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Abstract

We study the linear dynamics of spectrally stable T-periodic stationary solutions of the
Lugiato-Lefever equation (LLE), a damped nonlinear Schrédinger equation with forcing that
arises in nonlinear optics. Such T-periodic solutions are nonlinearly stable to NT-periodic, i.e.
subharmonic, perturbations for each IV € N with exponential decay rates of perturbations of the
form e~%~*. However, both the exponential rates of decay dx and the allowable size of the initial
perturbations tend to 0 as N — oo, so that this result is non-uniform in NV and, in fact, empty in
the limit N = oco. The primary goal of this paper is to introduce a methodology, in the context
of the LLE, by which a uniform stability result for subharmonic perturbations may be achieved,
at least at the linear level. The obtained uniform decay rates are shown to agree precisely with
the polynomial decay rates of localized, i.e. integrable on the real line, perturbations of such
spectrally stable periodic solutions of the LLE. This work both unifies and expands on several
existing works in the literature concerning the stability and dynamics of such waves, and sets
forth a general methodology for studying such problems in other contexts.

1 Introduction

In this paper, we consider the stability and dynamics of periodic stationary solutions of the Lugiato-
Lefever equation (LLE)

(1.1) P = —iBpe — (1 + i) + il 2 + F,

where ¢ (x,t) is a complex-valued function depending on a temporal variable ¢ and a spatial variable
x, the parameters «, § are real, and F is a positive constant. The model (1.1) was derived from
Maxwell’s equations in [21] as a model to study pattern formation within the optical field in a
dissipative and nonlinear optical cavity filled with a Kerr medium and subjected to a continuous
laser pump. In this context, ¥ (x,t) represents the field envelope, o > 0 represents a detuning
parameter, F' > 0 represents a normalized pump strength, and || = 1 is the dispersion parameter.
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The case f = 1 is referred to as the “normal” dispersion case while 8 = —1 is referred to as the
“anomalous” dispersion case.

Since its derivation, the LLE has been intensely studied in the physics literature in the context of
nonlinear optics, having more recently become a model for high-frequency optical combs generated
by microresonators in periodic optical wave guides (see, for example, [3] and references therein).
Until recently, however, there have been relatively few mathematically rigorous studies of the LLE.
Several recent works have established the existence of periodic standing solutions of (1.1). Such
solutions ¥ (x,t) = ¢(x) correspond to T-periodic solutions of the profile equation

(1.2) —iB¢" — (1 +ia)¢g +i||*¢p + F = 0.

Using tools from bifurcation theory, the existence of periodic standing waves bifurcating both locally
and globally from constant solutions has been shown in [23, 22, 5, 4]. Another type of periodic
solutions has been recently constructed in the case of anomalous dispersion 8 = —1 in [10]. These
solutions correspond to bifurcations from the standard arbitrary amplitude dnoidal solutions of
the cubic NLS equation, for small |(F,«)|. We also refer to [9] for a local bifurcation analysis of
bounded solutions of (1.2) including, besides periodic, also localized and quasi-periodic solutions.

Our work focuses on the dynamical stability and long-time asymptotic dynamics of spatially
periodic standing solutions of (1.1) when subject to varying classes of perturbations. Note that
if ¢ is a T-periodic standing solution of (1.1) and we decompose ¢ = ¢, + i¢; into its real and
imaginary parts, then a function of the form ¢ (z,t) = ¢(z) +v(x,t), with v = v, + dv;, is a solution
of (1.1) provided it satisfies the real system

(% (%

13) o () = ()

where here N (v) is at least quadratic in v and A[¢] is the (real) linear differential operator

(1.4) Alg] = —1 + TLlg],
with 0 —1 BO? +3¢2 + ¢? 2,0
- —B0; —a+ 37 + ¢5 ri
j:<1 0 > ‘W’]:( 26,6 —ﬂaz—a+¢%+3¢%>'

The choice of a function space for the evolution problem (1.3) is determined by the class of pertur-
bations of the T-periodic standing wave. Choosing a Hilbertian framework, we take Lger(O, T) for

co-periodic perturbations, L%er(O, NT) with N € N for so-called subharmonic perturbations, and
L?(R) for localized perturbations.! Recall that the spectral stability of a periodic wave ¢ to a given
class of perturbations is determined by the spectrum of the linear operator A[¢] when acting on
the associated function space. Similarly, the linear stability of ¢ is given by the properties of the
associated evolution semigroup (e!");~¢, and the nonlinear (orbital) stability by the behavior of
the solutions of the nonlinear equation (1.3).

The spectral stability of periodic waves bifurcating locally from constant solutions has been
studied in [4, 5]. It turns out that most of these waves are unstable for subharmonic perturbations,

with N larger than a certain value N. > 1 depending on the parameters a and F', and that there

!Since operators here are defined on vector valued functions, throughout this work we will abuse notation slightly
and write L?(R) rather than L*(R) x L?*(R), and similarly for all other Lebesgue and Sobolev spaces. Furthermore,
when the meaning is clear from context, we will write functions in (f1, f2) € L? x L? as simply f € L.



is precisely one family of such waves which are spectrally stable for all subharmonic perturbations,
and also for localized perturbations. These stable periodic waves bifurcate supercritically in the
case of anomalous dispersion, 8 = —1, for any fixed parameter o < 41/30 and bifurcation parameter
F? = F? + p, for sufficiently small > 0, where F2 = (1 — a)? + 1. More precisely, there exists
o > 0 such that for any u € (0, o), the LLE has an even periodic solution with Taylor expansion

3a+i(2—a))

Fy(41 — 300)1/2 cos(v2 —aa) u'’* + O(n),

(1.5) du(x) =" +
where ¢* is the unique constant solution satisfying the algebraic equation

(1+ia)¢ —ig|g|* = F.

The solution ¢, is T-periodic with period T' = 27/y/2 — «, and it is of class C°>°. We point out
that this parameter regime has been investigated in the original work of Lugiato and Lefever [21]
who determined the value o, = 41/30 as an instability threshold.

For co-periodic perturbations which are H?, i.e., belong to the domain of the linear operator
A[¢], the nonlinear asymptotic stability of the periodic waves (1.5) is a direct consequence of the
bifurcation analysis used for their construction [23, 5]. Using Strichartz-type estimates, this result
has been extended to more general L2, (0,T)-perturbations in [24]. As pointed out in [5, Section
6(a)], the bifurcation analysis used to construct these periodic waves can be extended to spaces of
NT-periodic functions, for any arbitrary but fixed N, which then also gives a nonlinear stability
result for these waves for HZ2-subharmonic perturbations. However, this stability result is not
uniform in N: for a given periodic wave ¢, as in (1.5), nonlinear stability is obtained for a finite
number of integers N, only.?

For localized perturbations, as well as for general bounded perturbations, the spectral stability
of the periodic waves (1.5) has been proved in [5, Theorem 4.3]. Based on Floquet-Bloch theory and
spectral perturbation theory, this result shows that the periodic waves given by (1.5) are diffusively
spectrally stable in the sense of the following definition.

Definition 1.1. A T-periodic stationary solution ¢ € HL (R) of (1.1) is said to be diffusively
spectrally stable provided the following conditions hold:

(i) the spectrum of the linear operator A[¢] given by (1.4) and acting in L?(R) satisfies

or2mw)(Alg]) C{A e C: R(\) <0} U{0};

(ii) there exists § > 0 such that for any £ € [—n/T,7/T) the real part of the spectrum of the
Bloch operator A¢[¢] := e "% A[p]e’” acting on L2, (0,T) satisfies

per

R (aLz (O,T)(Ag[gb])) < —ge2,

per

(iii) A = 0 is a simple eigenvalue of Ay[¢] with associated eigenvector the derivative ¢’ of the
periodic wave.?

2This is a result of their construction, which is based on center manifold techniques.
3Recall, by our slight abuse of notation above, here we are writing ¢ instead of the technically correct (7, &5)-



This stability notion was first introduced in [13] for more general classes of viscous conservation
and balance laws, and is stated here in the context of (1.1). The properties (i)-(iii) in this definition
are the main assumptions required for the present analysis. Recall that Floquet-Bloch theory shows
that the spectrum of A[¢] acting in L?(R) is equal to the union of the spectra of the Bloch operators

Ae[¢] acting in L2 (0,T) for ¢ € [-n/T,m/T). For subharmonic perturbations, the operator A[g]

acts in L%er(O, NT), and its spectrum is the union of the spectra of the Bloch operators Ag[¢]
acting in L2, (0,T) for £ in a discrete subset of the interval [—m/T,7/T) such that ¢“NT = 1.

In particular, this implies that diffusively spectrally stable periodic waves are spectrally stable
for all subharmonic perturbations. Notice that for such perturbations, the spectrum of A[¢] is
purely point spectrum consisting of isolated eigenvalues with finite algebraic multiplicities, A = 0
is a simple eigenvalue, with associated eigenvector the derivative ¢’ of the periodic wave, and the
remaining eigenvalues have negative real parts, satisfying the spectral gap condition

(1.6) R (12, 0.vm) (Al6]) \ {0}) < 3,

for some dn > 0. As the eigenvalues of the Bloch operators A¢[¢] depend continuously on &, it is
not difficult to see that the spectral gap én above tends to 0, as N — oo. For more information,
see Sections 2.1-2.2 below.

For the periodic waves bifurcating from the dnoidal solutions of the NLS equation, the authors
proved in [10] that some of these are spectrally stable to co-periodic perturbations. That this
spectral stability corresponds to nonlinear stability was recently established in [29, Theorem 1]. The
power of this result is that it reduces the problem of nonlinear stability for co-periodic perturbations
to a spectral problem which, in turn, may be amenable to well-conditioned analytical and numerical
methods. Furthermore, the proof of this result can be easily extended to subharmonic perturbations,
leading to the following nonlinear stability result for diffusively spectrally stable periodic standing
solutions of (1.1).

