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Abstract—Multi-Agent Systems (MAS) are naturally good
candidates for large-scale parallel simulations. However, imple-
menting MAS simulations for distributed memory architectures,
such as High Performance Computing clusters, is still complex
for non-experts. In this article we present the principle of a
Dynamic Distributed Graph structure, that enables the native
distribution of MAS simulations. Most of the distribution related
issues such as dynamic load-balancing, time synchronization and
data migration across processes can be completely automated and
abstracted for the user, who can safely design distribution inde-
pendent MAS models. The major interest of our contribution is
the transparent management of concurrent read / write requests
across distant processes, a significant feature not provided by
surveyed platforms. We also present FPMAS, an open source C++
implementation of a Distributed Multi-Agent System Simulation
platform based on the Distributed Graph structure.

Index Terms—multi-agent systems, simulation, hpc, distributed
graph

I. INTRODUCTION

Multi-Agent Systems (MAS) are a promising approach to
simulate complex systems that cannot easily be modeled using
linear equation systems. This is notably the case when inter-
actions between heterogeneous entities should be represented,
such as in micro or macro economic [1], biodynamic [2],
epidemiological [3], crowd evacuation [4] or smart grid energy
management [5] models for example. The main purpose of
MAS simulations is usually to observe emergent properties
produced by the simulation of simple behaviors applied to a
large number of agents.

As the complexity of models grows, the field of MAS
simulation might benefit from the usage of High Performance
Computing (HPC) resources to raise execution time and mem-
ory limits. Since MAS are compound of autonomous agents
that are assumed to perform their task independently from
others, MAS are natural candidates for parallelization. How-
ever, the requirements for dynamic and stochastic interactions
between agents is a challenging issue when attempting to
execute a MAS simulation on distributed memory structures.
The distribution of MAS models is thus a challenging task that
induces lots of specific issues and, in consequence, HPC usage
in MAS simulation is still limited, especially considering the
fact that MAS modelers are usually not HPC experts.

Several platforms have been designed to attempt to solve
those issues [6]–[8], but none of them are completely satisfy-

ing since they limit the possible interactions between agents
located on distinct computing nodes thus requiring the final
user to deal with distribution issues, such as remote writing.
Hence MAS models are often required to be adapted in order
to be compliant with an execution on distributed computing
resources using those platforms.

In order to facilitate the design of Parallel and Distributed
MAS simulations by non-experts, we propose a Distrib-
utedGraph framework that automates and abstracts the
distribution related issues, such as dynamic load-balancing,
time synchronization and data migration across processes to
the user. This article presents the following contributions:

1) A formally defined DistributedGraph structure to
allow to transparently maintain the continuity of a graph
distributed across a set of processes.

2) A software architecture and its C++ implementation,
FPMAS, to allow the DistributedGraph synchro-
nization according to different modes, and its application
to distributed MAS simulation.

In Section II we present some related works that moti-
vate the development of the DistributedGraph approach.
Section III introduces the DistributedGraph structure,
that allows a native and implicit distribution of graph-
based models over distributed computing architectures. A C++
implementation of a Distributed MAS simulation platform
based on the DistributedGraph structure is described
in Section IV, and finally we demonstrate its usage using a
SIR epidemiological model example in Section V. A brief
performance analysis is also presented.

II. RELATED WORKS

MAS modeling is a research field on its own. We particu-
larly consider simulated agents as autonomous and interacting
entities, executed by time step, possibly on an environment.
In this context, many simulation platforms, languages and
standards have been designed and improved along the past
decades. We can notably cite the Repast toolkit [9], Netlogo
[10], Influence/Reaction models [11], the GAMA platform
[12] or SARL [13], among many others.

These platforms are however not suitable for HPC, and
so their use is limited in the case of large simulations. To



overcome these limitations designers of MAS models may use
Parallel and Distributed MAS simulation (PDMAS).

A. Parallel and Distributed Multi-Agent System simulation

Distributing a MAS simulation consists in splitting the
global execution into a set of processes, in order to improve
execution time and/or to solve limited memory issues. Each
process is typically responsible for a subset of agents to
execute.

We consider existing platforms [14] that support such
distribution of MAS simulations, considering three important
aspects:

1) Qualitative efficiency of the distribution, in term of load-
balancing.

