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Abstract—Quality control is an essential operation for an
automotive company like Faurecia. A vast number of references
is produced, and many regions of interest need to be checked.
For that, quality control is necessary and should be applied
to every reference part. Visual inspection is achieved by the
operator who checks each part manually. After several checks per
day, the operator gets tired and thus may misqualify a welding
seam or a component control. To avoid that, Faurecia is trying
to integrate automatic quality control to obtain better overall
equipment effectiveness (OEE), especially to avoid performance
degradation over the operator’s shift. Researches demonstrate the
ability of a neural network to reach high precision in detecting
object presence or absence. We have been able to achieve an
accuracy of 99% with ResNet-50. Apart from accuracy, the
other performance matrices used in this work are reliability
and cycle time. Our contribution will help the current state of
manufacturing by offering an automatic visual inspection, which
will lead to other innovative projects in the automotive industry.

Index Terms—Deep Learning , Image Classification , ResNet-
50 , Convolutional Neural Network , Industry Automation.

I. INTRODUCTION

Faurecia is a company that develops and produces auto-
motive seating, interiors, and emissions control technologies.
Ensuring control guarantees production quality that meets
the requirements of the client. Thereby, quality control is
an essential operation for an automotive company. A vast
number of references is produced, and dimensions of the
same part may have dissimilarities. For that, quality control
is necessary and should be applied to every reference part.
Several technologies are used such as: visual & geometric
control, leak test, and many other functional tests. Today,
these technologies are expensive from an investment point
of view, tools, and human resources. Visual control is done
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by the operator who checks each part manually, making the
reliability highly improvable. At first, the automation of the
inspection can be carried out by different methods: camera,
thermography, laser scanning, and in conjunction with artificial
intelligence techniques [1], [2]. Then, it will be necessary
to correlate these quality results with different parameters
(processing and environmental) to reduce non-conformities.
The main goal is to provide automatic control of the manufac-
tured products and overcome the need for human intervention.
Will the automation of the visual inspection improve the
reliability in detecting defective parts at Faurecia? Will it
help reducing cycle time in the production line? Thereby, this
project needs to detect the presence or the absence of one
component in a vehicle’s part. This quality control needs to
be done primarily to assembling the exterior part of the car
because once these two parts are joined, the component is not
accessible anymore.
In order to reach high precision in detecting presence or
absence, we need an adequate feature extractor that would
transform raw data collected from the plant into a suitable
feature vector.
This paper is organized as follows. Section II introduces
the problem statement at Faurecia. Section III presents an
overview of the existing work done in the area of image
classification. In Section IV, the proposed supervised method
for image classification is explained. The implementation
details are contained in Section V, while in Section VI, the
analysis of the experimental results is presented. The last
section includes our concluding remarks.

II. PROBLEM STATEMENT

A. Industry automation

The process of automated resources making decisions
without any human involvement is what we call automated



decision-making. One of the crucial reasons for automating
an industrial operation is worker safety. Heavy machinery,
running at hot temperatures, and sharp objects increase the
hazards of the factory environment. Another benefit of au-
tomation is freedom from fatigue. Machines can produce the
same way the same part all day long without losing quality
over time. Industrial automation does impact other parameters
such as security, data integrity, interoperability, scalability,
reliability, availability, and many others. Companies took a
giant stride forward on financial and technological aspects
when investing in automation of manufacturing.
In agriculture [3], wood industry [4], robotic process [5],
and many other fields, automation has proved its importance
in accelerating decision making. Automotive companies are
also working on this automation and add a particular focus
on quality automation to secure their processes. Instead of
using the operator for checking the reference part manually,
an automatic system needs to be launched in order to test its
feasibility and efficiency.

B. Reference Part

Figure 1 is an example of a sub-assembly that takes place in
the vehicle. The presence or absence of multiple screws needs
to be checked. It contains 10 regions of interest. In the figure,
the regions of interest are presented with their right screws.

The component control should be done while taking into
consideration the different lighting conditions of the plant.

Fig. 1. Sub-assembly part to be checked

As described in figure 2, three types of screws can be used
for this component control: flexitol, rivstud and rivnut. The
same type of screw may be the right one for a specific region
of interest and the wrong screw for another region. Three
possibilities can show up:

1) the right screw is present in the right region of interest.
2) the screw is missing.
3) there is a screw, but not the one we expected. This case

is considered as NOT OK (NOK).