Theorem 1.2. Let ¢ € HL (R) be a T-periodic standing solution of (1.1) and fix N € N. Assume
that ¢ is diffusively spectrally stable in the sense of Definition 1.1 and, for each N € N, take dny > 0
such that (1.6) holds. Then for each N € N, ¢ is asymptotically stable to subharmonic NT -periodic
perturbations. More precisely, for every 6 € (0,0n) there exists an € = €5 > 0 and a constant
C = Cs > 0 such that whenever ug € H}o, (0, NT) and |[uo — ¢|| g (o,nT) < €, then the solution u of
(1.1) with initial data w(0) = ug ezists globally in time and satisfies

[u(-t) = & — Yol 10,81y < Ce lug — Ol 0,nT) 5
for allt > 0, where Yoo = Yoo(N) is some real constant.

The key to the proof of Theorem 1.2, which is presented in [29] for N = 1, is a careful estimate
of the resolvent operator, which allows one to apply the Gearhart-Priiss theorem and obtain an
exponential decay rate for the semigroup generated by the linear operator A[¢]. Specifically, one
shows that for each 6 € (0,9x) there exists a constant C' = Cs > 0 such that

(1.7) [ @ =Pon) 7], ey < G W lmr0.r)

for all f € ngr((), NT), where here Py n is the rank-one spectral projection onto the NT-periodic
kernel of A[¢]: see Remark 2.8(ii) for more details. Equipped with this linear exponential decay



result, the remainder of the proof of Theorem 1.2 follows from standard nonlinear iteration ar-
guments: for details, see [29]. We point out that using Strichartz-type estimates, the nonlinear
stability result in Theorem 1.2 can be extended to L?-subharmonic perturbations [2].

An important observation concerning Theorem 1.2 is that it lacks uniformity in N in two
(related) aspects. Indeed, note that both the exponential rate of decay, specified by ¢, as well as
the allowable size of initial perturbations, specified by € = €4, are controlled completely in terms
of the size of the spectral gap dy > 0 of the linearized operator A[¢] in (1.6). Since dy — 0 as
N — o0, it follows that both § and £ chosen in Theorem 1.2 necessarily tend to zero as N — oo
and that, consequently, the nonlinear stability result Theorem 1.2 is empty in the limit N = oo.
Note that at the linear level, the lack of uniformity in the allowable size of the initial perturbations
is due to the fact that C' = Cs — oo as 6 — 0 in (1.7).

In light of the above observations, it is therefore natural to ask if there is a way to obtain a
stability result to subharmonic, i.e. NT-periodic, perturbations which is uniform in N. In such a
result, one should require that both the rate of decay and allowable size of the initial perturbations
are uniform in N, thus depending only on the background wave ¢. At the linear level, this would
correspond to proving the existence of a non-negative function g : (0,00) — (0,00) with g(t) — 0
as t — oo such that an inequality of the form

HeAW (1- PO,N)H <g(1)

L(L3er(0,NT))

holds for all N € Nand ¢ > 0. Our main result, stated below, shows that establishing such a uniform
linear estimate is possible for the LLE (1.1), with polynomial rates of decay instead of exponential.
Further, it gives additional insight into the long-time dynamics of subharmonic perturbations.

Theorem 1.3 (Uniform Subharmonic Linear Asymptotic Stability). Suppose ¢ € HL (R) is a T-
periodic standing wave solution of (1.1) that is diffusively spectrally stable, in the sense of Definition
1.1. For each N € N let

Pon : L2, (0, NT) — span{¢'}

per

be the spectral projection of Lger(O, NT) onto the NT-periodic kernel of Al¢]. Then there exists a

constant C > 0 such that for every N € N and f € L1 (0, NT) N L?..(0, NT) we have

per per

(L.8) |4 = o) |

—1/4
L2 (ONT) <O+ f ey, 08012, 0,8T)

valid for all t > 0. Furthermore, there exists a constant C > 0 such that for all N € N and
fe Ll (0,NT)N L2, (0,NT) there exists a NT-periodic function yn(-,t) = yn (- t; f)

<¢’, ,Pova>L%er(O,T) —1/4
(19) pYN(7 t) - ”¢/H2 < C(l + t) Hf“LIl)er(O,NT)I"IL%er(O,NT)
L3 (0,7) L2, (0,NT)
and
Alglt —3/4
(1.10) He oley — ¢/’YN('at)‘ L2, (ONT) <C+t)7¥ I/, 0.NT)AL2,, (0.NT):
for allt > 0.



Remark 1.4. More than above, we show in Section 5 below that the polynomial rates in Theorem
1.8 in fact provide sharp uniform rates of decay for subharmonic perturbations. Moreover, observe
that the uniform polynomial rates of decay require control of the initial data in L. As we will see
in our analysis, this is due to the fact that linear diffusion equation does mot exhibit decay from
L3(R) to L?(R), but does from L*(R) to L?*(R): see Remark 3.1 below.

To interpret the above result, suppose that ¢ (x, t) is a solution of (1.1) with initial data ¢(z,0) =
¢(x)+ef(x) with e < Land f € LL (0, NT)NL2,.(0, NT). By (1.8) it follows that, at the linear
level, for € # 0 sufficiently small, the solution v essentially behaves for large time like

(@ Ponlliz, or (¢ Ponf)iz,.0m) )

)= P -
Y(x,t) = ¢(x) +ePonflzx) = ¢(x) +¢ H¢'H%ger(0,T) 1

)¢’z¢<x+5

2
L%er (OvT)

corresponding to standard asymptotic (orbital) stability of ¢ with asymptotic phase. This recovers
(again, at the linear level) the asymptotic stability result in Theorem 1.2, but now with asymptotic
rates of decay which are uniform in N. Further than this, Theorem 1.3 implies that there exists a
function vy (x,t) which is NT-periodic in x such that

W(x,t) ~ ¢(x) +eyn(z, t)d (2) =~ ¢z + eyn(z, b)), t>1,

with, by (1.10), a faster rate of convergence (in time), giving a refined insight into the long-time
local dynamics near ¢ (described by a space-time dependent translational modulation) beyond the
more standard asymptotic stability as in Theorem 1.2. As a consistency check, note that (1.9)
implies that as t — oo the function yy(-,t) tends to the asymptotic phase predicted by (1.8). As
we will see, the incorporation of such a space-time dependent modulation function is key to our
analysis and is precisely what allows us to obtain such uniform decay rates.

The key observation is that the bounds on the evolution semigroups and the linear rates of
decay obtained in Theorem 1.3 on subharmonic perturbations are uniform in N. It turns out
that these uniform decay rates are precisely the linear decay rates one obtains by considering the
semigroup el as acting on L?(R), i.e. they agree exactly with the linear rates of decay for
localized perturbations. That the decay rate to localized perturbations should uniformly control
all subharmonic perturbations may be formally motivated by observing that, up to appropriate
translations, a sequence of NT-periodic functions may converge as N — oo to a function in L?(R)
locally in space.

Based on the above comments, it shouldn’t be surprising that the general methodology used for
the proof of Theorem 1.3 is modeled off of the associated linear analysis to localized perturbations.
The localized analysis, in turn, is largely based off the work [13] and, for completeness and to
motivate the approach towards the proof of Theorem 1.3, we review the localized analysis in Section
3 below. In particular, we obtain the following result.

Theorem 1.5 (Localized Linear Asymptotic Stability). Suppose ¢ € Hlloc(R) 18 a T-periodic stand-
ing wave solution of (1.1) that is diffusively spectrally stable, in the sense of Definition 1.1. Then
there exists a constant C > 0 such that for any f € L'(R) N L*(R) we have

s

—1/4
poy SCOHD) "Nl @nze @)



for all t > 0. Furthermore, there exists a constant C > 0 such that for each f € L*(R) N L*(R)
there exists a function y(-,t) = (-, t; f) such that

v Ol 2y < COL+8) Y4 Fll o @ynre ey

and

HGAWf -~ ¢>’7(-,t)‘ <CO+0) flp@nzzm),

L2(R)
for allt > 0.

The proofs of both Theorem 1.3 and Theorem 1.5 rely on a delicate decomposition of the
semigroup et acting on the appropriate underlying space (L%er(O, NT) and L%(R), respectively).
While the decomposition is similar in the two cases, the subharmonic result in Theorem 1.3 requires
an additional level of decomposition which is not needed in the localized case. As we will see in
Section 4 below, our proof of Theorem 1.3 connects to both the exponential decay result in Theorem
1.2 as well as the localized result in Theorem 1.5. Indeed, we will see that if one fixes N € N then the
(linear) exponential decay of NT-periodic perturbations follows naturally from our methodology.
Further, by formally taking N — oo we see that the result in Theorem 1.3 recovers the localized
result in Theorem 1.5. For instance, we will see that, formally at least, the NT-periodic modulation

function vn in Theorem 1.3 satisfies
N—o00

where here « is the localized modulation function from Theorem 1.5. In this way, our work both
expands and unifies several previous works in the literature.

Remark 1.6. During our proof of Theorem 1.3, we will also see how the techniques presented
provide exponential decay results of the form (1.7) with a constant C > 0 which is uniform in N.
This extends the key linear estimate (1.7) used in [29] to establish Theorem 1.2.

We also emphasize that our methodology used in the proofs of Theorem 1.3 and Theorem
1.5 is quite general and applies more broadly than for the LLE (1.1). As mentioned previously,
our arguments are motivated by the recent work [13] which, in turn, was based on a sequence of
previous works [14, 17, 16, 15, 11, 12, 1] by the same authors, all of which were eventually based
on the seminal work of Schneider [27, 28]. In fact, our work relies on only a few key features of the
linearized operator A[¢]. Namely, Theorems 1.3 and Theorem 1.5 continue to hold provided the
following properties are satisfied:

(i) The wave ¢ is diffusively spectrally stable, as defined in Definition 1.1.

(ii) The operator A[¢] generates C°-semigroups on L*(R) and L2 (0,NT), and for each £ €

—n/T,7/T) the Bloch operators A generate C%-semigroups on L?_.(0,T).
£

per

(iii) There exist positive constants pg and Cp such that for each & € [—n/T,n/T) the Bloch
resolvent operators satisfy

(1.11) 1Gin — Aelo]) "Ml 2(r2,.0,1y) < Co, for all [u] > po.