2) Complexity for non-expert to implement MAS models.
3) Constraints applied to models, that might be altered to

run properly in distributed environments.
Repast HPC [6] is probably the most famous MAS simu-

lation platform adapted to High Performance Computing. It
has been used to simulate several millions of agents using up
to 32,768 processes [6]. Concrete models, such as “ChiSIM”
[15], have also been successfully implemented.

In order to distribute a model across computing nodes,
Repast HPC splits the simulated environment into a regular
grid, which size is the number of used processes. Agents
contained in each cell are then executed on the associated
process. To ensure the continuity of the environment, agents
near cell borders, according to agents perception range, are
replicated on neighbor processes. The area corresponding to
replicated agents is called the “Overlapping Zone” (OLZ). This
concept raises several issues:
• Agents in the OLZ can only be updated at the end of

each time step, importing data from their origin process.
So, within a time step, the replicated agent data cannot be
guaranteed to be up to date, since the original data might
be modified from the origin process within the time step.

• Any modifications applied to a replicated agent are lost
at the end of the time step.

It is hence not possible to perform write operations across
processes. Repast HPC still provides some utilities to migrate
agents to other processes to allow agents on the target process
to modify their data, but this implies to design many distribu-
tion related tricks, altering the original model.

FLAME and FLAME GPU [16] are also works of interest
that use a different approach. Agents can only interact using a
“message board”: messages are exchanged at the end of each
time step to trigger some agent behaviors. A relevant aspect of
the project is the abstraction of low-level parallel features to
the user using an XML based formalism, called X-Machines,
to represent agents. However, explicit messages usage still
limits agent interactions across CPU or GPU processes.

Finally, D-MASON [8] is another platform used to distribute
MAS simulations. It provides interesting “framework level”
features that allow a high degree of abstraction of parallel
issues to the user. Distribution and load-balancing is ensured

by a grid based decomposition of the environment. Remote
interactions are based on the “Area of interest” (AOI) concept,
that is very close to RepastHPC’s OLZ. D-MASON prevents
errors generated by write requests in the AOI by completely
forbidding write operations between agents: each agent up-
dates its own internal state at step i only using neighbors data
of step i− 1, what might alter or even prevent the simulation
of some models.

RepastHPC and D-Mason are respectively based on the
existing Repast and MASON platforms, to facilitate the dis-
tributed implementation of models for people already familiar
with the sequential platforms. However they strongly rely on
spatial MAS to automatically distribute MAS models, while
spatial MAS are only a subset of MAS models. Moreover
the grid based distribution is quite limited in terms of load-
balancing. If the distribution of agents on the environment is
not uniform, performances can be significantly altered, since
the workload is not shared equitably among processes. This
can be worsened if agents are expected to move during the
simulation. As illustrated in [15], communication volumes
across processes is also a critical aspect of model distribution,
that is usually not efficiently minimized using grid based
distributions [17].

B. Graph Partitioning

Balancing the workload while minimizing communication
volumes can be achieved using graph and hypergraph partition-
ing algorithms [18], already implemented in C/C++ libraries
such as Zoltan [19]. Dynamic load-balancing is even handled
relatively easily using this kind of partitioning.

Moreover, graph usage might be extended to more generic
problems, since any computation can easily be represented
with graphs [20]. We also believe that graphs can represent
a wider range of MAS models than grid based structures,
considering that dependencies between agents can easily be
represented as edges in a graph. Even grid based environ-
ments can be represented as graphs, considering neighboring
relations as dependencies between regions. In this context,
this work generalizes the “nested-graph” approach developed
in [17] with the adaptable concept of DistributedGraph
for a more generic PDMAS support.

III. THE DYNAMIC DISTRIBUTED GRAPH STRUCTURE

Some computation can conveniently be distributed on a
set of processes when it is represented as a graph, using
existing partitioning algorithms. Moreover, MAS models can
conveniently be represented as graphs, with edges representing
dependencies and communications between agents. Existing
graph partitioning libraries however focus on the computation
of partitions and load-balancing algorithms. Zoltan still pro-
vides utility functions to migrate nodes according to the com-
puted partitions, but do not provide dynamic data continuity
utilities or features to bound tasks to nodes and allow them
to communicate or update their data. The Distributed-
Graph structure, than can be partitioned using those existing



softwares, introduces extra features to support data continuity
and dynamic graph management.