Fig. 2. Types of possible screws

For the first possibility, the part is OK. It can continue
its cycle on the production line. For the second and third
possibilities, the part is NOK. It should be sent to rework.
The distribution of these screws is presented in Table I.

TABLE I
SCREWS DISTRIBUTION THROUGHOUT THE 10 REGIONS

Region Right screw
1 Rivstud
2 Rivstud
3 Rivnut
4 Rivnut
5 Rivnut
6 Flexitol
7 Rivnut
8 Flexitol
9 Rivnut
10 Flexitol

III. RELATED WORKS

A. CNN Applications

Traditional image processing techniques such as Structural
Similarity Index (SSIM) or Mean Squared Error (MSE) may
detect the difference between two images. The problem with
these methods is their robustness when changing lighting
conditions.
Whereas, machine learning models, and specifically deep
learning models have achieved promising results. Used in the
classification of images to prevent any bad decision making,
deep learning’s key aspect is that these feature layers are
not designed by human engineers. One of the most popular
deep learning architectures is the convolutional neural network
(CNN). It has proved to be very efficient in extracting deep
features [1], [6], [7]. The architecture of CNN based on a
succession of layers, reduces images without losing the im-
portant features, which leads to getting good prediction. Each
layer transforms the input volume to an output volume. CNN
performs well on a series of visual applications and tasks,
such as image classification [8]–[10], image detection [11]–
[13] and image denoising [14]–[16]. Detection of the presence
or absence of multiple screws is an image classification task
that can be solved using CNNs. Many deep learning models
can be used such as DenseNet, EfficientNet, and many others.
We chose ResNet-50 for it has shown promising results when



applied in an industrial context, that’s why we implemented
such a feature extractor using a deep network.

B. ResNet Applications

Mangalam et al. [17] have invested in ResNet-50 for bird
call recognition. Spectrograms (visual features) extracted from
the bird calls were used as input and were able to achieve 60
to 72% of birds call recognition.
Rezende et al. [18] applied ResNet-50 to classify malicious
software. Malware samples were represented as byteplot
grayscale images as the input layer. The experimental results
reached an accuracy of 98.62% for classifying malware fam-
ilies.
While Theckedath et al. [19] investigated in 3 architectures:
VGG16, ResNet-50 and SE-ResNet50. This method reuses
weights of already developed models to train a CNN and
detects 7 basic affect states. The evaluation shows that ResNet-
50 outperforms other networks reaching a validation accuracy
of 99.47%.
Wen et al. [2] is an example where ResNet-50 is applied in the
manufacturing domain. The dataset includes bearing damage,
motor bearing, and self-priming centrifugal pump dataset. By
adding one layer in order to transfer time-domain fault signals
to RGB images format as input for ResNet-50, the prediction
accuracies reach around 99%.
Our approach for sub-assembling family classification is as-
sumed from a CNN model based on the Residual Network
architecture with 50 layers (ResNet-50) [20], [21].

IV. METHODS

ResNet-50 has 48 convolution layers along with one Aver-
age Pool layer and one Fully Connected layer. ResNet-50 uses
shortcut connections which ensures that the higher layer will
perform at least as good as the lower layer, and not worse.
As input, we have the image tensor. Each three convolution
layers forms a block called bottleneck block. The input of
each block is added to the next block. This is what we call a
shortcut connection (or skip connection). Figure 3 illustrates
how layers communicate with each other.
The dotted lines mean that we need to change the dimension
of the input; for example, if the number of channels of the
previous layer is equal to 256 and the next one is equal to
512, we need to change the number of channels of the previous
basic block in order to be equal to the next block. In this case,
it should be multiplied by 2. Finally, we apply the average
pooling and perform fully connected layers. Average pooling
means downsampling the feature map (output of one filter
applied to the previous layer) by calculating the average of
each patch of the feature map (2x2 square). Then, the fully
connected layer flattens the output of the average pooling,
going through its backpropagation process in order to define
the most accurate weights.
Let’s consider each and every block in detail: each block takes
an input to perform convolution, produces an output, and then
activates the output. It will repeat this same procedure for
the second and the third block. On the other hand, for the

Fig. 3. Skip connection and bottleneck in ResNet-50 Architecture

second and third block, to activate the output, we add the
same input, and then we activate the output. So, instead of
adding convolution layers to improve accuracy, ResNet adds,
skip connections.
The architecture of the bottleneck block is as follows:

1) a 1x1 convolution which will change the channels.
2) the channel is constant but height and width change

because the filter size is different than 1.
3) the number of channels is expanded by multiplying it

by 4.

