dA+

dx
= ikxA+ +B+ + iA+P+ (6.5)

dB+

dx
= ikxB+ + iB+P+ +A+Q+ (6.6)

with

P+ = β0ε+ β1A+A+ + iβ2(A+B+ −A+B+),

Q+ = b0ε+ b1A+A+ + ib2(A+B+ −A+B+).

Notice that (6.5)-(6.6) is the system found at cubic order in the case of the classical reversible 1 : 1

resonance bifurcation, or reversible Hopf bifurcation. In our case, the reversibility symmetry

is given by S1S2. This system is integrable and we refer to [8, Section 4.3.3] for a detailed

discussion of its bounded solutions.

We consider here the periodic solutions of (6.5)-(6.6) with wavenumbers kx + θ close to kx,

for small ε. According to [8, Section 4.3.3], these periodic solutions are determined, up to the

action of (τa)a∈ R/2πZ and to translations in x, by the reversible periodic solutions

A+ = r0e
i(kx+θ)x, B+ = iq0e

i(kx+θ)x, (6.7)
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with real numbers r0 > 0 and q0 satisfying the equalities

θ =
q0

r0
+ β0ε+ β1r

2
0 + 2β2r0q0,

0 = q2
0 + r2

0

(
b0ε+ b1r

2
0 + 2b2r0q0

)
,

obtained by replacing (6.7) into the system (6.5)-(6.6). Solving for q0 and r0, we find

q0 =
r0

(
θ − β0ε− β1r

2
0

)
1 + 2β2r2

0

, r2
0 = −b0

b1
ε− 1

b1
θ2 +O(|εθ|+ |ε|2 + |θ|3), (6.8)

as (ε, θ)→ (0, 0). For ε such that b0ε/b1 < 0, the right hand side in the formula for r2
0 is positive

for small ε and θ small enough, and we have a solution (A+, B+) given by (6.7) for the system

(6.5)-(6.6). Notice that θ must be O(|ε|1/2)-small when b1 > 0, which, as we shall see later in

this section, is the case here.

For the 8-dimensional normal form (6.4) truncated at cubic order we obtain the solutions

(A+, B+, 0, 0) which belong to the invariant subspace E+. The persistence of these solutions

for the full normal form (6.4) can be proved via the implicit function theorem, for instance, by

adapting the method used in the case of reversible 1 : 1 resonance bifurcations in [13, Section

III.1]. For small ε such that b0ε/b1 < 0 and θ small enough, we obtain a family of reversible

periodic solutions Z̃ε,θ of the normal form (6.4), which are uniquely determined by their leading

order part

(r0e
i(kx+θ)x, 0, 0, 0), r2

0 = −b0
b1
ε− 1

b1
θ2, r0 > 0. (6.9)

This leading order part belongs to E+, which is not the case for Z̃ε,θ, and it is the same as the one

of the solutions (6.7) of the truncated system. As it follows from the implicit function theorem,

the periodic solutions τa(Z̃ε,θ), a ∈ R/2πZ, are, up to translations in x, the only periodic

solutions of the system (6.4) with leading order part of the form (6.9) in E+ and wavenumbers

kx + θ sufficiently close to kx, for sufficiently small ε. Notice that there are precisely two

reversible solutions, Z̃ε,θ with r0 > 0 and τπZ̃ε,θ with r0 < 0. We show below that the solutions

Z̃ε,θ correspond to solutions of dynamical system (3.3) which are rotated rolls R−βU∗k,µ, with

k and µ sufficiently close to kc and µc, respectively. We use this correspondence to compute the

coefficients b0 and b1 of the normal form.

Consider the rotated roll R−βU∗k,µ, for µ > µc close to µc, wavenumber k close to kc such

that

k ∈ (k1, k2), µ0(k1) = µ0(k2) = µ,

(see Figure 2.1), and rotation angle β ∈ (0, π/2) chosen such that the rotated roll is a solution

of the dynamical system (3.3), i.e., such that

k cosβ = ky = kc cosα. (6.10)

The rotation angle β ∈ (0, π/2) is uniquely determined through this formula, and from the

Taylor expansion of µ0(k),

µ0(k) = µc +
1

2
µ′′0(kc)(k − kc)2 +O(|k − kc|3), (6.11)
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for k close to kc, we find that the unique values k1 and k2 above are O(|µ− µc|1/2)-close to kc.

The rotated roll R−βU∗k,µ is periodic in x with wavenumber

k′x = k sinβ =
√
k2 − k2

c cos2 α = kc sinα+
1

sinα
(k − kc) +O(|k − kc|2), (6.12)

where we used (6.10) to obtain the second equality, and has the reversibility symmetry (4.4).

According to the formulas (2.8), (2.9), and (2.7) from Section 2, we have that

R−βΠU∗k,µ(x, y, z) = δei(k
′
xx+kyy)R−βûk(z) + δe−i(k

′
xx+kyy)R−βûk(z) +O(δ2), (6.13)

where δ > 0 is the small parameter in (2.8) and ûk(z) is given by (2.3). Furthermore, from (4.8)

we obtain

eikyyR−βûk(z) = ΠUω1(k),1(y, z) = Πζ+(y, z) +O(|k − kc|), (6.14)

where Uω1(k),1 and ζ+ are the eigenvectors in Lemma 4.1 and Lemma 4.2, respectively.

For µ = µc + ε, the rotated roll R−βU∗k,µ is a solution of the dynamical system (5.1), which

is the same as (3.3). From (2.8) and (6.11) we obtain the relationship

ε = (µ− µ0(k)) + (µ0(k)− µc) = µ2δ
2 +

1

2
µ′′0(kc)(k − kc)2 +O(|δ|3 + |k − kc|3), (6.15)

implying that δ = O(ε1/2) and |k − kc| = O(ε1/2), since the values µ2 and µ′′0(kc) given by

(2.12) and (2.6), respectively, are positive. In particular, the rotated roll R−βU∗k,µ has small

amplitude of order O(ε1/2) and therefore belongs to the center manifold (5.4) of (5.1), provided

ε is sufficiently small. Furthermore, we saw in Section 4.1 that for rotation angles β ∈ (0, π/2),

the rolls R−βU∗k,µ are invariant under the action of S3τπ. This implies that R−βU∗k,µ belongs

to the center submanifold associated to E± found in Section 5.2. Consequently, it provides a

periodic solution of the reduced system (6.1), from which we obtain a periodic solution for the

normal form system (6.4) through the change of variables (6.3). These periodic solutions inherit

the reversibility symmetry (4.4) of the rotated rolls.

We set

θ = k′x − kx = k′x − kc sinα =
1

sinα
(k − kc) +O(|k − kc|2), (6.16)

where k′x is the wavenumber given by (6.12), and denote by Zε,θ the periodic solution of the

normal form (6.4) corresponding toR−βU∗k,µ. The parameters (ε, θ) are related to (k, µ) through

the equalities ε = µ − µc and (6.16), which define a one-to-one map (k, µ) → (ε, θ), for k in a

neighborhood of kc and any µ. Comparing the expressions of ΠR−βU∗k,µ given by (6.13) and by

the formulas (5.4) and (5.6) for the solutions on the center manifold, using the equalities (6.14)

and (6.16), we obtain the expansion

Zε,θ(x) =
(
δei(kx+θ)x, 0, 0, 0

)
+O(|δ||θ|+ |δ|2), (6.17)

with δ > 0 determined through (6.15) and (6.16),

δ2 =
1

µ2
ε− µ′′0(kc) sin2 α

2µ2
θ2 +O(|ε|3/2 + |ε|1/2|θ|2 + |θ|3). (6.18)
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The existence and the above properties of the periodic solutions Zε,θ of the normal form

system (6.4) are directly obtained from the existence and properties of the rotated rollsR−βU∗k,µ,

without using the solutions Z̃ε,θ found from the periodic solutions (6.7) of the truncated system.