In this section we define the theoretical Distributed-
Graph data structure and its properties, that allows to preserve
data continuity across processes independently of the current
partitioning of the graph. Properties demonstrated in this
section constitute the base of FPMAS, since they prove that
models implemented in FPMAS behaves independently of
the current graph distribution.

A. Definitions

The following definitions are provided to show the generic
usage of the DistributedGraph and how it can interface
with existing graph studies. They are also used to demonstrate
the mathematical robustness of the structure, especially con-
sidering the properties introduced in the next section.

Definition 1. A graph is defined by G such as:
• G = (V,E)
• V = {vi, i ∈ [1, n]} a set of vertices
• E ⊂ V × V a multiset of directed edges

Notice that multiple edges of E are allowed to link the
same two vertices on different layers, a feature that proves to
be useful to efficiently represent different types of interactions
between vertices.

We also introduce the notation (u, v) ⇐⇒ (u, v) or (v, u).
So (u, v) ∈ E actually means (u, v) ∈ E or (v, u) ∈ E.

Definition 2. The neighborhood of a vertex v in the graph
G = (V,E) is defined as {vi ∈ V,∃(v, vi) ∈ E}.

Note that in our context the neighbors set is built from
incoming and outgoing edges, since each vertex can access
them indifferently.

Definition 3. A partition of the graph G is defined by PN
such as:
• PN = {Ui, i ∈ [1, N ], Ui ⊂ V }
•

⋃N
i=1 Ui = V

• Ui ∩ Uj = ∅,∀i, j ∈ [1, N ], i 6= j

In practice, N will be the number of processes on which G
should be distributed and Ui is the subset of vertices assigned
to process i.

Definition 4. The DistributedGraph DGN associated to
a partition PN of G is defined by DGN = {Gi, i ∈ [1, N ]}
such that, ∀i ∈ [1, N ]:
• Gi = (Vi, Ei)
• Vi = Ui ∪ U ′i
• U ′i = {vk ∈ V, vk /∈ Ui,∃vl ∈ Ui, (vk, vl) ∈ E}
• Ei = {(vk, vl) ∈ E, vk ∈ Vi ∧ vl ∈ Vi}

The global DistributedGraph DGN is divided into N
subgraphs Gi. Each subgraph is associated to a process, and
is called the local representation of DGN on the process i.
Each local graph contains all the vertices of the subset Ui
of PN . Those vertices are called the LOCAL vertices of the
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Fig. 1a: Initial Graph example. Each color corresponds to a
subset of P4
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Fig. 1b: Graph Distribution example on 4 processes

process i. We also trivially add LOCAL edges connecting two
LOCAL vertices to the subgraph Gi. Finally, we need to add the
set U ′i of DISTANT vertices to Gi: those vertices correspond
to vertices that are connected to at least one LOCAL vertex
of Ui, but that are associated to another subset Uj of PN .
Such a vertex vk is also called the local representation of vk
on process i. Finally, all DISTANT edges between a LOCAL
vertex of Ui and a DISTANT vertex of U ′i are added to Gi.

On the example provided in figure 1, the initial graph rep-
resents a graph G with an initial partition P4, with subsets Ui
represented as different colors. The graph is then distributed on
4 processes according to the partition. The LOCAL vertices of
each process strictly correspond to a previously defined subset
of P4, represented as plain vertices: each color is associated
to a process. A set of dashed vertices is added, according
to the edges of the initial graph, to preserve each vertex
neighborhood. Such vertices can belong to any other subset
of P4, and so can be located on any other process, to form
the set of DISTANT vertices U ′i . Finally, all edges between
LOCAL vertices or between a LOCAL vertex and a DISTANT
vertex are represented to constitute the local representation Gi
of the distributed graph DGN . Edges between two DISTANT
vertices are not contained in Gi.

B. Properties

Let G = (V,E) be a graph, PN a partition of G and
DGN =

⋃N
i=1Gi the associated distributed graph. The fol-

lowing properties ensure that the global structure of the graph
G is completely preserved when it is transformed into the



DistributedGraph DGN , whatever the partition PN is.
Properties 1 and 3 show that G can be built from DGN , for
any distribution of the graph. Moreover, property 2 shows that
the direct neighborhood of any LOCAL node is preserved for
any graph partition, what is a key feature of FPMAS.