V. IMPLEMENTATION DETAILS

A. Data Collection

All images have been collected in the plant during multiple
shifts to cover different lighting conditions. The camera used
is an 18MP camera, positioned at the top of the reference part
with a distance of 500mm. Each global image is cropped in
10 small images in order to cover all 10 regions of interest.
The coordinates of each region of interest were defined prior
to cropping, guaranteeing that the crop covers the 3 different
type of screws. Achieving 1920 global images, the data set
contains 19200 cropped images. 70% of the images collected
were randomly selected for the model training, 20% were used
for model validation, and the remaining 10% were used to test
the efficiency of the model.

B. Analysis

Based on the collected data, some regions should have the
same type of component and look the same for the camera.



As in Table I, region 1 and region 2 should have a rivstud as
their right component. These 2 regions look the same for the
camera as in Figure 1.
Other regions have the same right component (as region 3 and
region 7 in Table I), but look totally different for the camera as
in Figure 1. This helps in regrouping some regions which will
allow in reassembling the most possible number of images in
a specific class. These common areas are grouped in 4 zones:

1) Zone 1: contains regions 1 and 2.
2) Zone 2: contains regions 3, 4 and 5.
3) Zone 3: contains regions 6, 8 and 10.
4) Zone 4: contains regions 7 and 9.

Fig. 4. Sample of each class in the trained model

As in Figure 4, each zone is divided into 4 different classes
according to the different possible cases. For example, images
from Zone 1 are split as follow: zone1-flexitol, zone1-rivstud,
zone1-rivnut, zone1-missing. The class ‘zone1-missing’ repre-
sents the images where none of the components is present in
Zone 1.

C. Experimental Environment

The experimental environment is powered by Intel i5 CPU
with 64-bit Windows 10 system, a memory of 8 GB, and 2.30
GHz basic frequency. The software programming environment
is python. It is based on Keras framework, having Tensorflow
and Theano as backend.
In the image classification model, Adam is selected as an
optimizer of the CNN. The learning rate is set to 10−5.
Concerning the ResNet-50 weights, a pre-trained version of the
network trained with the ImageNet database has been loaded.
The input of the CNN is a 4D array. It has a shape of
(batch size, height, width, depth). The batch size (equal to
32 in our case) defines the number of samples that will
be propagated through the network. The other parameters
represent the height, width, and depth of the image. In our
case, the input has the following values (32, 224, 224, 3). The
model has been trained with 100 epochs. Each epoch passes
the entire data set through the neural network, only once.

TABLE II
ACCURACY’S COMPARISON BETWEEN HUMAN-BEING CHECK AND

RESNET-50

Component type Human-being check(%) ResNet50-offline(%)
flexitol 98 99.999
rivstud 97 99.998
rivnut 98 99.999
missing 93 99.999

VI. EXPERIMENTAL RESULTS

A. Accuracy Improvements

As in Table II, the accuracy reaches 99% with deep learning.
The software is able to detect not only the presence or absence
of the component but also the presence of a screw of the wrong
type.

As in Table II, comparing the results between the human-
being check and the autonomous control of ResNet, we realize
an upgrade of the precision from 96.5% to 99% respectively.
These results show that replacing the human-being check by
an automatic visual inspection system provide better accuracy.

B. Cycle Time and Reliability Improvements

As for the cycle time, we chose randomly 10 operators
(having 5 to 25 years of experience) and we gave them an
OK part (containing all 10 regions with their right screws). It
is easier for the operator to make its visual inspection than
an NOK part. Moreover, we launched this same part with
our neural network. The test was repeated 10 times. As in
Table III, we realize that the average of the time spent by an
operator to check this part varies between 6, 7 and 8 seconds,
while the average of the neural network is around 5 seconds.
The neural network provides a stable performance, it won’t be
affected during the day. Its architecture needs 0.4 seconds per
region and a total of 1 second to crop all regions.