With Z̃ε,θ, the solutions Zε,θ share the property of being reversible periodic solutions of the

system (6.4) with leading order parts in E+ and wavenumbers kx + θ sufficiently close to kx,

for sufficiently small ε. The solutions Z̃ε,θ and τπZ̃ε,θ being the only ones with these properties,

taking into account that δ in (6.17) and r0 in (6.9) are both positive, we deduce that Zε,θ and

Z̃ε,θ are the same solutions of the system (6.4), for sufficiently small ε and θ. In particular, their

leading order parts are the same. Identifying the leading order part of δ2 in (6.18) with r2
0 in

(6.9), we can compute the coefficients

b0 = − 2

µ′′0(kc) sin2 α
< 0, b1 =

2µ2

µ′′0(kc) sin2 α
> 0. (6.19)

The signs of these two coefficients are needed in the subsequent arguments.

Remark 6.2. As usual in this type of approach, the coefficient b0 can be determined from the

property that the eigenvalues of the matrix obtained by linearizing the normal form (6.4) at Z = 0

are equal to the continuation of the eigenvalues ±ikx of Lµc as eigenvalues of Lµ for µ = µc + ε

and sufficiently small ε. In the proof of Lemma 4.2 we saw that the latter eigenvalues are the

purely imaginary eigenvalues ±iω1(k1) and ±iω1(k2) given by (4.9), with k1 < kc < k2 such that

µ = µ0(k1) = µ0(k2). Computing the eigenvalues of the normal form (6.4) we obtain

iω1(k1) = i
(
kx −

√
−b0ε+O(ε)

)
,

whereas from (4.9) we find

iω1(k1) = i
√
k2

1 − k2
c cos2 α = i

(
kc sinα+

1

sinα
(k1 − kc) +O(|k1 − kc|2)

)
.

These two equalities and the Taylor expansion (6.11) of µ0(k), taken at k = k1, give the value

of b0 in (6.19). Furthermore, by replacing the expansions (6.17) and (6.18) with θ = 0 into the

equation for B+ of the normal form (6.4) and identifying the coefficients of the terms of order

O(ε3/2), we easily obtain that b1 = −µ2b0. These arguments give an alternative way for the

computation of b0 and b1, without using the solutions Z̃ε,θ.

6.3 Leading order system

From now on we restrict to ε > 0, which corresponds to values µ > µc for which rolls exist. We

further transform the normal form (6.4) by introducing new variables

x̂ = |b0ε|1/2x, A±(x) =

∣∣∣∣b0εb1
∣∣∣∣1/2 eikxxC±(x̂), B±(x) =

|b0ε|
|b1|1/2

eikxxD±(x̂). (6.20)
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Taking into account the signs of b0 and b1 in (6.19), we obtain the first order system,

C ′+ = D+ + f̂+(C±, D±, C±, D±, e
±ikxx̂/|b0ε|1/2 , ε1/2), (6.21)

D′+ =
(
−1 + |C+|2 + g|C−|2

)
C+ + ĝ+(C±, D±, C±, D±, e

±ikxx̂/|b0ε|1/2 , ε1/2), (6.22)

C ′− = D− + f̂−(C±, D±, C±, D±, e
±ikxx̂/|b0ε|1/2 , ε1/2), (6.23)

D′− = (−1 + g|C+|2 + |C−|2)C− + ĝ−(C±, D±, C±, D±, e
±ikxx̂/|b0ε|1/2 , ε1/2), (6.24)

in which g is the quotient

g =
b3
b1
, (6.25)

and f̂±, ĝ± are Ck-functions in their arguments of the form

f̂± = f̂±,0 + f̂±,1, ĝ± = ĝ±,0 + ĝ±,1,

f̂±,0 = f̂±,0(C±, D±, C±, D±, ε
1/2) = O(ε1/2(|C±|+ |D±|)),

f̂±,1 = f̂±,1(C±, D±, C±, D±, e
±ikxx̂/|b0ε|1/2 , ε1/2) = O(ε3/2(|C±|+ |D±|)),

ĝ±,0 = ĝ±,0(C±, D±, C±, D±, ε
1/2) = O(ε1/2(|C±|+ |D±|)),

ĝ±,1 = ĝ±,1(C±, D±, C±, D±, e
±ikxx̂/|b0ε|1/2 , ε1/2) = O(ε(|C±|+ |D±|)).

Solving the equations (6.21) and (6.23) for D+ and D−, respectively, we rewrite the first order

system (6.21)-(6.24) as a second order system,

C ′′+ =
(
−1 + |C+|2 + g|C−|2

)
C+ + h+(C±, C

′
±, C±, C

′
±, e

±ikxx/|b0ε|1/2 , ε1/2), (6.26)

C ′′− =
(
−1 + g|C+|2 + |C−|2

)
C− + h−(C±, C

′
±, C±, C

′
±, e

±ikxx/|b0ε|1/2 , ε1/2), (6.27)

where we replaced x̂ by x, for notational convenience, and h± are Ck-functions in their arguments

of the form

h± = h±,0 + h±,1,

h±,0 = h±,0(C±, D±, C±, D±, ε
1/2) = O(ε1/2(|C±|+ |D±|)),

h±,1 = h±,1(C±, D±, C±, D±, e
±ikxx/|b0ε|1/2 , ε1/2) = O(ε(|C±|+ |D±|)).

Notice that both systems above inherit the symmetries of the normal form (6.4).

Through the change of variables (6.20), after rescaling θ, from the periodic solutions Zε,θ of

the normal form (6.4) we obtain a family of solutions Pε,θ of the second order system (6.26)-

(6.27). The properties below are easily obtained from the ones found for Zε,θ in Section 6.2.

Lemma 6.3. For any ε > 0 and θ sufficiently small, the system (6.26)-(6.27) possesses a two-

parameter family of solutions Pε,θ with the following properties:

(i) e−iθxPε,θ is periodic in x with wavenumber θ + kx/|b0ε|1/2;
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(ii) S1S2(Pε,θ(x)) = Pε,θ(−x), for all x ∈ R;

(iii) Pε,θ(x) =
(
(1− θ2)1/2eiθx, 0

)
+O(ε1/2), as (ε, θ)→ (0, 0);

(iv) Pε,θ corresponds to a solution of the system (3.3) which is a rotated roll R−βU∗k,µ with

cosβ = ky/k, µ = µc + ε, k = kc + |b0ε|1/2θ sinα+O(εθ2). (6.28)

Notice that Pε,θ is periodic in x when θ = 0, whereas for θ 6= 0 it is a quasiperiodic function.

This comes from the change of variables (6.20) where in the expressions of A± and B± we

only factored out the exponential eikxx, instead of the exponential ei(kx+θ)x which would have

preserved periodicity. This lack of periodicity does not pose any problem for the remaining

arguments, in which we only use the properties (ii)-(iv) above.

The second property in Lemma 6.3 shows that the solutions Pε,θ are reversible, the reversibil-

ity symmetry being S1S2. Using the reversibility symmetry S1, we obtain a second family of

solutions of the system (6.26)-(6.27),

Qε,θ(x) = S1(Pε,θ(−x)) =
(

0, (1− θ2)1/2eiθx
)

+O(ε1/2). (6.29)

These solutions have the properties (i) and (ii) in Lemma 6.3 and correspond to the rotated

rolls RβU
∗
k,µ satisfying (6.28). In addition, the family of maps (τa)a∈ R/2πZ provides the circles

of solutions τa(Pε,θ) and τa(Qε,θ), a ∈ R/2πZ.