Property 1.
⋃N
i=1 Vi = V

Demonstration. By definition, it is clear that ∀i ∈
[1, N ], Vi = Ui ∪ U ′i ⊂ V so

⋃N
i=1 Vi ⊂ V . Moreover, since

∀i ∈ [1, N ], Ui ⊂ Vi and PN =
⋃N
i=1 Ui = V , V ⊂

⋃N
i=1 Vi

so
⋃N
i=1 Vi = V .

Property 2. ∀v ∈ Ui,∃w ∈ V, e = (v, w) ∈ E =⇒ e ∈ Ei
Demonstration. By definition, w ∈ V so ∃j ∈ [1, N ], w ∈ Uj .
If i = j, v, w ∈ Ui ⊂ Vi so e ∈ Ei. If i 6= j, by construction
w ∈ U ′i ⊂ Vi (and v ∈ U ′j ⊂ Vj) so e ∈ Ei (and e ∈ Ej).1

Property 3.
⋃N
i=1Ei = E

Demonstration. By definition of Ei, it is clear that
⋃N
i=1Ei ⊂

E. Then, let e = (v, w) ∈ E. ∃i, j ∈ [1, N ], v ∈ Ui, w ∈ Uj ,
so according to property 2, e ∈ Ei and e ∈ Ej so E ⊂⋃N
i=1Ei and finally

⋃N
i=1Ei = E.

C. From DistributedGraph to MAS
In practice, we can consider each Agent as the data of a

Node and the behavior of the Agent as a Task attached to
this Node.

The previous properties allow the FPMAS framework to
completely abstract the distribution of a MAS simulation,
since:

1) The complete model is preserved, whatever the distribu-
tion is: according to properties 1 and 3, all agents and
links are preserved for any graph partition.

2) According to property 2, the neighborhood of each agent
is preserved.

Let’s consider a task t bound to a LOCAL node n. The
task t is assumed to be executed on the process which owns
n, and can operate on any node linked to n. Since LOCAL
and DISTANT nodes share the same software interface that
provide read / write features, the behavior of each agent
can be implemented independently of the current location of
the neighbors, abstracting any distribution related issues. It
is the responsability of the underlying implementation of the
interface — that does not need to be known by the final user
— to decide how operations must be handled depending on
the LOCAL or DISTANT state of each neighbor.

In consequence, the DistributedGraph structure al-
lows agents to interact with other agents of their neighborhood
independently of the graph distribution: agents are allowed
to interact across processes.

Notice that the concept of DISTANT nodes at the scale
of each process can be considered as a generalization of the
Repast HPC’s OLZ or D-MASON’s AOI.

1v is represented as a DISTANT vertex on process j, and w is represented
as a DISTANT vertex on process k. In consequence, e is represented as a
DISTANT edge on process j and k.

IV. FPMAS: A DISTRIBUTED MAS SIMULATION
PLATFORM

FPMAS is an open source C++ implementation2 of a
Distributed MAS Simulation platform based on the Dis-
tributedGraph structure, to which synchronization and
MAS simulation facilities have been added.

A. Presentation

The FPMAS platform must be thought as an execution layer
on top of which well-known and existing simulation tools,
such as GAMA [12] or SARL [13], might be interfaced and
adapted to provide high-level modeling techniques to the user,
while completely abstracting distribution related issues. The
objective of the project is not to provide a new MAS modeling
standard. The corresponding architecture is presented figure 2.

The Low-Level Layer contains distribution specific soft-
wares and libraries in charge of the program distribution and
other parallel features, such as MPI or OpenMP. FPMAS then
abstracts those features thanks to a synchronized and dynamic
distributed graph structure, on which existing MAS Modeling
Toolkits can interface to distribute agent models. The final
user can implement agent-based models using simplified tools,
without struggling with distribution issues, still allowing him
to run his model on HPC resources.