TABLE III
CYCLE TIME’S COMPARISON BETWEEN HUMAN-BEING CHECK AND

RESNET50

Time in seconds Test1 Test2 Test3 Test4 Test5 Average
Operator1 9.24 8.40 8.67 9.45 8.22 8.796
Operator2 9.85 8.63 8.19 9.03 8.15 8.77
Operator3 8.40 7.29 7.01 7.46 7.58 7.548
Operator4 7.56 7.77 7.65 6.54 7.18 7.34
Operator5 8.74 9.52 7.20 7.33 8.42 8.242
Operator6 6.48 5.88 6.39 5.91 6.02 6.136
Operator7 8.85 9.32 8.66 9.27 8.33 8.886
Operator8 8.58 9.08 9.25 8.85 8.19 8.79
Operator9 8.72 7.48 7.56 7.37 8.11 7.848
Operator10 7.36 7.82 8.66 7.44 8.23 7.902
ResNet-50 5.21 5.42 5.08 5.28 5.39 5.276

To evaluate a NOK part, the operator will have for each
region of interest 4 different possibilities that he should take
into consideration. While we estimate that an operator will
need more time to evaluate a NOK part, we are sure that the
ResNet-50 will keep its 5 seconds. Cycle time is then improved
with the automation of the visual inspection.



In addition to these two parameters, we must take into
account the overall equipment effectiveness (OEE). Its cal-
culation is based on three factors:

1) Availability: it concerns the events that stopped planned
production long enough, and needs to track a reason for
being down.

2) Performance: it concerns anything that causes the in-
dustrial process to run at less than the maximum possible
speed when it is launched.

3) Quality: it considers Good Parts as parts that success-
fully pass through the manufacturing process the first
time without needing any rework. By that, it takes into
account all manufactured parts that need rework. It is
calculated as the ratio of Good Count to Total Count.

With our proposed model, OEE is clearly enhanced. Firstly
in terms of performance: reducing the number of operators for
the visual inspection increases the reliability. This is due to
the fact that the algorithm will avoid performance degradation
over the operator’s shift. On the other hand, better quality is
reached: by detecting defective parts at an early stage before
being manufactured. This increases the percentage of good
parts passing through the manufacturing process for the first
time without needing any rework.
Controlling presence or absence in automotive industry is not
needed for screws only, many topics need quality control such
as welding, spatters, holes, and many others. The proposed
solution can be tested on these different topics and may be
applied safely in plants.

VII. CONCLUSION

This paper proposes a method based on deep learning to
control component presence. The features of the dataset are
extracted by ResNet-50, which fully achieves the ability to
extract images’ features. The results show that the maximum
accuracy of the proposed method is 99%, which can meet
the requirements for visual inspection in the production line.
The images collected as data set for classification have been
all carried out offline. After the required accuracy is reached,
new images were taken in the actual industrial production.
The model tested on these images reached 99%. Thereby,
the effectiveness and practicability of the proposed model
are verified by the plant. Results show that the automation
of quality control in the automotive industry does improve
reliability, accuracy, and cycle time.
In our future work, we plan to detect object movement and
being able to readjust the camera’s angle in order to have
the most flexible and robust system. In other words, a self-
adjusting system regardless of environmental disturbances.
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I. M. Oliver, “Medical image detection using deep learning,” in Deep
Learning in Healthcare. Springer, 2020, pp. 3–16.

[12] F. Sultana, A. Sufian, and P. Dutta, “A review of object detection models
based on convolutional neural network,” in Intelligent Computing: Image
Processing Based Applications. Springer, 2020, pp. 1–16.

[13] M. Akil, Y. Elloumi, and R. Kachouri, “Detection of retinal abnormal-
ities in fundus image using cnn deep learning networks,” 2020.

[14] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided cnn
for image denoising,” Neural Networks, vol. 124, pp. 117–129, 2020.

[15] C. Tian, Y. Xu, and W. Zuo, “Image denoising using deep cnn with
batch renormalization,” Neural Networks, vol. 121, pp. 461–473, 2020.

[16] S. Ghose, N. Singh, and P. Singh, “Image denoising using deep learning:
Convolutional neural network,” in 2020 10th International Conference
on Cloud Computing, Data Science & Engineering (Confluence). IEEE,
2020, pp. 511–517.

[17] M. Sankupellay and D. Konovalov, “Bird call recognition using deep
convolutional neural network resnet-50,” in Proc. ACOUSTICS, vol. 7,
2018, pp. 1–8.

[18] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus,
“Malicious software classification using transfer learning of resnet-50
deep neural network,” in 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE, 2017, pp. 1011–
1014.

[19] D. Theckedath and R. Sedamkar, “Detecting affect states using vgg16,
resnet50 and se-resnet50 networks,” SN Computer Science, vol. 1, no. 2,
pp. 1–7, 2020.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.