Consequently, our work sets forth a general methodology for establishing analogous (linear) results
to Theorem 1.3 and Theorem 1.5 in more general contexts. Further, note that the conditions (i)-(iii)
above are slightly more general than the corresponding assumptions used in [13]. For our analysis
of the LLE (1.1), the first property above is the main assumption, that we know it holds at least
for the periodic waves ¢, given by (1.5), and the other two properties are proved in Section 2.3.

Of course, it is natural to ask if our linear results can be extended to a result pertaining to
the nonlinear dynamics of the LLE (1.1). Using a nonlinear iteration scheme to establish such
a nonlinear result, in Section 6 below we will see that the structure of (1.1) implies such an
iteration induces a loss of derivatives when considering space-time dependent modulations. Such a
phenomena is well known in the context of reaction diffusion equations and systems of conservation
laws, where the loss of derivatives can be compensated by a nonlinear damping effect which slaves
high Sobolev norms to low Sobolev norms. However, such nonlinear damping techniques rely
heavily on the damping in the governing evolution equation to correspond to the highest order
spatial derivative present. In the case of the LLE, unfortunately, damping appears as the lowest-
order derivative and hence one has no hope of regaining derivatives through such nonlinear damping
estimates. Consequently, obtaining corresponding nonlinear stability results for the LLE (1.1) is
still an open problem?.

The outline for this paper is as follows. In Section 2, we review several preliminary results,
including a review of Floquet-Bloch theory in the context of both localized (Section 2.1) and NT-
periodic (Section 2.2) functions. Specifically, we provide a characterization of the spectrum of A[¢]
on L*(R) and L2,.(0, NT) in terms of the associated Bloch operators. In Section 2.3, we collect the
properties of these Bloch operators required for our analysis. We describe their spectral properties,
then establish the existence and basic decay properties of the corresponding Bloch semigroups.
Section 3 is dedicated to the proof of the localized result Theorem 1.5, which in turn serves as
motivation for our proof of Theorem 1.3, which is presented in Section 4. In Section 5, we present
a technical bound which establishes that the decay rates for localized perturbations in Theorem
1.5 in fact provide sharp uniform decay rates for subharmonic perturbations. The proof of this
key bound is given in the Appendix. Finally, in Section 6 we describe the mathematical challenges
encountered in establishing the corresponding nonlinear stability of diffusively spectrally stable
periodic standing solutions of the LLE (1.1). Throughout our work, we aim to make clear the ways
in which our analysis unifies and expands previous works, as well as its ability to be generalized to
other contexts.

Acknowledgments: The work of MAJ and WRP was partially supported by the NSF under grant
DMS-1614785. MAJ was additionally supported by the Simons Foundation Collaboration Grant
number 714021. MH was partially supported by the EUR EIPHI program (Contract No. ANR-17-
EURE-0002) and the ISITE-BFC project (Contract No. ANR-15-IDEX-0003). The authors also
thank the referee for their helpful comments.

2 Preliminaries

In the first two subsections below, we review some general results from the Floquet-Bloch theory
for both localized and subharmonic perturbations. We then give some spectral properties and

4The ability to establish nonlinear results when one has the ability to regain these lost derivatives is currently
under investigation by the authors.



semigroup estimates for the Bloch operators obtained from the LLE (1.1).

2.1 Floquet-Bloch Theory for Localized Perturbations

Consider a matrix differential operator A with T-periodic coefficients which belong to H (R).
Assume that A is closed when acting on® L?(R) with domain H*(R), for some s > 1. Floquet

theory implies for each A € C that non-trivial solutions of the ordinary differential equation
Av = v

cannot be integrable on R and that, at best, they can be bounded functions on the real line (e.g.,
see [19, 26]). In particular, the L?(R) spectrum of A can contain no eigenvalues, and hence must
be entirely essential.

To characterize the essential spectrum of A, note again by Floquet theory that any bounded
solution of the above spectral problem must be of the form

v(z) = e%w(z),

for some T-periodic function w and constant £ € [—n /T, 7/T). From these observations, it can be
shown that A\ € C belongs to the L?(R)-spectrum of A if and only if the problem

Av = v
1) {v(:v +T) = e¥Tv(z)

admits a non-trivial solution for some & € [—7/T,7/T). Equivalently, setting v(x) = e*%w(zx) in
(2.1) for some T-periodic w, we see that (2.1) holds if and only if there exists a £ € [—7/T,nw/T)
and a non-trivial w € L2,,(0,T) such that

Mo = 8T AT =1 Agw.

The operators A¢ are referred to as the Bloch operators associated to A and ¢ is referred to as the
Bloch frequency. Each A¢ acts on the space of T-periodic functions Lf)er(O7 T'), on which they are
closed with dense and compactly embedded domain Hp,(0,7).

Note that since the domains of the Bloch operators are compactly embedded in Lf,er(O7 T), their
spectra consist entirely of isolated eigenvalues of finite algebraic multiplicities which, furthermore,
depend continuously on the Bloch parameter £&. By the above Floquet-Bloch theory, we in fact

have the spectral decomposition

(2.2) or2r) (A) = U oo (Ao
§€l—n/T\m/T)

see, for example, [8]. This characterizes the L?(R) spectrum of A as the union of countably many

continuous curves A(§) corresponding to the eigenvalues of the associated Bloch operators Ae.
From the above characterization of the spectrum of A, it is clearly desirable to have the ability

to decompose arbitrary functions in L?(R) into superpositions of functions of the form e®®w(x)

"Recall that we are writing L?(R) throughout rather than the technically more correct (L*(R))™ for an n x n
matrix operator.



with & € [-7/T,7/T) and w € L2_.(0,T). This may be accomplished by noting that any function

g € L*(R) admits a Bloch decomposition, or inverse Bloch transform representation, given by

L - 2milz /T ~
/ i€ g(&,x)dg, where g(&,z) := Ze / G(& +2me)T)

(2.3) g9(x) =
2m -/T LeZ

and §(-) denotes the Fourier transform of g, defined here as §(£) = [ e~ g(z)dx, ¢ € R. Indeed,
observe that for any Schwartz function g we have that

w/T

amgle) = [ alepie = Z/m/mwﬁ<umwmm g e, ).

LET —n/T

and then the general result follows by density. Note that for each fixed £ € [—7n/T,7/T) the function
g(&,+) is T-periodic and hence the above procedure decomposes, as desired, arbitrary functions in
L?(R) into a (continuous) superposition of functions of the form € (¢, -), each of which has a fixed
Bloch frequency &.

Defining the Bloch transform

B:L*(R) = L* ([-7/T,7/T); L2, (0,T))

via the action g — ¢ with g given by (2.3), the standard Parseval identity for the Fourier transform
implies that the Bloch transform is a bounded linear operator,

w/T
2
@0 ol = 5o M/ 0 d d = o IBOI (i o)

Furthermore, for v € H*(R) we have

/T
B(4v) (6.9) = (A6, D) and dote) = 5o [ e At apa

—T
showing that the Bloch transform B diagonalizes the T-periodic coefficient linear operator A in the
same way that the standard Fourier transform diagonalizes constant coefficient linear operators.
Here, the Bloch operators A may be viewed as operator-valued symbols of the linearized operator
A under the action of B. Furthermore, assuming that A and its associated Bloch operators A¢
generate C%-semigroups on L%(R) and Lger(O,T ), respectively, it is straightforward to check the
identities

w/T
(25)  B(eM )@)(&WﬂM@aMe%mzl/ AL (¢, 1) dE.

2 —7/T

2.2 Floquet-Bloch Theory for Subharmonic Perturbations

In this section we introduce a version of Floquet-Bloch theory that is appropriate for the study of
subharmonic perturbations. Specifically, given a differential operator A with T-periodic coefficients,
as in the previous section, we aim at understanding how the associated semigroup e acts on NT-
periodic functions. To this end, first observe from (2.1) that if we define the set

(2.6) Qy = {5 € [-n/T,7/T) : VT = 1} :

10



then the perturbation v satisfies NT-periodic boundary conditions precisely when & € Q. In
particular, by (2.1) we have the equality

012..(0,NT) U 0r12..(0,T) Af)
£eQn

providing a description in terms of Bloch operators of the NT-periodic spectrum of A. Note that
the set {2y may be written explicitly when N is even by

_ j ) N N N
QN_{@ NT 5 2—{—1,...,2 1}

and when N is odd by

2mj N—-1 N-1 N—1
Oy = - - 1. —=
N {51 NT 5 T g The

In particular, for each N € N we have 0 € Qy, [Qn| = N and A¢j := & —&j—1 = 2n/NT for each j.

We now define, for each £ € 2, the T-periodic Bloch transform of a function g € Lper(O, NT) as
(27) Br(g)(&,x) = Y_ ™/ Tg(€ + 2mt/T),
LeZ

where now § represents the Fourier transform of g on the torus given by
NT/2
i) = [ gty
—NT/2

Note that §(¢) is the k-th Fourier coefficient of the NT-periodic function g when ¢ = 27k/NT, and
that Br(g)(&,-) is clearly a T-periodic function for all £ € Q. We recover g through the Fourier
series representation

_ 1 2mika/NT A

which together with the readily checked identity

> F@rk/NT) = Y > f(&+2m/T),

kEZ £cQy e
valid for any f for which the sum converges, gives the identity
1 A
- (§+2mt/T)x 4
o) = o 3 SR (6 19w T),
£eQN LeZ
This yields the inverse Bloch representation formula
1 .
(2.8) 9(z) = == ¢ Br(g)(¢ x)
NT
£eQn

which is valid for all g € L?
NT-periodic functions.

(0, NT). The equalities (2.7) and (2.8) are the analogue of (2.3) for

per

11



Further, notice the following subharmonic Parseval identity

(2.9) (f, 9>L2(0NT N NT2 Z (Br(f Br(g)(§, - )>L2 0,1) >

§eQy

valid for all f,g € L?