The development of the platform is based on the design
of interfaces (dependency injection) and the usage of unit
tests and mocks (test-driven development) allowing software
components design with a strict separation of concerns [21].
In consequence, each component can be easily re-implemented
and switched without any alteration of the global system.
Moreover, in some cases, multiple implementations of the
same interface can be provided, or even user defined, to easily
adapt and optimize a component for a given project, without

2https://github.com/FPMAS
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Fig. 2: Global FPMAS software stack



10..*

1 0..*

DistributedGraph

+ synchronize(): void
+ distribute(p: Partition): void
+ balance(lb: LoadBalancing&): void

+ buildNode(data: T&): Node*
+ removeNode(node: Node*): void
+ link(src: Node*, tgt: Node*): Edge*
+ unlink(edge: Edge*): void

DistributedNode

+ getWeight(): float

+ getOutgoingEdges():
List<Edge*>

+ getIncomingEdges():
List<Edge*>

+ state(): LocationState
+ location(): ProcessRank

DistributedEdge

+ getWeight(): float

+ getSourceNode(): Node*
+ getTargetNode(): Node*

+ state(): LocationState

�enum�
LocationState

LOCAL
DISTANT�interface�

SynchronizationMode

�interface�
DataSync

+ synchronize(): void

�interface�
Mutex

+ read(): const T&
+ releaseRead(): void
+ acquire(): T&
+ releaseAcquire(): void

�interface�
SyncLinker

+ synchronize(): void
+ link(src: Node*, tgt: Node*): Edge*
+ unlink(edge: Edge*): void
+ removeNode(node: Node*): void

Fig. 3: FPMAS Graph Synchronization class diagram

altering the whole system. This might be very effective in
HPC, to target and optimize components where performance
bottlenecks are identified. Such a design is also very useful to
reach a decent level of abstraction for the final user: since
generic interfaces do not depend on their implementation,
each feature provided by the API is straightforward and
concise. The LoadBalancing interface is notably com-
pletely independent from graph distribution or synchroniza-
tion features, what allows to easily interface with any exist-
ing load-balancing algorithms. FPMAS currently provides a
LoadBalancing implementation based on Zoltan.

The core classes responsible for the FPMAS graph synchro-
nization are represented on figure 3 and explained in the next
sections.

B. Graph Synchronization

The synchronization policy is a key point in a distributed
simulation since it may have a great impact on performance
and simulation results. Moreover different simulations might
have different synchronization needs, depending on their con-
currency properties. For this reason, FPMAS introduces graph
synchronization techniques to support two types of operations
on the DistributedGraph:

• Data operations: allow to perform concurrent read / write
requests on nodes’ data.

• Dynamic graph management operations: allow to build
and remove nodes and edges at runtime from any process.

Synchronization policies are enforced using the Synchro-
nizationMode interface, compound of three generic soft-
ware components:

• Mutex: are used to manage access to each node’s data.
• DataSync: synchronizes data operations.
• SyncLinker: synchronizes dynamic graph manage-

ment operations.

As detailed in the next sections, the specification of those
components is voluntarily as much generic as possible to
support a wide range of synchronization modes, through dif-
ferent implementations of each component. This was notably
required to support at least two synchronization modes:

• GhostMode: Corresponds to the RepastHPC OLZ syn-
chronization, without writing between processes.

• HardSyncMode: An FPMAS specific synchronization
mode, that allows read / write operations between
processes.

C. Mutex

A Mutex instance is associated to each Node, LOCAL and
DISTANT, and is used to access node’s data.
Mutex methods are available to the user as a generic

interface: abstract read() and acquire() operations can
be performed, independently of the current Synchroniza-
tionMode. The actual behavior is determined once a Syn-
chronizationMode implementation is injected, i.e. pro-
vided by the user as a DistributedGraph parameter.

No modification can be performed on read data. However,
it is possible to call any method on acquired data, including
ones modifying the data. In any case, each operation must be
released.

Notice that how each operation is handled depends on the
implemented SynchronizationMode. In consequence,
read and acquired data are not guaranteed to be up to
date. Write operations on DISTANT nodes and concurrency
management are not required at the generic Mutex component
level. Some implementation might forbid DISTANT write
operations for performance purpose for example.

D. DataSync and SyncLinker

The abstract DataSync and SyncLinker synchro-
nize() methods are used by the DistributedGraph
synchronization and distribution methods to implement the
simulation steps.

Each SyncLinker operation can apply to LOCAL and
DISTANT nodes, and must be committed at the next
synchronize() call, whatever the implemented Syn-
chronizationMode is. Those methods are not supposed
to be called directly by the user, but are implicitly used by the
corresponding high-level DistributedGraph methods.