The existence proof in the next section requires that the quotient g in (6.25) takes values in

the interval (1, 4 +
√

13). The lemma below shows that this property holds at least for small

angles α.

Lemma 6.4. For any Prandtl number P, there exists an angle α∗(P) ∈ (0, π/3] such that

1 < g < 4 +
√

13, for any α ∈ (0, α∗(P)).

Proof. We compute the coefficient g in Appendix B.2. The result in formula (B.12) shows

that the limit as α tends to 0 of g is equal to 2, which proves the result.

A symbolic computation, using the package Maple, of g shows that the inequality g > 1 holds

for any Prandtl number P > 0 and any angle α ∈ (0, π/3), and that the inequality g < 4 +
√

13

holds in a region of the (α,P)-plane which includes all positive values of the Prandtl number

P, for sufficiently small angles α 6 α∗, with α∗ ≈ π/9.112, and all angles α ∈ (0, π/3), for

sufficiently large Prandtl numbers P > P∗, with P∗ ≈ 0.126 (see Figure 6.1).

7 Existence of domain walls

We construct domain walls as reversible heteroclinic solutions of (6.26)-(6.27) connecting the

solutions Qε,θ as x→ −∞ with Pε,θ as x→∞, for a suitable θ = θ(ε1/2) and ε > 0 sufficiently

small. While the asymptotic solutions Pε,θ and Qε,θ have the reversibility symmetry S1S2, the

heteroclinic solutions will have the reversibility symmetry S1.
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Θ = sin2 α

P

g < 4 +
√

13

Figure 6.1: “Rigid-rigid” case. In the (Θ,P)-plane, with Θ = sin2 α, Maple plot of the curve along

which g = 4 +
√

13, for Θ ∈ (0, 1). The inequality g < 4 +
√

13 holds in the shaded regions, whereas the

inequality g > 1 holds everywhere. Domain walls are constructed in the shaded region situated to the

left of the vertical line Θ = sin2(π/3) = 0.75.

Following the approach developed in [10], we start by constructing a heteroclinic solution

for the leading order system obtained at ε = 0 and then using the implicit function theorem we

show that it persists for the full system. In contrast to the reduced system in [10] which was

12-dimensional, we have here an 8-dimensional system, only. This simplifies a part of the proof

of Lemma 7.3 below. On the other hand, the quotient g takes here different values depending

on the Prandtl number P and the angle α (see Figure 6.1), whereas g = 2 in [10]. We therefore

need to extend the arguments from [10] to more general values g. We obtain a persistence result

for g ∈ (1, 4 +
√

13).

7.1 Leading order heteroclinic

Consider the leading order system

C ′′+ =
(
−1 + |C+|2 + g|C−|2

)
C+, (7.1)

C ′′− =
(
−1 + g|C+|2 + |C−|2

)
C−, (7.2)

obtained by setting ε = 0 in (6.26)-(6.27). According to Lemma 6.3, this system has the solutions

P0,θ(x) =
(

(1− θ2)1/2eiθx, 0
)
, Q0,θ(x) =

(
0, (1− θ2)1/2eiθx

)
,

with θ sufficiently small. The leading order heteroclinic is constructed for θ = 0, as a real-valued

solution of (7.1)-(7.2) connecting the equilibrium Q0,0 = (0, 1) as x→ −∞ with the equilibrium

P0,0 = (1, 0) as x→∞.

Under the assumption that g > 1 3, the existence of such a heteroclinic solution has been

proved in [28]. According to [28, Theorem 5], for any g > 1, the system (7.1)-(7.2) possesses

3It turns out that this condition is necessary and sufficient.
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a heteroclinic solution (C∗+, C
∗
−), where C∗± are smooth real-valued functions defined on R and

have the following properties:

(i) lim
x→−∞

(C∗+(x), C∗−(x)) = (0, 1) and lim
x→∞

(C∗+(x), C∗−(x)) = (1, 0);

(ii) C∗+(x) = C∗−(−x), ∀ x ∈ R;

(iii) C∗+(x)2 + C∗−(x)2 6 1 and C∗+(x) + C∗−(x) > min(1, 2/
√
g + 1), ∀ x ∈ R;

(iv) (C∗′+(x))2 + (C∗′−(x))2 =
1

2

(
C∗+(x)2 + C∗−(x)2 − 1

)2
+ (g − 1)C∗+(x)2C∗−(x)2, ∀ x ∈ R.

The second property above shows that (C∗+, C
∗
−) is reversible, with reversibility symmetry S1.

The last property is a consequence of the Hamiltonian structure of the system (7.1)-(7.2), which

was one of the key ingredients in the existence proof in [28]. Notice that the equilibria (1, 0)

and (0, 1) of the system (7.1)-(7.2) are both saddles having a two-dimensional stable manifold

and a two-dimensional unstable manifold. The heteroclinic connection (C∗+, C
∗
−) belongs to the

intersection of the two-dimensional stable manifold of (1, 0) with the two-dimensional unstable

manifold of (0, 1).

In addition to these properties, in the proof of Lemma 7.3 below we need the two results in

the following lemma.

Lemma 7.1. Consider the heteroclinic solution (C∗+, C
∗
−) of the system (7.1)-(7.2).

(i) For any g > 1, the functions C∗+ and C∗− have the asymptotic behavior

C∗+(x) = α∗e
√
g−1x +O(e(

√
g−1+δ∗)x), C∗−(x) = 1− β∗ed∗ x +O(e(d∗+δ∗)x), (7.3)

as x→ −∞, for some positive constants α∗, d∗, δ∗ and β∗ > 0.

(ii) For any g ∈ (1, 4 +
√

13), the functions C∗+ and C∗− satisfy the inequality

3C∗2+ (x) + gC∗2− (x) > 1, ∀ x ∈ R. (7.4)

Proof. (i) The heteroclinic connection (C∗+, C
∗
−) being included in the unstable manifold of

the equilibrium (0, 1), the functions C∗+ and 1−C∗− decay exponentially to 0, as x→ −∞. This

implies the behavior of C∗− and by taking into account the behavior of the different terms in the

equation (7.1), we obtain the result for C∗+.

(ii) For g ∈ (3/2, 4 +
√

13) the property (7.4) is an immediate consequence of the inequality

C∗+(x) + C∗−(x) > min(1, 2/
√
g + 1), ∀ x ∈ R,

given above. We set

fg(x) = 3C∗2+ (x) + gC∗2− (x)− 1,

so that fg is a smooth function defined on R and fg is positive for any g ∈ (3/2, 4 +
√

13).

Assuming that there exists g ∈ (1, 3/2] such that (7.4) does not hold, since fg has positive limits

at x = ±∞,

lim
x→−∞

fg(x) = g − 1 > 0, lim
x→∞

fg(x) = 2,
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and since the property holds for any g ∈ (3/2, 4 +
√

13), there exists g ∈ (1, 3/2] and x∗ ∈ R
such that

fg(x∗) = 0, f ′g(x∗) = 0, f ′′g (x∗) > 0, (7.5)

i.e., fg vanishes at a local minimum x∗.

For notational simplicity, we set

U = C∗2+ (x∗), V = C∗2− (x∗), X = (C ′+(x∗))
2, Y = (C ′−(x∗))

2.

Then the two equalities in (7.5) imply,

3U + gV = 1, 9UX = g2V Y,

and from the property (iv) above we find that

X + Y =
1

2
(U + V − 1)2 + (g − 1)UV.