5er(0, NT). Indeed, observe that

S (Br(f)(E ) Br(o)E Nizory = 3 / Br(H(E 0)Br(g)(&, )de

€eOn £eQn
-y / S 2R f (¢ 4ok T) (& + 2m/T)da
ceqn 70 krez
Z Z (/ 27ri(£—k)w/de> m@(f + QWK/T)
£eQ N kLeZ
=1 Y ST €+ 2nt /Tl + 2me)T)
EEQN LEZ
=37 () (3 ) = NT 410 s
kEZ

as claimed. In particular, (2.9) implies that By is a bounded linear operator, just as the Bloch
transform B in the case of localized perturbations. It also leads to the following lemma needed
later in our analysis.

Lemma 2.1. Let N e N. If f € Lper(O T) and g € L,.(0, NT), then

per(

Br(fg)(&,x) = f(x)Br(g)(§, ),
In particular, for such f and g we have the identity

(f, 9>L2(0,NT) = % (f(x), Br(g)(0, $)>L2(0,T) :

Proof. For f € LZ,.(0,T) and g € Lper(O, NT), we calculate the NT-periodic Fourier transform as

per(
—_~ NT .
fat) = [ e gty
NT
:/0 —zzy( Z 27rzky/Tf (27T]€/T)) ( )

keZ
s Z f (2nk/T) ( / " ity T)yg(y)dy)
kEZ
=7 Z f @nk/T) §(z — 2nk/T).
keZ

12



Thus, we have

Br(fg)(¢, ) Zemw (Z F@rk/T)g(& + 2m(0 — k)/T))

ZGZ keZ

=%Z Ferk/T) " /g (¢ 4 2m(0 — k) /T)

kEZ LEZ
1 T 7 —
_ f Z eka’x/Tf (271’]€/T) Z eQméa:/Tg (6 + 27T€/T)
kEZ LEL

= f(2)Br(g)(&, x),

which proves the first equality.
Next, from this equality and Parseval’s identity (2.9) we obtain that

(.90 = gz 32 U £.). Br(9)(€)) 120) -

£eQn
Noting that
NT, if &4+2n¢/T =0
0, otherwise

1(€+2ml)T) = {

and that the condition & + 27¢/T = 0 holds for £ € Qx and ¢ € Z if and only if £ = ¢ = 0, we find
that Br(1)(§,x) = NT, which proves the second equality. O

Similarly to the case of L?(R), we have the connections between the operator A and its associated
Bloch operators Ag,

Ag(a) = o 3 T ABr(g)(€,7), 9 € Hyo0,NT),

£eQn
and then assuming they generate C°-semigroups, also between the corresponding semigroups,
1

NT
£eQN

(2.10) eMg(x) = e“Te' Br(g)(&,2), g€ L2,(0,NT).

An important observation here is that since (2.8) can be rewritten as

4 2
— LS B nag ac= 2T
£eQn

the representation (2.8) has the form of a Riemann sum approximation of the Bloch decomposition
formula (2.3) for functions g € L?(R). Similarly, the representation in (2.10) may be considered as
a Riemann sum approximation of the formula (2.5). These interpretations of the above identities
will be crucial in the forthcoming analysis.

Remark 2.2. In the case N = 1, corresponding to co-periodic perturbations, we have 1 = {0}
and hence the Bloch transform Br(g) simply recovers the Fourier series representation for g €
L2,.(0,T). Furthermore, the representation formulas for A and et given above are reduced to the

per
obvious equalities A = Ag and et = eAot,

13



2.3 Properties of Bloch Semigroups

Now we restrict to the linear operators A[¢] and A¢[¢] found from the LLE (1.1), assuming that
¢ e Hlloc(R) is a diffusively spectrally stable T-periodic stationary solution of the profile equation
(1.2). Recall that A[¢] is given by (1.4) from which we find the Bloch operators

(2.11) Aelg] = =1+ T Le9],
with

_ (0 -1 _ (B +i6)* — a+ 3¢} + ¢} 20, ¢
7—<1()) QW—( 26,6 —mm+@%ﬂ+ﬁ+wﬁ>

Our first lemma summarizes the spectral properties of the Bloch operators Ag[¢] which directly
follow from the definition of diffusive spectral stability.

Lemma 2.3 (Spectral Preparation). Suppose ¢ € Hﬁ)C(R) is a diffusively spectrally stable T -
periodic stationary solution of the LLE (1.1). Then the following properties hold.

(i) For any fized & € (0,7/T"), there exists a positive constant do such that
Ro(Ag[¢]) < —do,
for all & € [—n/T,w/T) with |§| > &.

(ii) There exist positive constants &1, 01, and d such that for any |£| < & the spectrum of Ag¢[¢]
decomposes into two disjoint subsets

o (Ag[9]) = o (Ac[g]) U oo(Aele]),
with the following properties:

(a) Ro_(Ag[g]) < —01 and Roo(Ag[¢]) > —d1;

(b) the set og(Ag[p]) consists of a single negative eigenvalue A.(§) which is analytic in & and
expands as

Ac(€) = ia€ — d€* + O(&7),
for || < 1 for some a € R and d > 0;

(c) the eigenfunction associated to \.(§) is analytic near & = 0 and expands as

D¢(z) = ¢'(z) + O(8),
where ¢ is the derivative of the T-periodic solution ¢.

Proof. The first part is an immediate consequence of the properties (i) and (ii) in the Definition 1.1.
To prove the second part, observe that since A = 0 is a simple, isolated eigenvalue of Ay[¢], and
since A¢[¢] depend continuously on &, standard spectral perturbation theory implies the continuous
dependence on ¢ of the eigenvalue A.(£) and of its associated eigenvector ®¢(x). O

Remark 2.4. In the case where the background wave ¢ is even (up to translation), a simple
symmetry argument implies that a = 0 in the expansion of A.(§) above. Note that the diffusively
spectrally stable solutions (1.5) constructed and studied via bifurcation theory in [4, 5] are all even.
For more general waves, however, one may have a # 0.

14



Our next result establishes that the linearized operator A[¢] and its associated Bloch operators
generate C%-semigroups. The proof is elementary and relies on a decomposition of these operators
into a constant coefficient operator plus a bounded perturbation. Specifically, we establish the
following result (see also [29, Lemma 1]).

Lemma 2.5. Assume that ¢ € H{ (R) is a T-periodic solution of the stationary LLE (1.2). The
linear operator Al¢] acting in either L*(R) or L2_.(0,NT) generates a C° semigroup. Similarly,
for each & € [—m/T,n/T) the Bloch operators A¢|@] acting in L2,.(0,T) generate C°-semigroups.

per

Proof. The proofs being the same in the three cases, we only consider the Bloch operators Ag¢|[¢]
acting in L2,,(0,T). From (2.11) we see that A¢[¢] is a bounded perturbation of the operator

per
A = —B(0, +i€)*T.

Since bounded perturbations of generators of C%-semigroups also generate a C%-semigroups [25,
Theorem 1.1, Section 3.1], it remains to prove the result for the operator .Ag. This operator is
closed on L2..(0,T') with domain HZ (0,T) and has constant coefficients. Using Fourier analysis,
it is then straightforward to check that its spectrum lies on the imaginary axis ¢{R and that for any
complex number X in its resolvent set the norm of the resolvent operator is given by

0y—1 _ 1
(A= Ag) HE(Lf)er(O,T)) = m-

Consequently, for any complex number A\ with ®A > 0 we have

_ 1
I = AR) Ml 0y = 5%

Together with the Hille-Yosida theorem (e.g., see [20, Chapter IX.2]) this implies that Ag generates
a C%-semigroup which proves the lemma. O

The next step consists in proving the resolvent estimate (1.11) for the Bloch operators A¢[¢]
given by the LLE (1.1)°,

Lemma 2.6. Suppose ¢ € HIIOC(]R) 1s a diffusively spectrally stable T-periodic stationary solution
of the LLE (1.1). There exist positive constants po and Cy such that for each § € [—m /T, w/T) the
Bloch resolvent operators satisfy

(2.12) 1Gip = Ae[é)) Nl 2z, 0y < Co, for all || > po.

per

Proof. For £ = 0 this result has been proved in [29, Proposition 1]. It can be easily extended to
¢ € [-n/T,w/T) by replacing the (spatial) Fourier frequency k in their expression of the linear
operator by k + &. O

Combining the result in this lemma with the spectral properties in Lemma 2.3, we obtain the
following estimates for the Bloch semigroups e ¢l

SFor the periodic waves ¢,, given by (1.5) this result can be easily proved using perturbation arguments, since the
operators are in this case small bounded perturbations of operators with constant coefficients.
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Proposition 2.7. Suppose ¢ € Hlloc(R) is a diffusively spectrally stable T-periodic stationary so-
lution of the LLE (1.1). Then the following properties hold.

(i) For any fized & € (0,7/T'), there exist positive constants Co and ny such that

Py <6

2er(0.7))
forallt >0 and all € € [—7/T,w/T) with |§] > &.

(i) With & chosen as in Lemma 2.3 (ii), there exist positive constants Cy and ny such that for any
€] < &1, if TI(E) is the spectral projection onto the (one-dimensional) eigenspace associated to
the eigenvalue A\.(§) given by Lemma 2.3 (i), then

HeAsW (I - H(g))“ < Cremt,

L(L2,.(0,T))

per

for allt > 0.

Proof. We use the Gearhart-Priiss theorem” to prove the result. The absence of purely imaginary
spectrum for the Bloch operators A¢[¢] for £ # 0, implies that the resolvent estimate (2.12) holds
for any purely imaginary number iy, uniformly for all £ € [—n /T, /T with [£] > &, for some fixed
& € (0,7/T). The Gerhart-Priiss theorem then implies the result in the first part of the lemma.
The second part follows in the same way, noting that the operator A¢[¢](1 —II(£)) has no purely
imaginary spectrum for any & € [—n /T, 7/T). O

Remark 2.8. (i) In the context of the LLE, the resolvent estimate (2.12) actually holds for any
complex number A = § +ip with § > —1 and |p| > us, for some ps > 0, which is the analogue
for & # 0 of the result obtained in [29, Proposition 1] for £ = 0. As a consequence, one can
better characterize the exponential rates of decay in Proposition 2.6 by showing that

0 <no < —max{Ro(A¢[¢]); € € [-n/T,7/T), [¢] > &},

and
0 <m < —max{R (o(Ae[]) \ {Ac()}); [E] <&}

For our purposes, however, we do not need this more precise characterization.