E. Operations scope

Considering a task t bound to node n, t can only apply the
Mutex and SyncLinker operations to nodes located in the
neighborhood of n, including n. Considering the theoretical
properties of Section III, this ensures that the execution of any
task t is independent from the graph distribution, i.e. from the
location of nodes in the neighborhood of n.

F. Synchronization Modes

FPMAS currently supports two synchronization modes:
GhostMode and HardSyncMode. More synchronization
modes might be defined in the future for performance pur-
pose, to enable multi-threading or to support model specific
requirements for example.

In any case, the final user is not required to deal with Syn-
chronizationMode features and implementation: only
generic read() or acquire() operations are performed.
The SynchronizationMode is just a meta-parameter



specified at the model scale. This allows for example to pro-
duce robust and reliable benchmarks, since the synchronization
techniques and so the global execution logic can be changed
without modifying the model implementation. However,
it might be interesting for the user to know the limitations
and basic behaviors of each SynchronizationMode to
understand impacts on results and performances.

1) Ghost Mode: The GhostMode synchronization mode
directly corresponds to the synchronization performed by
Repast HPC:
• DISTANT nodes’ data returned by read() and ac-
quire() methods are only updated at each Data-
Sync::synchronize() call, which means that their
state is that of the previous step (ghost).

• Modifications performed on acquired data of DISTANT
nodes are not committed to the distant processes.

• link(), unlink() and removeNode() operations
are committed at each SyncLinker::synchro-
nize() call.

2) Hard Sync Mode: The HardSyncMode synchroniza-
tion is a major improvement in the field of distributed MAS
simulation, since it enables read and acquire operations across
processes, with a true concurrency management. Each time
read() and acquire() calls are performed on a DISTANT
node, up to date data is fetched from the origin process and
locks / shared locks are applied according to the first readers-
writers problem [22]. Moreover, each method blocks until data
is available, even if data is LOCAL: a process might wait for
other processes to release its own data before it can access it
itself. link(), unlink() and removeNode() operations
are also committed on the fly.
DataSync and SyncLinker synchronize() meth-

ods implement a TerminationAlgorithm [23] to wait
until all requests are handled.

V. EXPERIMENTATIONS

The following experimentations demonstrate the usage of
the FPMAS library to implement a simple graph based MAS
model even if some features are still required to easily handle
spatial MAS. The example has voluntarily been designed to
require write operations across processes to run properly, what
is allowed by FPMAS but would be impossible with other
classical platforms. A brief study about performances is also
introduced.

Experimentations was performed on the computing facilities
of the Mesocentre de calcul de Franche-Comte3, and represent
more than 9000 hours of cumulated CPU time. It is interesting
to note that no deadlock, memory leaks or other issues
were observed during all the simulation time, for the two
synchronization modes. Such a robustness is clearly due to the
strict unit testing policy under which the platform is developed.

The complete implementation of the example is available
on GitHub4.

3http://meso.univ-fcomte.fr/
4https://github.com/FPMAS/fpmas-sir

A. SIR model

Examples presented in this section are based on the
“metapop” model introduced in [24]. The model represents
the evolution of a virus in a set of cities, based on the SIR
model.

A given number of City agents are initiated as nodes of the
graph. Cities are implicitly and uniformly distributed in a 2D
space. Each city is then connected to its k nearest neighbors
to build a clustered graph, so that the number of outgoing
edges of each city follows a Poisson distribution of parameter
λ = K, parameter of the model.

The population of each city is represented by three values:
• S (susceptible): number of people that might be infected

by the virus.
• I (infected): number of people currently infected, who

can infect susceptible individuals.
• R (removed): number of people removed from the in-

fected people (by recovery or by death). Removed people
cannot be infected twice.

The total population of the city is hence N = S + I +R.
Each city uniformly sends a proportion g = 0.12 of its

population to its neighbors at each time step.
A Disease agent is connected to each City. Its purpose

is to update the city population according to the following
equations:

dS
dt = −βISN
dI
dt =

βIS
N − αI

dR
dt = αI

α and β parameters are associated to each Disease in-
stance. More particularly, α represents the recovery rate and β
characterizes the virus transmission rate among the population.
In our experimentation, we use the constants α = 0.2 and
β = 0.5.

At each time step, each Disease agent writes population
updates to its connected City, solving the previous differen-
tial equation system using the Range-Kutta 4 method.