Consequently, we can write V,X, Y as functions of U ,

V =
1

g
(1− 3U),

X =
1

2

(1− 3U)((5g2 − 9)U2 + 6(1− g)U − (g − 1)2)

g(3(g − 3)U − g)
,

Y =
9

2

U((5g2 − 9)U2 + 6(1− g)U − (g − 1)2)

g2(3(g − 3)U − g)
,

and then compute

f ′′g (x∗) = 2(3X + gY + 3U(−1 + U + gV ) + gV (−1 + gU + V )

=
(
18(g − 1)(g2 − 9)U3 + (12g(9− g2)− 27(3 + g2))U2

+2g(g2 + 6g − 9)U + (g − 1)(g − 3)
)
/(g(g − 3(g − 3)U)).

For g ∈ (1, 3/2) and U ∈ (0, 1) we find that f ′′g (x∗) < 0, which proves the result.

Remark 7.2. (i) As pointed out in [28], the system (7.1)-(7.2) is integrable in the case g = 3,

and the heteroclinic solution (C∗+, C
∗
−) can be explicitly computed in this case. We find that

C∗±(x) =
1

2

(
1± tanh

(
x√
2

))
.

These formulas allow to easily check the properties in Lemma 7.1, and also the ones in

Lemma 7.3 below, in this particular case.

(ii) The heteroclinic connection (C∗+, C
∗
−) being real-valued, it is in fact a solution of the 4-

dimensional system obtained by restricting (7.1)-(7.2) to the invariant subspace of real-

valued solutions. As a solution of the (complex) 8-dimensional system, it belongs to the

circle of heteroclinic solutions τa(C
∗
+, C

∗
−), for a ∈ R/2πZ, and all these heteroclinic

solutions are reversible. Notice that such a property does not hold for the circle of solu-

tions τa(Pε,θ) found in Section 6.3, the reason being that the reversibility symmetries are

different, S1 for (C∗+, C
∗
−) and S1S2 for Pε,θ.
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7.2 Persistence of the heteroclinic

The heteroclinic solution (C∗+, C
∗
−) is a particular reversible solution of the system (6.26)-(6.27)

for ε = 0. Its persistence for small ε > 0 is proved by applying the implicit function theorem in

a space of reversible exponentially decaying functions,

X rη = {(C+, C−, C+, C−) ∈ Xη ; C+(x) = C−(−x), x ∈ R}, (7.6)

where, for η > 0,

Xη =
{

(C+, C−, C+, C−) ∈ (L2
η)

4
}
, L2

η =

{
f : R→ C ;

∫
R
e2η|x||f(x)|2 <∞

}
.

A key step of the proof is the analysis of the operator obtained by linearizing the leading

order system (7.1)-(7.2), together with the complex conjugated equations, at (C∗+, C
∗
−), i.e., the

linear operator L∗ acting on (C+, C−) through

L∗

(
C+

C−

)
=

(
C ′′+ −

(
−1 + 2C∗2+ + gC∗2−

)
C+ − C∗2+ C+ − gC∗+C∗−(C− + C−)

C ′′− −
(
−1 + gC∗2+ + 2C∗2−

)
C− − C∗2− C− − gC∗+C∗−(C+ + C+)

)
.

In the space of exponentially decaying functions Xη, the operator L∗ is closed with dense domain

Yη =
{

(C+, C−, C+, C−) ∈ (H2
η )4
}
, H2

η =
{
f : R→ C ; f, f ′, f ′′ ∈ L2

η

}
, (7.7)

and the subspace X rη of reversible functions is invariant under the action of L∗, due to the

reversibility of both the system (6.26)-(6.27) and the heteroclinic (C∗+, C
∗
−). The following

lemma extends the result in [10, Lemma 4.1] to values g ∈ (1, 4 +
√

13).

Lemma 7.3. Assume that g ∈ (1, 4 +
√

13). For any η > 0 sufficiently small, the operator L∗
acting in X rη is Fredholm with index −1. The kernel of L∗ is trivial, and the one-dimensional

kernel of its L2-adjoint is spanned by (iC∗+,−iC∗−,−iC∗+, iC
∗
−).

Proof. Taking as new variables the real and imaginary parts of C±,

U± =
1

2
(C± + C±), V± =

1

2i
(C± − C±),

we obtain the matrix operator

M∗ =

(
Mr 0

0 Mi

)
,

with

Mr

(
U+

U−

)
=

(
U ′′+ −

(
−1 + 3C∗2+ + gC∗2−

)
U+ − 2gC∗+C

∗
−U−

U ′′− −
(
−1 + gC∗2+ + 3C∗2−

)
U− − 2gC∗+C

∗
−U+

)
,

Mi

(
V+

V−

)
=

(
V ′′+ −

(
−1 + C∗2+ + gC∗2−

)
V+

V ′′− −
(
−1 + gC∗2+ + C∗2−

)
V−

)
,
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acting in, respectively,

Xr
η =

{
(U+, U−) ∈ (L2

η)
2 ; U+(x) = U−(−x), x ∈ R

}
,

Xi
η =

{
(V+, V−) ∈ (L2

η)
2 ; V+(x) = −V−(−x), x ∈ R

}
.

The properties of L∗ are found from the ones of Mr and Mi. In the case g = 2, the operator

Mr has been studied in [9, Lemma 4.6] and the operator Mi in [10, Lemma 4.1]. Using the

same arguments, it is straightforward to show that, for any g > 1, the operatorMr is Fredholm

with index 0, whereas the operator Mi is Fredholm with index −1, has a trivial kernel, and

the one-dimensional kernel of its L2-adjoint is spanned by (C∗+,−C∗−). To complete the proof

it remains to show that the kernel of Mr is trivial. In this part of the proof, we use the two

properties given in Lemma 7.1, the second one leading to the restriction g ∈ (1, 4 +
√

13).

Elements in the kernel of Mr are couples of functions (U+, U−) ∈ Xr
η , solving the linear

system

U ′′+ =
(
−1 + 3C∗2+ + gC∗2−

)
U+ + 2gC∗+C

∗
−U−, (7.8)

U ′′− =
(
−1 + gC∗2+ + 3C∗2−

)
U− + 2gC∗+C

∗
−U+. (7.9)

Due to the translation invariance of the leading order system (7.1)-(7.2), the derivative (C∗′+ , C
∗′
−)

is a solution of this linear system, but it does not satisfy the reversibility condition U+(x) =

U−(−x), and therefore it does not belong to the kernel of Mr. We show below that the space

of bounded solutions of this linear system is one-dimensional, hence spanned by the derivative

(C∗′+ , C
∗′
−) of the heteroclinic solution. This implies that the kernel of Mr is trivial and proves

the result.

In the limit x = −∞, the system (7.8)-(7.9) is autonomous, and the equations are decoupled,

U ′′+ = (g − 1)U+, U ′′− = 2U−.

Consequently, the set of solutions of (7.8)-(7.9) which are bounded as x → −∞ is a two-

dimensional vector space consisting of pairs (U+, U−) of exponentially decaying functions. Tak-

ing into account the exponential decay of solutions of the autonomous system and the asymptotic

behavior of the heteroclinic solution in (7.3) we obtain that

U+(x) = α+e
√
g−1x +O(e(

√
g−1+δ∗)x), (7.10)

as x → −∞, for some α+ ∈ R and δ∗ > 0. We show below that α+ 6= 0, which implies that

the space of bounded solutions of this linear system is one-dimensional. Indeed, assuming that

there are two linearly independent solutions of (7.8)-(7.9), then a suitable linear combination of

these solutions gives a solution with α+ = 0, which contradicts the property α+ 6= 0.