(ii) Together with the Floquet-Bloch theory for subharmonic perturbations, the result in Propo-
sition 2.7 gives the following estimate for the CV-semigroup generated by Al¢] when acting
in L2, (0,NT),

per

HeA[¢>]t(1 — Po) f‘ s onm S

for allt > 0, where Py n is the spectral projection of L%er(O, NT) onto the NT-periodic kernel
of Alp] in Theorem 1.3. The above remark implies that dy € (0,0n), where dn is given
by (1.6). This is the exponential decay rate for the semigroup generated by A[p| mentioned

in the introduction and required to prove the result in Theorem 1.2.

"Technically, we are using a slight extension of the Gearhart-Priiss theorem, requiring uniform boundedness of the
resolvent on the imaginary axis as opposed to a half plane. See [7, Corollary 2] for a proof of this extension.
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3 Linear Asymptotic Modulational Stability to Localized Pertur-
bations

Recall from the introduction that our goal is to obtain uniform rates of decay for subharmonic
perturbations of a given T-periodic stationary solution of (1.1). Our argument, which will be
presented in Section 4 below, is largely motivated by and modeled after the stability analysis to
perturbations that are localized on R. As such, we first consider the case of localized perturbations
and present the proof of Theorem 1.5. We emphasize that the proof of Theorem 1.5 follows the
general methodology introduced in [13] for the stability of periodic waves in general conservation or
balance laws to classes of both localized and non-localized® perturbations. Nevertheless, we briefly
outline the argument, for motivational purposes, as it applies to (1.1).

Following [13], the general strategy of the proof of Theorem 1.5 is to use the Bloch transform
to obtain estimates on the semigroup eA?!' from estimates on the Bloch semigroups e¢[?lt in
Proposition 2.7. To this end, our goal is to decompose the semigroup el as

eAllt — “Critical Part” + “Exponentially Damped Part”,

where, owing to Lemma 2.3, the “critical part” should be dominated by the translation mode ¢'.
Note throughout this section, we adopt the notation A < B to mean there exists a constant C > 0
such that A < CB.

Let v € L'(R) N L2(R). We begin by decomposing e?* into low-frequency and high-frequency
components: with &; defined as in Proposition 2.7, let p be a smooth cutoff function with p(§) =1
for |€] < &1/2 and p(§) = 0 for |£| > & and use (2.5) to write

w/T

/T
Aty () — L gite Aelolt 1 _ i€e o Acld]
sy C@ =g [ p@ee a0 [ 0 p@)eetne

=: Si¢(t)v(z) + Shr(t)v(x),

where S;y and Sy denote the low- and high-frequency components of the solution operator eAlelt,
respectively. According to Lemma 2.3, the spectrum of the Bloch operators A¢[¢] have a uniform
spectral gap on the support of (1 — p(£)) and hence, by Parseval’s identity (2.4) and Proposition
2.7, there exists a constant 1 > 0 such that

1 w/T

(32 S (tl} e |2 - p(eneteetae, )|

_ —nt
= orT ot d§¢ e ||UHL2(R)

12(0,T)
valid for all v € L?(R). It thus remains to study the low-frequency component of the solution
operator.

To this end, we further decompose Si¢(t) into the contribution from the critical mode near
(A, &) = (0,0) and the contribution from the low-frequency spectrum bounded away from A = 0.
Accordingly, for each || < & let II(§) be the spectral projection onto the critical mode of A¢[¢] as
defined in Proposition 2.7, and note it is given explicitly via

(3.3) T(©g(r) = (Pe.9) o Pela)

8Tn [13] the authors results cover the case when the perturbation slightly changes the phase at infinity of the
underlying wave. We do not consider such an extension here.
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where &35 is the element in the kernel of the adjoint A¢[¢]* — Ac(€)I satisfying <€>5, ¢'5>L2(0 -

We can thus decompose Sif(t) as

1 /T &x t /T €x t -~
Sy(tne) = o [ O AL s+ 5 [ et aa
(3.4) =: Se(t)v(x) + S (t)v(z).

Using Parseval’s identity (2.4) and Proposition 2.7 again, it follows that, by possibly choosing n > 0
above smaller,

g
valid for all v € L3(R).

For the critical component S, (t) of the solution operator, note that for any v € L?(R) we have

(3.5) |Siste

< M
(R)Ne HU||L2(R)

6A5[¢]t1—[(§){)(§, iL') _ eAc(Otcpf(x) <<5£, ’D(g, .)>L2(0 7

Ae(E)t <¢ + 5(()22#(3:))) <&)5’ (&, )>L2 ©o,1)’

o (PN ) <

where we note by Lemma 2.3 that

(3.6) sup < sup

z€R \é€[—n/T,7/T)

We may thus decompose S, further as

/T , -
Su(t(e) =@y [ pQET O (B ule ), e

2 )T L2(0,T)
(3.7) 1 [m/T A (E) Oe(z) — ¢/ (2)\ /= .
bon [ oo (R (Geue ) e

— ¢(2)s,(H)0() + Selt)o().

Now, observe that by definition (see (2.3)) we have

<&’5? (3 )> I/OT e () Y e TH(E + 200/ T) d

Lzomn LeZ

T —_— .
= i(¢+2ml/T) / D¢ ()™ /T dy
ez 0

— Z o(&+ 27r€/T)m
LeZ
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and hence, since |0(2)| < [[v||p1(w) for all 2 € R, we have

2 R 2
o€ [(Fe.5(E)) 0| <00 (Z [9(6 + 2r¢/T)] | bg(2mt/T) )
’ LET
2
(3.8) < p©lvll3 ) (Z(l + 10> &)gwm‘ (1+ er/?)
LeZ

SR 5]
§€[—m/T\m/T)

)
b
liper(07,1 )

where the final inequality follows by the Cauchy-Schwarz inequality. Using Parseval’s identity (2.4)
it follows that the phase shift component of S, satisfies
9 1/2
d§>
L2(0,T)

I
[sp()vll f2ry = 27rT/7r/T

e
Sle® tHLg(R)HUHLI(R)
S

T+ ol

p€)MO" (Be i€, ))

L2(0,T)
(3.9)

and, similarly,

(3.10) (

§c(t)v’

—de?t —3/4
) < |éem % 2Vl S (L +1) ]l 1y

where the bounds on [|e=%¢|| L2(R) and ||£e~9%| L2(R) follow from an elementary scaling analysis.

In summary, for each v € L}(R) N L?(R) we have the decomposition
(3.11) eAy(z) = ¢/ ()5, ()v(x) + Se(t)v(z) + Sy (t)v(z) + Spp(t)v(2),

where the operators s,(t) and Se(t) are defined in (3.7), and where the operators §lf(t) and Sp¢(t)
are defined in (3.4) and (3.1), respectively. Recalling the estimates (3.9)-(3.10), valid for all ¢ > 0,
as well as the exponential decay estimates (3.5) and (3.2) on §lf(t) and Spf(t), respectively, the
proof of Theorem 1.5 follows by setting v(z,t) := (sp(t)v) (z).

Remark 3.1. Note that to obtain L?> — L? bounds on sp and gc above, one would use in place of
(3.8) the slightly sharper estimate

2

§&)|(Beot ), o | < o0

which, by Parseval, would then lead to the bounds

e~

156 ) 720,

2
L2(0,T) L2(0,T)

[sp(t)vll2m) < tHLgO(R)HUHLZ(R) S vl

and
_ e -
1Se(t)oll 2y S llge™ % tHLgO(R)”UHLQ(]R) S+ 1/2HU||L2(1R)

In particular, since s,(t) does not exhibit decay from L? to L?, the final decomposition (3.11) implies
only a bounded linear stability from L? to L?. The faster polynomial rates of decay in (3.9)-(3.10)
rely on being able to control the initial perturbation in L' as well, and introduces diffusive rates of
decay of perturbations.
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Finally, we end our study of the localized analysis by describing at a finer level the long-time
dynamics of the modulation function + in Theorem 1.5. Note that from the explicit form of the
phase operator s,(t) defined in (3.7) it is natural to expect that for a given v € L?(R) the function
sp(t)v should be well approximated (for at least large time) by the function

1 /T , . o, o~
12 — i€a+(iaf—dg)t [F e . _
(312) ) =5 [ e (Beo(e)), 1 6
Precisely, following the techniques from above we have the bound
T
- il Ac(©)t _ (1a—dEt\ [ &, 5(c. .
L e () ()

s (e(xc(a)—(z'aé—dwt _ 1))

1 [
Sy(t)v — w(t)v = d
[[sp(t) )0l 2 () L2(0,1) gHLz(R)

N

L2(R) HU”LI(R)

A

e—d£2t£3t‘

L2(®) ||U||L1(R)

S A+ vl w).-
Noting that the above w(x,t) := (w(t)v)(x) defined in (3.12) is the unique solution of the linear
diffusion IVP
W = Wy + dWgy

(3.13) L N
w(w,0) = s, (0)v() = 5= /_ RO (2696) Loy %

posed on L?(R), this establishes the following result concerning the behavior of the modulation
function y(z,t) from Theorem 1.5.

Corollary 3.2 (Asymptotic Modulational Behavior). Under the hypotheses of Theorem 1.5, for
each v € L'(R) N L*(R) the modulation function v satisfies the estimate

[v( 1) = w(, Ol 2wy S (1+ t)_3/4||v||L1(]R)ﬂL2(R)
valid or all t > 0, where here w s the solution to the linear heat equation
1
wy = —iAL(0)w, — §A'C'(0)wm, zr€eR, t>0
with initial data prescribed as in (3.13).