A time step of the model is described as follow:
1) City agents execution (performs population migra-

tions)
2) Global graph synchronization (ensures all migrations

have been performed)
3) Disease agents execution (updates population of each

city)
4) Global graph synchronization (ensures all populations

are updated)

B. GhostMode vs. HardSyncMode

An important aspect of the model is that each type of
agent is performing write operations on its neighbors. More
particularly, cities are concurrently writing to their neighbors:
while a city is migrating its own population to others, others
are migrating population to it, at each time step.

The definition of the model implies that the global popula-
tion is constant. But depending on the synchronization mode,
write operations performed on cities contained in DISTANT



Fig. 4: Results obtained by the simulation of the SIR model
with 100,000 cities and K=12, on 64 processes

nodes might not be reported to the origin process, what would
cause a diminution of the global population. Notice that this
behavior corresponds to a default implementation performed
with Repast HPC, and also to the FPMAS GhostMode. As a
reminder, it is possible to switch the FPMAS synchronization
mode from GhostMode to HardSyncMode using a single
meta-parameter, without altering the implementation of agents.
The differences of results, when the model is run with 100,000
cities and a relatively high connectivity degree K = 12 on 64
processes are presented on figure 4.

It is clear that results obtained in GhostMode are signifi-
cantly altered. Indeed, each city has a high probability to be
linked to at least one DISTANT city, what causes population
“leaks” from this city at each time step.

On the contrary, the HardSyncMode produces results as
robust as the sequential execution, compared to simulations
executed on one process, and to the well known SIR model
result curves. Each of the 100,000 cities are concurrently
writing to 12 other cities in average, potentially on DISTANT
nodes, executed on 64 parallel processes, but every single write
operation is performed, without any race condition or dead-
lock issues. Moreover, no distribution related problems was
considered from the user point of view: the only requirement
is to acquire() the city on which data is written.

C. Performances

Here we present some brief performance results, as a proof
of concept. Execution times for different values of K are
presented on figure 5. Values presented are average execution
times of 5 executions: observed variations between executions
are too small to be represented as box plots.

The test model presents some great speed ups from 1 to
16 processes, but does not improve from 16 to 64 processes,
due to the computation / communication ratio. For 10,000
cities, what is relatively small, the communication cost is
such that execution time raises for more than 16 processes
in GhostMode. Indeed, since the graph is clustered, the
automatic load-balancing algorithm efficiently distribute the
model over available processes, but increasing the number of
processes inevitably raises the time consuming communication
volumes.

Experiments led with more constrained unclustered graph
shapes even show that the distribution of the model might
produce larger global execution times than sequential execu-
tions, due to high communication volumes between processes.
Some profiling analysis might help to identify the real com-
munication costs.

It is also interesting to note that even if the GhostMode
is more efficient than HardSyncMode for small number of
processes, the curves tend to converge for large number of
processes, what might imply that allowing concurrent write
requests across processes does not necessarily produce a
significant loss of performances.

In any case, those preliminary results clearly show the need
for a more complete and significant FPMAS performance
benchmark to compare synchronization modes on several
models according to different agent dependencies levels.

Fig. 5: Execution times for the SIR model, using a clustered
graph

VI. CONCLUSION

In this work, we introduce the concept of a Distrib-
utedGraph structure and demonstrate some useful properties



that allow the efficient and implicit distribution of a graph
over a set of processes, without losing any information about
the original graph. Such a distribution allows tasks bound to
nodes to perform read and write operations on data of neighbor
nodes, as well as dynamic graph management operations such
as link, unlink, node creation and removal, independently
of the underlying distribution of the graph. This allows to
completely abstract the distribution process to the final user,
and to interface with any automatic graph load-balancing
algorithm. Some generic Synchronization modes have been
introduced. The HardSyncMode notably allows concurrent
write requests across processes, what is a feature provided by
none of the surveyed distributed MAS platforms. Experimen-
tations based on a SIR model show the importance of such
distant write operations on the model results. Performance
analysis was also led, and suggest further studies to analyze
distribution limits on some kind of MAS simulations as well
as on the influence of synchronization modes. Future works
also includes a better support for a generic spatial MAS, to
reach a new level of abstraction of the underlying graph and
to allow an easier interfacing with existing MAS simulation
platforms.
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