Assume that α+ = 0. Then the exponential decay of U+ is given to leading order by the

coupling term 2gC∗+C
∗
−U− in (7.8). The product 2gC∗+C

∗
− being positive, this implies that U+

and U− have the same sign as x→ −∞. Since both functions decay exponentially as x→ −∞,

they have constant signs on an interval (−∞,m), for some real number m. Assume, for instance,
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that they are both positive for x in (−∞,m), and take the first local maximum x∗ of U−, hence

satisfying

U−(x∗) > 0, U ′−(x∗) = 0, U ′′−(x∗) 6 0, U−(x) > 0, ∀ x < x∗.

From the equation (7.9) we find

2gC∗+(x∗)C
∗
−(x∗)U+(x∗) 6 −

(
−1 + gC∗2+ (x∗) + 3C∗2− (x∗)

)
U−(x∗),

which together with the property (7.4) in Lemma 7.1 and the positivity of U−(x∗), C
∗
+, and C∗−,

implies that U+(x∗) < 0. We claim that U+(x) < 0, for all x 6 x∗. Indeed, assuming that U+

is not negative, there exists a local maximum at some point x̃∗ < x∗ such that

U+(x̃∗) > 0, U ′+(x̃∗) = 0, U ′′+(x̃∗) 6 0.

Using now the equation (7.8), and arguing as above we obtain that U−(x̃∗) 6 0, which contradicts

the positivity of U− for x < x∗. This implies that U+ and U− cannot have the same signs as

x→ −∞, which contradicts the assumption α+ = 0, and completes the proof.

The remaining part of the persistence proof consists in applying the implicit function theorem

to show the existence of a heteroclinic solution for the full system (6.26)-(6.27), connecting Qε,θ,

as x→ −∞, to Pε,θ, as x→∞. The operator L∗ being Fredholm with index −1, the presence

of the parameter θ is essential in these last arguments. In the proof, θ plays the role of an

additional unknown which is determined as a function of ε when applying the implicit function

theorem.

Theorem 2. Assume that g ∈ (1, 4 +
√

13). For any ε > 0 sufficiently small, there exists

θ = O(ε1/2), continuously depending on ε1/2, such that the system (6.26)-(6.27) possesses a

reversible heteroclinic solution Cε = (C+,ε, C−,ε) connecting the solutions Qε,θ, as x→ −∞, to

Pε,θ, as x→∞.

Proof. We follow the proofs in [10, Theorem 2] and [26, Theorem 2].

The system (6.26)-(6.27) together with the complex conjugated equations is of the form

F(C,C, ε1/2) = 0, C = (C+, C−), (7.11)

and it has the particular solutions Pε,θ and Qε,θ found in Section 6.3, for sufficiently small θ

and ε > 0, and the heteroclinic solution C∗ = (C∗+, C
∗
−) from Section 7.1, for ε = 0. We set

P̃ε,θ = Pε,θ − (1, 0) eiθx, Q̃ε,θ = Qε,θ − (0, 1) eiθx,

and take a smooth function χ : R→ [0, 1] such that

χ(x) = 1, if x >M, χ(x) = 0, if x 6 m,

for some positive constants m < M . We look for solutions of (7.11) of the form

C(x) = eiθxC∗(x) + χ(x)P̃ε,θ(x) + χ(−x)Q̃ε,θ(x) + V(x), (7.12)
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with (V,V) ∈ Yrη = Yη ∩ X rη , where X rη and Yη are defined in (7.6) and (7.7), respectively.

Notice that the difference C − Pε,θ (resp. C − Qε,θ) decays exponentially to 0, as x → ∞
(resp. x→ −∞), with the same decay rate as V, and that C and V have the same reversibility

symmetry S1.

Substituting (7.12) into (7.11) we obtain an equation of the form

T (V,V, θ, ε1/2) = 0.

As shown in [10, Theorem 2], T (V,V, θ, ε1/2) ∈ X rη , for any (V,V) ∈ Yrη and (θ, ε1/2) sufficiently

small, and from the properties of h± in (6.26)-(6.27) we find that

T = T0 + T1, T1 = O(ε), (7.13)

with T0 continuously differentiable and T1 continuous and continuously differentiable with respect

to (V,V, θ). Furthermore,

T (0, 0, 0, 0) = F(C∗,C∗, 0) = 0,

and a direct calculation shows that

DVT (0, 0, 0, 0) = L∗, DθT (0, 0, 0, 0) = L∗

(
ixC∗

−ixC∗

)
=

(
2iC∗′

−2iC∗′

)
.

According to Lemma 7.3, the operator L∗ is Fredholm with index −1, injective, and its range

is L2-orthogonal to (iC∗+,−iC∗−,−iC∗+, iC∗−). The L2-scalar product of this vector with the

differential DθT (0, 0, 0, 0) is given by

2

∫
R

(
2C∗′+(x)C∗+(x)− 2C∗′−(x)C∗−(x)

)
dx = 2

∫
R

(
C∗2+ (x)− C∗2− (x)

)′
dx = 4 6= 0, (7.14)

which implies that DθT (0, 0, 0, 0) does not belong to the range of L∗. Consequently, the dif-

ferential D(V,θ)T (0, 0, 0, 0) is bijective, and the result in the lemma follows from the implicit

function theorem [5, Theorems 10.1.1 and 10.1.2] and (7.13).

Going back to the Bénard-Rayleigh problem, the result in this theorem, together with

Lemma 6.3, implies the existence of a symmetric domain wall connecting two rotated rolls,

RβU
∗
k,µ, as x → −∞, to R−βU∗k,µ, as x → ∞, with k = kc + O(ε) and β = α + O(ε), for

positive ε = µ− µc sufficiently small. The family of maps (τa)a∈ R/2πZ provides the circle of re-

versible heteroclinic solutions τa(C+,ε, C−,ε), for a ∈ R/2πZ, which corresponds to translations

in y of the symmetric domain wall. This proves Theorem 1 in the case of “rigid-rigid” boundary

conditions. Notice that ε = R−Rc in Theorem 1 is linked to ε = µ− µc in Theorem 2 through

R1/2 = µ and R1/2
c = µc.

8 Discussion

This approach can also be used for other boundary conditions, when one, or both, of the rigid

boundaries is replaced by a free boundary. It turns out that the arguments remain the same

when both boundaries are free, but a major difference occurs in the case of one rigid and one

free boundary. We briefly discuss these two cases below.
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8.1 “Free-free” boundary conditions

In the case of two free boundaries, the “rigid-rigid” boundary conditions (1.5) are replaced by

the “free-free” boundary conditions (1.6), the horizontal components (Vx, Vy) of the velocity

field V satisfying now Neumann boundary conditions along the horizontal boundaries z = 0, 1,

instead of Dirichlet boundary conditions. The equations in the system (1.1)-(1.3) are the same,

and with these boundary conditions the system has exactly the same symmetries as in the case

of “rigid-rigid” boundary conditions.

In the classical two-dimensional convection, the existence of rolls is shown as in Section 2.2.

The sequence of parameter values µ0(k) < µ1(k) < µ2(k) < . . . has the same properties as in

Section 2.1, the difference being that in the boundary value problem (2.4)-(2.5) the equality

DV = 0 is replaced by D2V = 0. This changes the formula for µ0(k), which is now explicit (see

[22]),

µ0(k) =
1

|k|
(
k2 + π2

)3/2
,

from which we easily obtain the numerical values

kc =
π√
2
, µc =

3
√

3

2
π2.

The solution V of the boundary value problem (2.4)-(2.5) is also explicit, V (z) = sin(πz).