Remark 3.3. To place the final calculations above in a broader context, we note that the PDE in
(3.13) corresponds to the Whitham modulation equation associated to (1.1). Following the work in
[13, Appendiz B] it is possible to show through a formal multiple scales analysis that an approzimate
solution to the profile equation (1.2) is given by

Bl t) = (U, 1))
where the wave number k := W, satisfies the Whitham equation
1
ky = —idL(0)ky — §Ag(0)km

This suggests that the large time modulational behavior should be governed by a solutions of the heat
equation, which is precisely what is made rigorous through Corollary 3.2. For more information on
dynamical predictions of Whitham modulation equations, see [6, 13].
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4 Linear Asymptotic Modulational Stability to Subharmonic Per-
turbations

Motivated by the analysis in Section 3, we now strive to obtain decay rates on the semigroup eA%/
acting on classes of subharmonic perturbations which are uniform in N. As we will see, the analysis
is based on a decomposition of the solution operator el which is largely motivated by the analysis
in Section 3. One key difference, however, is that in the subharmonic case, the eigenvalue A = 0
is isolated from the remaining N'7T-periodic eigenvalues of 4[], which leads to a slightly different
decomposition of the solution operator near (A, &) = (0,0) than used in Section 3 above.
For each N € N and each p > 1, we set, for notational convenience,
LY = L5 (0,NT).

Further, throughout the remainder of our work, we will use the previously introduced notation
A < B to indicate there exists a constant C' > 0 which is independent of N such that A < CB.
Now, for fixed N € N let f € L3, and recall from (2.10) that the action of the semigroup eAlYlt on

f can be represented through the use of the Bloch transform as®
1 .
A fa) = o 3 S AIBL () (€, 2),

£eQn

where Qn C [—7/T,7/T) is defined in (2.6) as the set of Bloch frequencies corresponding to NT-
periodic perturbations and Brp(f), defined in (2.7), denotes the T-periodic Bloch transform of the
NT-periodic function f.

Following the general procedure in Section 3, we begin by decomposing the subharmonic solution
operator into low-frequency and high-frequency parts. Letting p be a smooth cut-off function as in
Section 3, note for all f € L% we have

@) = g 3 pQAIB)E0) 4 g 3 (1 pl€) A Br () esw)

£eQn £€Qn
(4.1) =: Siyn () f(x) + Shpn () f(2).

To estimate the high-frequency component, we use the discrete Parseval identity (2.9) to get

1Sk (0 fII72 = T2 D= p€)e I Br(£)(€ )T 0
GQN
< NT 2529 )2 (e 1Z, w20 1Br(H)E N Z20m)-
S99

From Proposition 2.7, it follows from Lemma 2.3 and Proposition 2.7 that there exists a constant
n > 0 such that

max (1 — p(€)) e 2z

< ™M
éEQN per( )) ~ €

9This representation formula is the analogue of (2.5) used in Section 3.
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yielding the exponential decay estimate

1/2
_ 1 _
(12) IS @l S | wmm 2 IBrE e | =1 lis.
§EQN

where the last equality again follows by Parseval’s identity (2.9).

Continuing on, to study the low-frequency component, let II(£) be the rank-one spectral pro-
jection onto the critical mode of A¢[¢] from Proposition 2.7 and note that Sj¢ y(t) can be further
decomposed into the contribution from the critical mode near (A, £) = (0,0) and the contribution
from the low-frequency spectrum bounded away from A = 0 via

SN (F (@) = 5o 3 O A Br(f) (e, )
§EQN
(1.3 o 3 o€ AR (L 1) Br (1) €. )

£eQn
= Sen(t)f(x) + Sipn(t) f(z).

Using Parseval’s identity (2.9) and Proposition 2.7 we know by possibly choosing > 0 above even
smaller, that

(4.4) 15w () F gz, S e 1 f ]z

For the critical component of S, x(t), note that by Lemma 2.1 the £ = 0 term'® can be identified

SALOB(1)(0.2) = =6/ @) (B0, Br(N0.)) = <o) (Fo. 1)

r2(0o1) N 2

Since (3.3) and Lemma 2.3 imply the projection of L% onto the NT-periodic kernel of Ag[@)] is
given explicitly by!!

(4.5) Ponflz) = %gb’(a:) <<T>0, f>L2 ,

N

it follows from above that S, ny decomposes further as

Sen f(z) = e¥iPy v f(2) + % Z p(&)e’ e M, () <§’£7 Br(f)(&, )>

L2(0,T)
£en\ (0}
1 ~ 3
= AIPS@) S @) D pOETNO (e Br(NE )
(4.6) £eQn\{0} ,
1 ‘ @ A ~
N D PO <W) O (Be, ()6 ')>L2(07T)

£eQn\{0}
=: eAMtPo,Nf(ﬂU) + ¢ (2)sp,n (1) f () + §C,N(t)f(33)-

90bserve the ¢ = 0 term, corresponding to the projection onto the kernel of Ag[¢] does not experience any type

of temporal decay. Consequently, we factor it out of the remaining sums which, as we will see, do decay in time.
1Recall the left T-periodic eigenfunction ®y is normalized so that <E>o, q§'> =1, and hence <<f>o7 ¢'> =N

2
N

L2(0,T)
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Now, arguing as in (3.8) we find that

p(€) TSI, s <p<5>Hés\

§€l—n/T,m/T)

(Be.Br(f)(€)

2
L2(0,T) H;er(o,T)> ’
and hence, recalling the bound (3.6) and that
()1 1262007 < e

for some constant d > 0, it follows by Parseval’s identity (2.9) that

c o 1 o (2 =@ o 5 N
||SC,N(t)fHL?V = NT2 gezQ:N P(g)lf( i >6 <‘I>§aBT(f)(£v )>L2(0,T) L2(0.7)
1 2
W < (L5 eeme) g,
£eQin

Furthermore, following similar steps as above we have the bound

1 o2
(4.8) lsnn 712 S (% 30 e I3,
¢eQn\{0}

To complete the proof of Theorem 1.3, it remains to study the finite sums
1 1
(4.9) T2 T and o Y ge
£€Qn\{0} &EQN

To obtain uniform (in N) rates of decay, note that both of the sums in (4.9) correspond to Riemann
sum approximations to the integrals'?

w/T 2 /T 2
(4.10) / e 24 ge and/ 224 ge|

—7/T —7/T

which, through elementary scaling analysis (as in the previous section), decay like (1 + t)_l/ 2 and

(14 t)_3/ 2 respectively. The next result uses this observation to obtain analogous decay bounds
on the discrete sums in (4.9).

Proposition 4.1. There exists a constant C > 0 such that for all N € N and t > 0 we have

2
(4.11) —7; Yo M <o)
&€Qn\{0}
and
2n 2 —2de%t —3/2
(4.12) NT Yo GerEt <o)
§EQN

12Recalling A& = 2w /NT, we see that we technically need to multiply and divide by a harmless factor of 27 /T
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Remark 4.2. The above bounds show that the polynomial decay rates on localized perturbations
obtained in Theorem 1.5 provide uniform (in N ) upper bounds on the decay rates associated to
subharmonic perturbations, i.e. to perturbations with period NT for some N € N. In the next
section, we sharpen these estimates and provide associated lower bounds on the subharmonic decay
rates, showing that, in fact, the localized decay rates provide sharp uniform bounds on subharmonic
perturbations. The proof of the upper bounds in Proposition 4.1, however, is based on a substantially
stmpler monotonicity argument, which we now provide.

Proof of Proposition 4.1. We compare the sums in (4.11) and (4.12) with the integrals in (4.10).
For (4.11), notice that, for each ¢t > 0, the function £ e~ 2087 g monotonically decreasing for
¢ > 0 and monotonically increasing for £ < 0. Together with the equality (§; — &—1) = 2n/NT
these monotonicity property imply that

2 —2dg?2 _9de? _9de?
T M= Y G — )+ Y e G - 6)

&en\{0} §EQN §€0N
;<0 §;>0
S e S e
(4.13) < ) / e Mg+ > / e~ 2 ge
&eQn & &eQn &1
£ <0 £;>0
/T
< / e 2 g,
B —7/T

which proves the inequality (4.11).

For (4.12), we have to slightly modify this argument because the function £ +— 526*2515% does
not have the same monotonicity properties. Indeed, it has a global minimum at £ = 0 and two
global maxima at & = +R where

R=(2dt)""/? and R%e 2t = (2dte) "

see Figure 1. Then for 0 < ¢ < T?/2dr?, the values +£R do not belong to the interval (—m /T, 7/T)
and we can easily estimate the sum in (4.12),

27 9 —2dg2t 27 72 2m3
(4.14) NT 2 SN ST X e T
§€QnN FSUY

For t > T?/2dn?, we consider the function

_ ) @dte)™ (<R
Gi(§) = {§2€2d§2t7 R<l|¢| < /T

which is nonincreasing for £ > 0 and nondecreasing for £ < 0. Then by arguing as for (4.13), we
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f($. 1)

-R 0 R ¢
Figure 1: A schematic drawing of the function & — 526*2d52t used in the proof of Proposition 4.1.
Note that the area under the supremum between —R < ¢ < R is 2R(2dte)~! = 2e~*(2dt) 3/,

find
2 B - )
~NT Z 52 2d£t Z 52 2d§ t @H Z 4_»2 2d§ t€ —§j—1)
A &€y £E€QN
£;<0 £>0
§j+1
< 2 / §dé+ )
&eQn £eQn i1
§<0 £;>0
w/T /T
< [ Guods < 2ty [T et
—7/T T

Together with (4.14) this proves the inequality (4.12) and completes the proof of the proposition. [

In summary, for each f € L?V we have the decomposition

e f(2) = APy f(a) + ¢/ ()53 (1) f ()
+ Sen(8) £ (@) + Sty (8 f(x) + Shpn () f (),
where Py is the projection of L% onto the NT-periodic kernel of A[¢] defined in (4.5), the
operators s, ny(t) and Sif n(t) are defined as in (4.6), and the operators S y(t) and Spf n(t) are

defined as in (4.3) and (4.1), respectively. Recalling the estimates (4.7)-(4.8), Proposition 4.1
implies that for all N € N we have

lspv®Flg, S A+ fly, and ||S

e Of| xS 0y,

valid for all ¢ > 0. Together with the exponential decay estimates (4.4) and (4.2) on §lf’N(t) and
Shr.n(t), respectively, and defining for each f € L% the function'?

(e, t) = (B0, ), +spn(0f()

13Clearly vn is an NT-periodic function of .
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and noting that
1

N <€I;0’f>L§V -

this completes the proof of Theorem 1.3.