In our approach, we replace the spaces X and Z in the spatial dynamics formulation (3.3)

by

X =
{
U ∈ (H1

per(Ω))3 × (L2
per(Ω))3 ×H1

per(Ω)× L2
per(Ω) ;

Vz = θ = 0 on z = 0, 1, and

∫
Ωper

Vx dy dz = 0
}
,

and

Z =
{
U ∈ X ∩ (H2

per(Ω))3 × (H1
per(Ω))3 ×H2

per(Ω)×H1
per(Ω) ;

∂zVx = ∂zVy = Wz = φ = 0 on z = 0, 1
}
.

The equations in (3.3) and the symmetries τa, S1, S2, S3, and Tb in Section 3 do not change, and

the results and arguments in Sections 4-7, including the existence result in Theorem 2, remain

valid. The only differences are at the computational level, in the different boundary value

problems involving the component Vz of the velocity field, the equality DVz = 0 being replaced

by D2Vz = 0 (for instance, the boundary value problem for V in the proof of Lemma 4.2).

The explicit formulas for µ0(k) and for the solution V of the boundary value problem (2.4)-

(2.5) given above, make the computation of the quotient g in Section B.2 much simpler in this

case. We obtain an explicit formula for b31 in (B.12),

b31(Θ) =
18
√

3π8(1−Θ)2

`Θ

(
(Θ + 2)2 +

9

2
ΘP−1 + 3Θ(Θ + 2)P−2

)
,

and a Maple computation of the quotient g gives the result in Figure 8.1. This proves the result

in Theorem 1 in the case of “free-free” boundary conditions.
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Θ = sin2 α

P

g < 4 +
√

13

Figure 8.1: “Free-free” case. In the (Θ,P)-plane, with Θ = sin2 α ∈ (0, 1), Maple plot of the curve

along which g = 4+
√

13, in the case of “free-free” boundary conditions. The inequality g < 4+
√

13 holds

in the shaded regions, whereas the inequality g > 1 holds everywhere. Domain walls are constructed in

the shaded region situated to the left of the vertical line Θ = sin2(π/3) = 0.75.

8.2 “Rigid-free” boundary conditions

In the case of one rigid and one free boundaries, the boundary conditions (1.5) are replaced by

the “rigid-free” boundary conditions

Vx|z=0 = Vy|z=0 = 0, ∂zVx|z=1 = ∂zVy|z=1 = 0, Vz|z=0,1 = θ|z=0,1 = 0, (8.1)

and, as in the previous case, the equations (1.1)-(1.3) remain the same. In contrast to the

“rigid-rigid” and “free-free” boundary conditions, these “rigid-free” boundary conditions are

asymmetric and the system looses its reflection symmetry in the vertical coordinate z. As an

immediate consequence, in the spatial dynamics formulation, the system (3.3) is not equivariant

under the action of the symmetry S3 anymore. While the spectral properties of the linear

operator Lµc in Section 4 and the center manifold reduction in Section 5 remain valid, the

parity properties of the reduced vector field in Lemma 5.2 do not hold. Consequently, in this

case we do not have an invariant 8-dimensional center submanifold, and we have to treat the

full 12-dimensional reduced system. This leads to additional difficulties.

First, the normal forms analysis in Section 6 becomes more complicated since it has to be

done for 12-dimensional vector fields instead of 8-dimensional vector fields. As a result, the

leading order normal form leads to the following system of three second order ODEs

C ′′0 =
(
a0 + a1|C0|2 + a2(|C+|2 + |C−|2)

)
C0, (8.2)

C ′′+ =
(
b0 + a3|C0|2 + b1|C+|2 + b3|C−|2

)
C+, (8.3)

C ′′− =
(
b0 + a3|C0|2 + b3|C+|2 + b1|C−|2

)
C−, (8.4)

similar to the one found in [10] for the Swift-Hohenberg equation. The arguments in Section 6.2

remain valid showing that b0 < 0, b1 > 0, and assuming that b3/b1 > 1, we obtain a heteroclinic

solution (0, C∗+, C
∗
−), as in Section 7.1. Next, the persistence proof from [10], which has been
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done for particular values of the coefficients in the leading order system, has to be extended

to more general systems of the form (8.2)-(8.4). This leads to additional conditions, to be

determined, on the coefficients in the system (8.2)-(8.4). Checking these conditions requires

further, and much longer, computations. This case is the object of future work.

A Some properties of linear operators

A.1 Adjoint operator

The explicit, but not so obvious, expression of the adjoint of operator Lµ given below is necessary

for computing the algebraic multiplicities of eigenvalues and the coefficients of the normal form.

Denote by 〈·, ·〉 the scalar product in (L2
per(Ω))8 and consider the closed subspace

H0 =
{
U = (Vx, V⊥,Wx,W⊥, θ, φ) ∈ (L2

per(Ω))8 ;

∫
Ωper

Vx dy dz = 0
}
⊂ (L2

per(Ω))8,

which is the closure in (L2
per(Ω))8 of both X and the domain of definition Z of the operator Lµ.

We compute the adjoint L∗µ of Lµ from the scalar product 〈LµU,U′〉, for U ∈ Z, and choose

U′ ∈ H0 such that U 7→ 〈LµU,U′〉 is a linear continuous form on H0. We obtain the linear

operator

L∗µU =



−µ−1 (∆⊥Wx − 〈∆⊥Wx〉)
∇⊥Vx − µ−1∆⊥W⊥ − µ−1∇⊥(∇⊥ ·W⊥)− µφez

∇⊥ ·W⊥
µV⊥

−Wz −∆⊥φ

θ


,

where

〈∆⊥Wx〉 =

∫
Ωper

∆⊥Wx(y, z) dy dz.

The operator L∗µ is closed in the space X ∗ defined by

X ∗ =
{
U ∈ (L2

per(Ω))3 × (H1
per(Ω))3 × L2

per(Ω)×H1
per(Ω) ;

Wx = W⊥ = φ = 0 on z = 0, 1, and

∫
Ωper

Vx dy dz = 0
}
,

with domain

Z∗ =
{
U ∈ X ∗ ∩ (H1

per(Ω))3 × (H2
per(Ω))3 ×H1

per(Ω)×H2
per(Ω) ;

V⊥ = ∇⊥ ·W⊥ = θ = 0 on z = 0, 1
}
.

The adjoint operator L∗µ has the same center spectrum as the operator Lµ. For our purposes

we need to compute its kernel, an eigenvector associated with the eigenvalue −ik of L∗µ0(k), and
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one of the eigenvectors associated with the eigenvalue −ikx of L∗µc . The kernel of L∗µ is easily

computed by solving the equation L∗µU = 0, and we find that it is spanned by the vector

ϕ∗0 = (0, 0, 0, z(1− z), 0, 0, 0, 0, )t .

We use this vector in the computation of the coefficients of the cubic normal form in Ap-

pendix B.2.

Next, for µ = µ0(k), the operator L∗µ0(k) has the geometrically simple eigenvalues ±ik, just as

the operator Lµ0(k). In Appendix A.2 we need the expression of an eigenvector Ψ∗k,0 associated

with the eigenvalue −ik. A direct calculation gives

Ψ∗k,0(y, z) = Ψ̂∗k,0(z), Ψ̂∗k,0(z) =



− 1
µ0(k)k2

(
D3Vk − 〈D3Vk〉

)
0

ik
µ0(k)Vk

− i
kDVk

0

−Vk
−ikφk
φk


, (A.1)

where

〈D3Vk〉 =

∫
Ωper

D3Vk(z) dy dz,

Vk is the solution of the boundary value problem (4.10), and φk is the unique solution of the

boundary value problem

(D2 − k2)φk = Vk, φk|z=0,1 = 0.