<¢,7 PO,Nf>L2(07T)

190

Remark 4.3. As mentioned near the end of the introduction, the methodology used in the above
proof is very general and applies more generally to linear operators A[¢] with T-periodic coefficients
that satisfy conditions (i)-(iii) listed in the discussion after Theorem 1.5. The resolvent bound in
(iii) implies exponential decay of high-frequency modes, while the diffusive spectral stability condition
yields polynomial decay rates on the critical modes corresponding to spectrum near (X, &) = (0,0).
This work thus sets forth a general methodology for establishing uniform decay rates on subharmonic
perturbations of diffusively spectrally stable periodic waves in a large class of evolution equations.

Finally, we note that exponential decay rates on the semigroup el acting on L?V may also

be obtained from the above analysis. Indeed, note that for each fixed N > 2 we have the bounds!*

1 —2dgE%t 1 —2d(A€)3t
N Z e S 1-— N e

£eqn\{0}

and, similarly,

1 2 —2de2t 1 T\2 _oqae)2
¥ 2 S (1o 5 ) (F) e
£eQN
where here!® 5
7r
AL = —.
¢ NT
In particular, from (4.6)-(4.8) and the decompositions (4.1)-(4.4) it immediately follows that there

exists a constant C' > 0 such that for each N € N and f € L?V we have the exponential decay
bound!®

(4.15) He““mt (1—Pon) f‘

o SO llyarg, 0= min{n,d(A&)*},
N

with 7 > 0 as in (4.4), recovering, at the linear level, the exponential stability result from [29]: see
Theorem 1.2 in the introduction. In fact, the above observation extends the exponential bound
result used in [29] since the constant C' > 0 above does not depend on N: see also Remark 2.8(ii)
where the constant depends on N. Observe, however, that the exponential rate of decay exhibited
above still tends to zero as N — oc.

5 Sharpness of Localized Theory

While the polynomial decay rates established in Proposition 4.1 provide upper bounds on the
uniform decay rates of subharmonic perturbations of a given diffusively stable, T-periodic standing

Note that since Q1 = {0}, in the case N = 1 we clearly have 2 ecar\ (0} e~24€%t — 0 and D eeq, 6267211&275 =0 for
all ¢ > 0.

'’ Note for large N that the size of the spectral gap maxe¢ecq (0} R(Ae(€)) is O((A€)?).

Tn fact, we can improve (4.15) so that it is a bound from L% — L% .
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wave solution of the LLE (1.1), it is not a-priori clear that such decay rates are sharp, i.e. if it
is possible that subharmonic perturbations actually experience even faster uniform rates of decay.
After all, for each fixed N € N we already know such perturbations exhibit exponential decay (up
to a null translational mode). The next result shows that, in fact, the localized decay rates provided
in Theorem 1.5 provide sharp uniform decay rates for subharmonic perturbations.

Proposition 5.1. There exists a constant C' > 0 such that for all N € N and t > 0 we have

2m Cogeze [T oger c
(5.1) — Y e e d¢| < —
NT ¢ comio) —/T N
and
2m —aaeze [T o g ¢
(5.2) — £2e 295t e dé| < ———.
NT ggﬂ:]v J )T N(1+1)

Remark 5.2. Note that since the terms e~ 2%t qre exponentially small outside a small ball near
¢ = 0 for large enough time, the domain of integration above could be replaced with (—oo,00), giving
an even more direct connection to the bounds (4.7)-(4.8) in the subharmonic case and the bounds
(3.10) and (3.9) in the localized case.

The proof of Proposition 5.1 is based on a careful rescaling and Riemann sum argument and is
included in the appendix. As a consequence we see convergence, say in L{°(0,00), as N — oo of
the discrete sum to the integral associated to the localized theory. This proves that the uniform (in
N) bounds on the operators s, y(t) and S. ny(t) provided in Theorem 1.3 are sharp. Of course, as
mentioned above and several times in the manuscript, while each subharmonic perturbation exhibits
exponential decay in time, it follows that the localized theory precisely describes subharmonic decay
rates which are uniform in N. Furthermore, as shown in the proof, the estimates (5.1)-(5.2) show
explicitly that for a fixed N the sums are good approximations of the associated integral on time
scales at most'” ¢ = O(N?). For even larger times, the exponential nature of the summands
dominate and the sum decays monotonically to zero at an exponential rate.

Naturally, it is interesting to try to recover the localized theory from the subharmonic theory
in the limit as N — oo. For example, using the boundedness of ®y3 we note there exists a constant
C > 0 independent of N € N such that'®

(5.3) ’<E>0, f>L2

N

< Clfllpy.-

and hence the triangle inequality implies that

1 —1/4
i (5 + 007 Wl

" This behavior on times scales at most O(N 2), as well as the exponential behavior for larger times, is readily
observed numerically.

8 Note if we use the Cauchy-Schwartz inequality to control the quantity (5.3) by L3, decay in N is not observed
due to the T-periodicity of By.

s
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Consequently, if {fn}35_, is a sequence of functions with fy € L3, N LY for each N and if there
exists a v € L%(R) N L'(R) such that fy — v, say in L} (R), then formally taking N — oo allows
us to (again formally) recover the stability result to the localized perturbation v established in
Theorem 1.5. Furthermore, the estimate (5.3) suggests that we should have (in some appropriate
sense

)

lim VN(x’t7 fN) = ’7(1" t;’U),
N—oo

where 7 is the modulation function associated to v € L'(R) N L%(R); that is, we should have
convergence of the associated subharmonic and localized modulation functions. Of course, to make
rigorous sense of these (and other) limiting results one must deal with the fact that a sequence of
NT-periodic functions can only converge to a function in L?(R) at best locally in space. Establishing
such a convergence results rigorously is left as an open problem.

6 Towards Nonlinear Stability

Our main results, Theorem 1.3, Theorem 1.5 and Corollary 3.2 give insight into the asymptotic sta-
bility and long-time modulational dynamics near a diffusively spectrally stable periodic stationary
solution of the Lugiato-Lefever equation (1.1) to both subharmonic and localized perturbations.
Specifically, we note all these results are established at the linear level and that an analogous theory
describing the full nonlinear dynamics of (1.1) is currently an open problem. In this section, we
describe here an approach to this problem which has been useful in the related context of dissipative
conservation or balance laws [13], as well as the unresolved difficulties involved.

To begin, suppose ¢ is a T-periodic, diffusively spectrally stable stationary periodic solution of
(1.1) and consider (1.1) equipped with the initial condition

(6.1) u(x,0) = ¢(z) + vo(x)

for some sufficiently smooth and small initial perturbation vg. For the sake of clarity, let us assume
the initial perturbation is localized, i.e. that vy € L?(R). So long as it exists, Theorem 1.5 suggests
decomposing the solution u(z,t) of (6.1) as

u(z,t) = ¢(x + y(x,t)) + v(x,t)

where here v is some appropriate spatial modulation to be specified'® as needed in the analysis.
Substituting this ansatz into (6.1) implies the perturbation v satisfies an evolution equation of the
form

(6‘2) (at - -A[¢]) (’U - 7¢/) = N('Ua Vxy Vzzs Yty Vs 711)7

where N consists of nonlinear terms in its arguments and their derivatives. Using Duhamel, the
above nonlinear evolution equation is equivalent to the following (implicit) integral equation

¢
(6.3) v(z,t) —y(z, 1) (z) = eA[¢]tv(x, 0) + /0 eA[‘z’](t_S)N(v,vw,vm,'yt,'ym,’ym)(x, s)ds.

¥ Thanks to the invariance of (1.1) with respect to spatial translations, we may assume that (z,0) = 0.
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Since the linear estimates in Theorem 1.5 imply the linearized solution operator can be decomposed
as

A f (@) = ¢ (@) (sp(1) ) () + S(2) f ()

where s, is defined as in (3.7) and Hg(t)fHLz(R) S(1+ t)*3/4HfHL1(R)mL2(R), it is natural to choose
the modulation v above to exactly cancel all the s, contributions on the right hand side of (6.3),
thus leaving a coupled set of integral equations for v and ~ that one might hope to solve and study
via contraction.

At this point in the argument, things begin to break down. In particular, observe that control
over the source term in (6.3) in L?(R) would require control over (at least) v in H?(R), corresponding
to a loss of derivatives in v and a-priori leaving little hope of studying (6.3) via iteration. In some
cases, however, such a loss of derivatives at the linear level can be compensated by appropriately
strong damping effects of the governing evolution equation: see, for example, [13]. However, in
the case of the LLE (1.1) the damping actually corresponds to the lowest-order derivative*® which
elementary calculations show negates the “nonlinear damping” technique leveraged in [13] to regain
derivatives at the nonlinear level.

In summary, when attempting to upgrade our linear results (either in the localized or subhar-
monic setting) to a nonlinear theory one is confronted with an iteration scheme which a-priori loses
regularity. Dealing with this loss of regularity would be an exciting direction for future research.

Remark 6.1. [t is interesting to note that in the case of subharmonic perturbations, if one fizes
N € N and uses the exponential decay bounds on eAl9 on L?V, as in the recent work [29], then there
is mo need for the modulation function 7y to have x-dependence: see, for example, Theorem 1.2. In
this case, one can show that the nonlinear term in (6.2) reduces to simply N (v,~:) and hence, in this
case, there would be no loss of derivatives. This is precisely the strategy behind the proof of Theorem
1.2 presented in [29]. As described throughout this manuscript, however, the exponential (nonlinear)
decay rate is not uniform in N, and our analysis suggests that to obtain such uniform decay rates on
subharmonic perturbations one must work with space-time dependent modulation functions, which
(as detailed above) leads to a loss of regularity in our iteration scheme. A similar situation occurs
in the seminal work [18], where the author considers the nonlinear transverse stability of planar
traveling wave solutions to reaction diffusion systems. In that case, the lack of spectral gap (due to
the transverse modes) is compensated by the introduction of a modulation function which depends
on time and the transverse spatial directions. However, since the background wave is constant in
the transverse spatial directions, this leads to the a set of nonlinear perturbation equations where
the perturbation (as in the work [29] discussed above) enters without derivatives acting on it, and
hence there is no loss of derivatives in the iteration scheme. FEstablishing nonlinear results when
one has the ability to regain these lost derivatives is currently under investigation by the authors.

A Proof of Proposition 5.1

In this appendix, we present a proof of Proposition 5.1, which establishes that the localized rates
of decay in Theorem 1.5 provide sharp uniform bounds on subharmonic perturbations of diffusively
spectrally stable periodic standing waves of the LLE (1.1).

29Tn fact, a zeroth order term.
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Proof of Proposition 5.1. As in the proof of Proposition 4.1, it is sufficient to establish the bounds
(5.1)-(5.2) for N > 2 and ¢ > 1. Since the proof of the estimates (5.1) and (5.2) for N > 2 and
t > 1 follow the same basic structure, we present a detailed proof of (5.2) and then describe the
modifications needed to establish (5.1).

To begin our proof of (5.2), fix N € N with V > 2 and define the function

(A.1) Fn(t) =132 3" e 2tAg, t>1,
§EQN

where here for each j € N we set A§; = % We now fix ¢t > 0 and use a discrete change of variables
by setting, for each §; € Qy,

(A.2) 2z =&Vt
noting that, in particular, the set Qn := {2;} is a discretization of [—mv/t/T, mv/t/T] with
Azj = A&Vt = 2mVt/(NT).
Further, in terms of the new variables we have
Fn(t) = Z z?e_QdZJQ'Azj,
ZjEQN,t
and hence Fy is a Riemann sum approximation for the integral
ﬂ\/Z/T 9
/ H(z)dz, where H(z):= z%e 2%,
77r\/f/T

Our strategy is to treat Fi as either a left or right endpoint Riemann sum approximation of the
integral, and our choice will be dictated by the intervals where H is increasing or decreasing. From
this, we will establish the bound?!

w/t/T
FN(t)—/ \/E/TH(Z)dZ

(A.3)

which (by undoing the above rescaling), is clearly equivalent to the bound (5.2).
Now, to establish (A.3) we first note by symmetry of the function H that it suffices to study
the sum defining Fy over only the non-negative z;, i.e. to study the function

1, N even
N odd

z |z

m 3 z2 m . B
hy(t) := Zz?e 2d 1Az = ZH(zj)Azj, m:=max{j | zj € Q. } = { .
=0 =0

)

v ‘

Observe that H is monotonically increasing for z € (0, R), where R = (2d)~'/2, and is monotonically

decreasing for z € (R, 00). In particular, for each fixed ¢ > 0, we have that either z,, = z,,(t) < R
or there exists £ = £(t) € {0,...,m — 1} such that R € (2, zp41]: see Figure 2.

2INote this clearly shows that the finite sum is a good approximation of the associated integral on time scales at
most t = O(N?).
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y=H@) e : 0 y=H@z f- !

e

R

>
z

(a) 0 % Z} R Z/+1 Zm (b) 0o % Z R Z1x1 Zm
Figure 2: (a) Treating hy as an over approximation of the area under H. (b) Treating hy as an
under approximation. Notice that (a) misses the interval [z, z¢41]. Similarly (b) has a node, in
this case zy41, that cannot produce an under approximation on the interval from [z, zp41]. This
indicates that this interval must be treated with some care.

Note that if £ = 0 then z; > R for each j € {1,2,...,m}, implying that each such z; lies in the
monotonically decreasing tail of H. This case happens when z; > R, i.e. when t > CoN? where
Coy=T7 / (8d772). Noting, as in Figure 2, that the z, and zp,1 terms need to be handled differently,
we decompose hy as

1 m
hn(t) =Y H(z)Azj+ Y H(z)Az.
§=0 Jj=2
On the opposite of this extreme, observe that if { = m —1 then z; < R for all j € {0,1,...,m—1},
implying that each such z; lies in the monotonically increasing portion of H, while z,, > R, leading
to a similar decomposition to that above. Further, we only treat z,, differently when z, < R,
which occurs for some (fixed) bounded interval of time. (Although, we note that, strictly speaking,
zm does not have to be treated differently when z,, + Az, < R.)
In our analysis below, we will only consider the case when there are some z; in both the
monotonically increasing and the monotonically decreasing components of H. That is, we restrict
to the case when

(A4) R € (z4,2zp41], for some £ € {1,...,m— 2},

noting the other more extreme cases described above will follow in a more straightforward way. In
the case when (A.4) holds, we decompose hy into thee components via

-1 /+1 m
hy(t) =Y H(z)Azj+> H(z)Azj+ Y H(z)Az.
j=0 j=¢ j=0+2

Note the first and last terms represent the sums over the j where z;;1 < R and where z;_1 > R,
respectively, while the middle term represents the sum over the z; nearest to the absolute maximum
of H.
Because H is increasing on (0, R) it follows that
Zj+1
H(Zj)AZj < H(Z)dZ < H(Zj+1)AZj+1 for j = 0, 1, ce ,E - 1,

%
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and hence, recalling that H(zg) = 0, we have??

[ e = Y nean < [

7=0

Similarly, since H is decreasing on (R, c0) it follows that
Zj
H(zj)Az; < / H(z)dz < H(zj—1)Azj—1 for j=04+2,....m
j—1

which, as above, yields

Zm+Azm m Zm
/ H(z)dz < Z H(zj)Az; < H(z)dz.
Zg42 =042 Zg41
Together, this gives
Zm+Azm Zg42 +1 Zm 2041
(A5) / H(z)de— [ H(2)ds < hu(t)— S H(z)Az < / Heyde— [ H(2)de.
0 201 j=¢ 0 E7)

It now remains to bound the sum ZZH H(z;)Az;. To this end, recall that H has exactly one

critical point (a global maximum at z = R) on (zg, ze+1]. Consequently, since the minimum of H
on [zg, zg+1) must occur at one of the endpoints, we have

2041
H(z)A H(z)dz.
Jmin H(zj)Az < . (2)dz

while the other endpoint is at worst the supremum of H, yielding

max H(z)Az < H(R) (QW\/E/(NT)) — CVi/N,

where C = 7/(dTe). The previous two bounds together yield

l+1

ZHZJAZJ / H(z)dz + CVt/N.

On the other hand, recalling that H is increasing on (z;_1,2¢) and is decreasing on (zp11, 2r42)
gives the lower bound

K1) 2042
H(zp)Azy > / H(z)dz, and H(zp41)Azpq1 > H(z)dz.
2 2041
Together with the estimate (A.5), it follows that
Zm+Azm 241
(A.6) / H(z)dz — H(z)dz < hy(t / H(z)dz+ CVt/N.
0 20

22Technically, the above bound gives JS  H(z)dz < Zﬁ;i H(z;)Az;,. Since H(zo) = 0, however, this is equivalent
to the stated lower estimate.
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Recalling again that H attains its global maximum at z = R € [zy, zp+1], we clearly have

M H(2)de < H(R) (2W\/E/(NT)> = CVE/N.

7

and hence, from (A.6), we obtain

Zm+Azm Zm
(A7) /0 H(2)dz — CVE/N < hy(t) < /0 H(2)d= + CVi/N.

By the even symmetry of H and the structure of the sets Qy, we find that

0 —1 0
(A.8) / H(z)dz — CVI/N < Y H(z)Az < / ) H(z)dz + CVt/N,

—m— Az j=—m

where

N N even

2
N=L Nodd
Therefore, combining (A.7) and (A.8) we obtain the bound

m:=|min{j | z; € AN} = {

Zm+Azm Zm
/ H(2)dz — 20Vi/N < Fy(t) < / H(2)dz + 2CVi/N.

_m—Az_5
Noting that
Zm Tt/T Zm+Azm
/ H(z)dz < / H(z)dz < / H(z)dz,
Z_im —7V/t)T Z_m—Az_g

we obtain the bound (A.3), as desired. By undoing the rescaling (A.2), this establishes the estimate
(5.2) in Proposition 5.1.

Finally, the proof of the estimate (5.1) follows by a similar, yet simpler, analysis. Indeed, for
all N > 2 and t > 1 we define

Fn(t) := t/? Z eiQd&?tAfj
&€an\{0}
and note by performing the same discrete change of variables in (A.2) as before we have

ﬁN (t) = Z 6_2dZJZAZj .
2;€0N,:\{0}

Since the function H (2) = e~2d=* ig even and strictly decreasing for z > 0, carrying out the same
monotonicity argument as above we find that

Zm+Dzm 21 __ - Amo__

/ H(z)dz — / H(z)dz < Fy(t) < / H(z)dz.
Z_m—Az_m z_1 Z_m

In particular, using the elementary bound

47r\/7?
NT

/ T H(2)de < BO) (51— 2y) =
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and noting that

Zm o _ W\/Z/T _ Zm+Dzm
/ H(z)dz < / H(z)dz < / H(z)dz,
Z_m —7V/t)T Zz_m—Dz_5

we obtain the estimate

(A.9)

,ﬂ\/E/T - NT

_ mV/t/T
Fy(t) — / eQdZde‘ At

valid for all N > 2 and ¢ > 1. Undoing the rescaling (A.2), this completes the proof of (4.11). [

Remark A.1. The reader may wonder why we used a rescaling and monotonicity argument above to
establish (A.3) and (A.9), as opposed to a more direct Mean Value Theorem argument. Essentially,
this is because the Mean Value Theorem gives us the cruder bound

W\/Z/T
FN(t)—/ \/E/TH(Z)dZ

Mt
< —.
- N

Finally we note that the uniform bounds in Proposition 4.1 may be recovered from the above
analysis. For example, note that the function Fiy defined in (A.1) satisfies the differential inequality

8d772t 3 8drn?t
1/2 Z 2 72d§ t -1
&eQN

and hence exhibits exponential decay to zero for time scales larger than O(NN?). Since (A.3) shows
that Fy is uniformly bounded on time scales up to O(N?) it follows that Fyy(t) is uniformly bounded
(in N) for all ¢ > 1, which establishes (4.12) in Proposition 4.1. A similar differential inequality
argument applied to Fiy(t) establishes the uniform estimate (4.11).
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