Notice that the function φk is related to the function θ in the boundary value problem (2.4)-(2.5)

through the equality θ = −µ0(k)φk.

Finally, in the computations in Appendix B.2 we also need an eigenvector associated with

the eigenvalue −ikx of L∗µc which is of the form

Ψ∗+(y, z) = Ψ̂∗+(z)eikyy.

We obtain that

Ψ̂∗+(z) =



− 1
µck2c

(D2 − k2
c cos2 α)DV

− sinα cosα
µc

DV
ikc sinα
µc

V

− i sinα
kc

DV

− i cosα
kc

DV

−V
−ikc(sinα)φ

φ


,
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where V is the solution of the boundary value problem (4.15), and φ is the unique solution of

the boundary value problem

(D2 − k2
c )φ = V, φ|z=0,1 = 0. (A.2)

A.2 Algebraic multiplicities of ±ik and ±iω1(k)

Consider the geometrically simple eigenvalues ±ik and the geometrically double eigenvalues

±iω1(k) of the operator Lµ0(k) given in Lemma 4.1. We assume that µ′0(k) 6= 0, and show that

the algebraic multiplicities of these eigenvalues are equal to their geometric multiplicities. We

prove the result for the eigenvalue ik, the arguments being the same for the eigenvalue iω1(k).

Assuming that the algebraic multiplicity of the eigenvalue ik is larger than its geometric

multiplicity, there exists a vector Ψk,0 such that

(Lµ0(k) − ik)Ψk,0 = Uk,0. (A.3)

Differentiating the eigenvalue problem

Lµ0(k)Uk,0 = ikUk,0,

with respect to k leads to the equality

(Lµ0(k) − ik)

(
d

dk
Uk,0

)
=

(
i− µ′0(k)

∂

∂µ
Lµ
∣∣
µ=µ0(k)

)
Uk,0.

Since µ′0(k) 6= 0, this identity and the equality (A.3) imply that there is a solution Φk,0 of the

linear equation

(Lµ0(k) − ik)Φk,0 =
∂

∂µ
Lµ
∣∣
µ=µ0(k)

Uk,0. (A.4)

As a consequence, the vector in the right hand side of the above equation is orthogonal to the

kernel of the adjoint operator (L∗µ0(k) + ik), and in particular to the eigenvector Ψ∗k,0 given by

(A.1). A direct computation shows that their scalar product is equal to the positive number

1

µ2
0(k)k2

(
‖D2Vk‖2 + 2k2‖DVk‖2 + k4‖Vk‖2

)
+ ‖Dφk‖2 + k2‖φk‖2 > 0.

This contradicts the orthogonality condition, and proves that the algebraic multiplicity of the

eigenvalue ik is equal to its geometric multiplicity.

B Cubic normal form

B.1 Proof of Lemma 6.1

Proof. The existence of the polynomial Pε and the first two properties in Lemma 6.1 follow

from the general normal form theorems in [8, Sections 3.2.1, 3.3.1, and 3.3.2]. In addition,

N(·, ·, ε) is an odd polynomial of degree 3 such that N(0, 0, ε) = 0 and the identity

DZN(Z,Z, ε)L∗0Z +DZN(Z,Z, ε)L∗0Z = L∗0N(Z,Z, ε), (B.1)
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in which L∗0 is the adjoint of L0, holds for any Z ∈ C4 and ε ∈ V2. We write

N(Z,Z, ε) = N1(Z,Z)ε+N3(Z,Z),

where N1 and N3 denote the linear and cubic terms, respectively, of N . It is now straightforward

to check that the linear part N1 has the form in Lemma 6.1 (iii), and it remains to check the

cubic terms N3.

We set N3 = (Ñ+, M̃+, Ñ−, M̃−). Then the identity (B.1) becomes

(D∗ + ikx)Ñ+ = 0, (D∗ + ikx)M̃+ = Ñ+,

(D∗ + ikx)Ñ− = 0, (D∗ + ikx)M̃− = Ñ−,

in which

D∗ = −ikxA+
∂

∂A+
+ (A+ − ikxB+)

∂

∂B+
− ikxA−

∂

∂A−
+ (A− − ikxB−)

∂

∂B−

+ikxA+
∂

∂A+

+ (A+ + ikxB+)
∂

∂B+

+ ikxA−
∂

∂A−
+ (A− + ikxB−)

∂

∂B−
.

Due to the equivariance of the normal form under the action of the symmetry S2, it is enough

to determine (Ñ+, M̃+), the components (Ñ−, M̃−) being obtained by switching the indices +

and − in the expressions of (Ñ+, M̃+).

Cubic monomials are of the form

A
p+
+ A+

q+B
r+
+ B+

s+A
p−
− A−

q−B
r−
− B−

s− ,

with nonnegative exponents such that

p+ + q+ + r+ + s+ + p− + q− + r− + s− = 3. (B.2)

We claim that the cubic monomials in Ñ+ and M̃+ also satisfy

p+ − q+ + r+ − s+ + p− − q− + r− − s− = 1. (B.3)

Indeed, for any monomial as above we have

D∗
(
A
p+
+ A+

q+B
r+
+ B+

s+A
p−
− A−

q−B
r−
− B

s−
−

)
=

−ikx (p+ − q+ + r+ − s+ + p− − q− + r− − s−)A
p+
+ A+

q+B
r+
+ B+

s+A
p−
− A−

q−B
r−
− B−

s−

+r+A
p++1
+ A+

q+B
r+−1
+ B+

s+A
p−
− A−

q−B
r−
− B−

s−

+s+A
p+
+ A+

q++1
B
r+
+ B+

s+−1
A
p−
− A−

q−B
r−
− B−

s−

+r−A
p+
+ A+

q+B
r+
+ B+

s+A
p−+1
− A−

q−B
r−−1
− B−

s−

+s−A
p+
+ A+

q+B
r+
+ B+

s+A
p−
− A−

q−+1
B
r−
− B−

s−−1
,

implying that the subspace of monomials for which the sum in the left hand side of (B.3) is

constant is invariant under the action of D∗. Ordering the monomials by decreasing exponents

42



p+, q+, r+, s+, p−, q−, r−, and s−, this action is represented by a lower triangular matrix with

equal elements on the diagonal given by

−ikx (p+ − q+ + r+ − s+ + p− − q− + r− − s−) .

Consequently, the polynomials Ñ+ and M̃+, which belong to the kernel and generalized kernel

of D∗ + ikx, respectively, belong to the subspace for which (B.3) holds. This proves the claim.

Furthermore, the commutativity of N3 and τa, implies that monomials in (Ñ+, M̃+) also satisfy

p+ − q+ + r+ − s+ − p− + q− − r− + s− = 1. (B.4)

Collecting all possible monomials in (Ñ+, M̃+) for which the conditions (B.2)-(B.4) hold, we

compute:

(D∗ + ikx)(A2
+A+) = 0,

(D∗ + ikx)(A2
+B+) = (D∗ + ikx)(A+A+B+) = A2

+A+,

(D∗ + ikx)(A+B+B+) = A2
+B+ +A+A+B+, (D∗ + ikx)(A+B

2
+) = 2A+A+B+,

(D∗ + ikx)(B2
+B+) = 2A+B+B+ +A+B

2
+,

and

(D∗ + ikx)(A+A−A−) = 0,

(D∗ + ikx)(A+A−B−) = (D∗ + ikx)(A+A−B−) = (D∗ + ikx)(B+A−A−) = A+A−A−

(D∗ + ikx)(A+B−B−) = A+A−B− +A+A−B−,

(D∗ + ikx)(B+A−B−) = A+A−B− +B+A−A−,

(D∗ + ikx)(B+A−B−) = A+A−B− +B+A−A−,

(D∗ + ikx)(B+B−B−) = A+B−B− +B+A−B− +B+A−B−.

Since Ñ+ and M̃+ are necessarily linear combinations of these 14 monomials, the equalities

above imply that they are of the form

Ñ+ = A+P̃+(u1, u2, u3, u4) +A−R̃+(u5),

M̃+ = B+P̃+(u1, u2, u3, u4) +B−R̃+(u5) +A+Q̃+(u1, u2, u3, u4) +A−S̃+(u5),

with P̃+, R̃+, Q̃+, S̃+ linear in their arguments, which are the quadratic expressions

u1 = A+A+, u2 = i(A+B+ −A+B+), u3 = A−A−,

u4 = i(A−B− −A−B−), u5 = (A+B− −A−B+).

This proves the expressions of the cubic terms of N+ and M+ in (iii). Finally, taking into

account the action of the reversibility S1, it is straightforward to check that the coefficients βj ,

bj , γ5, and c5 are real.
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B.2 Computation of the quotient g = b3/b1

For the computation of the coefficients b1 and b3, we follow the method in [8, Section 3.4.1]. We

restrict to the 8-dimensional center manifold

M±(ε) = {Uc + Φ(Uc, ε) ; Uc ∈ E±}.

Recall that solutions on this submanifold are invariant under the action of S3τπ. Combining

the transformations from the center manifold reduction in Section 5.1 and the normal form in

Lemma 6.1, we write

U = A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ− + A+ζ+ +B+Ψ+ +A−ζ− +B−Ψ−

+ Φ̃(A+, B+, A−, B−, A+, B+, A−, B−, ε),

in which Z = (A+, B+, A−, B−) satisfies the normal form (6.4). Substituting U given by this

formula in the dynamical system (3.3), and using the expressions of the derivatives of A+, B+,

A−, B− given by the normal form in Lemma 6.1, we obtain an equality for the variables A+,

B+, A−, B− and their complex conjugates. We find the coefficients of the normal form, and in

particular b1 and b3, by identifying the coefficients of suitably chosen monomials in this equality.

We denote by Φrstu the coefficient of the monomial Ar+A+
s
At−A−

u
in the expansion of Φ̃.

Identifying successively the coefficients of the monomials A2
+A+, A+A−A−, and then A2

+, A+A+,

A+A−, A+A−, A−A−, we find the equalities

iβ1ζ+ + b1Ψ+ = (Lµc − ikx)Φ2100 + 2Bµc(Φ2000, ζ+) + 2Bµc( Φ1100, ζ+),

iβ3ζ+ + b3Ψ+ = (Lµc − ikx)Φ1011 + 2Bµc(Φ1010, ζ−) + 2Bµc( Φ1001, ζ−) + 2Bµc(Φ0011, ζ+),

and

(Lµc − 2ikx)Φ2000 = −Bµc(ζ+, ζ+), (B.5)

LµcΦ1100 = −2Bµc(ζ+, ζ+), (B.6)

(Lµc − 2ikx)Φ1010 = −2Bµc(ζ+, ζ−), (B.7)

LµcΦ1001 = −2Bµc(ζ+, ζ−), (B.8)

LµcΦ0011 = −2Bµc(ζ−, ζ−). (B.9)

We determine the coefficients b1 and b3 by taking the scalar product of the first two equali-

ties above with the vector Ψ∗+ in the kernel of the adjoint operator (Lµc − ikx)∗ computed in

Appendix A.1,

b1〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ2000, ζ+) + 2Bµc(Φ1100, ζ+),Ψ∗+〉, (B.10)

b3〈Ψ+,Ψ
∗
+〉 = 〈2Bµc(Φ1010, ζ−) + 2Bµc(Φ1001, ζ−) + 2Bµc(Φ0011, ζ+),Ψ∗+〉, (B.11)

where Φ2000, Φ1100, Φ1010 , Φ1001, and Φ0011 are solutions of the linear equations (B.5)-(B.9).
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In the equations (B.5) and (B.7), the linear operator (Lµc − 2ikx) is invertible, except in the

case α = π/6 when 2kx = kc. Nevertheless, we only have to solve the equations in the subspace

of vectors which are invariant under the action of S3τπ and the restriction of (Lµc − ikc) to

this subspace is invertible, since its two-dimensional kernel is spanned by ζ0 and ζ0 which do

not belong to this subspace. Consequently, Φ2000 and Φ1010 are uniquely determined. In the

equations (B.6), (B.8) and (B.9), the linear operator Lµc has a one-dimensional kernel spanned

by the vector ϕ0 in Lemma 4.2 (i), and the kernel of its adjoint is spanned by the vector ϕ∗0 in

Appendix A.1. The solvability condition is easily checked in all cases, so that we can solve these

equations up to an element in the kernel of Lµ. The choice of this element in the kernel does

not influence the result from (B.10)-(B.11), since Bµ is invariant upon adding a multiple of ϕ0.

After long and intricate computations we obtain that

g =
b3
b1

=
b31(sin2 α) + b31(cos2 α) + b31(0)

1
2b31(1) + b31(0)

, (B.12)

in which

b31(Θ) = A31(Θ) +B31(Θ)P−1 + C31(Θ)P−2,

with

A31(Θ) = 2µ3
c〈(D2 − 4k2

cΘ)2V1, R1〉,

B31(Θ) = 4µ3
cΘ (〈V1, R2〉+ 〈V2, R1〉) ,

C31(Θ) = −2µcΘ

k2
c

〈(D2 − 4k2
cΘ)V2, R2〉,

where

R1 = V Dφ+ (1− 2Θ)φDV, R2 =
(
D2 − 4k2

c (1−Θ)
)

(V DV )− 4Θ(DV )(D2V ),

and V1, V2 are the unique solutions of the boundary value problems

(D2 − 4k2
cΘ)3V1 + 4k2

cµ
2
cΘV1 = R1,

V1 = DV1 = (D2 − 4k2
cΘ)2V1 = 0 in z = 0, 1,

and
(D2 − 4k2

cΘ)3V2 + 4k2
cµ

2
cΘV2 = R2,

V2 = (D2 − 4k2
cΘ)V2 = (D2 − 4k2

cΘ)DV2 = 0 in z = 0, 1,

respectively. Recall that V and φ are the unique symmetric solutions of the boundary value

problems (4.15) and (A.2), respectively. Notice that g → 2, as α→ 0, which was the value of g

in the case of the Swift-Hohenberg equation in [10].

Remark B.1. In this way we can also compute the coefficient b0. By identifying the coefficients

of the terms εA+, and then taking the scalar product with Ψ∗+ we obtain

b0〈Ψ+,Ψ
∗
+〉 = 〈L(1)ζ+,Ψ

∗
+〉,
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in which L(1) is the derivative with respect to µ of the operator Lµ in (A.4) taken at µ = µc. A

direct computation gives

b0〈Ψ+,Ψ
∗
+〉 =

1

µ2
ck

2
c

(
‖D2V ‖2 + 2k2

c‖DV ‖2 + k4
c‖V ‖2

)
+ ‖Dφ‖2 + k2

c‖φ‖2 > 0, (B.13)

and implies that 〈Ψ+,Ψ
∗
+〉 < 0, since b0 < 0. We point out that it is not obvious to determine

the sign of this scalar product directly from the explicit formulas of Ψ+ and Ψ∗+.
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