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Abstract Modular robots are automated modules that can change their morphol-
ogy self-sufficiently and progressively for control or reconfiguration purposes. Self-
reconfiguration is a very challenging problem in modular robots systems. Existing
algorithms are complex and not suitable for low resources devices. In this paper,
we propose a parallel and fully distributed cluster-based algorithm to convert a set
of blocks/modules in a new geometrical configuration. We proposed a cluster based
self-reconfiguration algorithm. The main idea is to study the impact of clustering on
the self-reconfiguration problem. The modules in each cluster remain together and
try to move in order to find the final configuration. Based on this concept, our algo-
rithm operates in parallel in each cluster to fasten reconfiguration process and ulti-
mately the set of blocks will reach the desirable shape. We evaluate our algorithm on
the centimeter-scale sliding blocks, developed in the Smart Blocks project in a simu-
lator showing the entire reconfiguration process in real-time. We show the effective-
ness of our algorithm, especially the benefits of clustering in self-reconfiguration
task by comparing performance of both approaches (with and without clustering)
while varying the number of clusters.

1 INTRODUCTION

Programmable matter consists of tactile materials that have physical form dynam-
ically modifiable. They are able to transform on its own, depending on program
controlled. It is essentially composed from materials and components that have ca-
pabilities to be programmed and change their shape property on demand. The main
approach to implement programmable matter is to build a huge self-reconfigurable
robot consisting of a bunch of modules. Each of these modules has some com-
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putation, sensing and communication capabilities. The modules can detach, move
independently and connect to each other to form new configurations.

Modular robots are distributed systems made up of identical connected mod-
ules which are able to coordinate together in order to perform complex tasks that
can revolutionize everything starting from surgical applications, to transportation
applications or space exploration [1]. The main challenge in modular robots is self-
reconfiguration problem which enables the modules to modify their structure from
one arbitrary initial shape to another (goal shape) [15]. This problem is very chal-
lenging because of the very high number of possible configurations and a fixed set
of rules does not work for all possible situations. It poses several challenges. Firstly,
this process is very slow due to the limited number of modules which can move si-
multaneously without interfering which results in limited parallel possible motions
and other system constraints. Secondly, self-reconfiguration requires a coordination
between modules during motion in order to avoid any collision by adapting a set
of rules that does not work for all situations since some motions requires cooper-
ation outfaced by motion algorithms [11]. However,existing solutions for the self-
reconfiguration problem propose several algorithms using search-based and control-
based techniques [14, 5].The basic concept is to search for a goal configuration in
the modular robots configuration space. These solutions are still very complex and
not suitable for modular robots with low computation and energetic resources. One
solution to fasten self-reconfiguration process is clustering. Grouping modules into
clusters and carrying out some tasks in cluster-based approaches can improve the
effectiveness in terms of execution time and communication cost. Therefore, the
partitioning of the modules into clusters and the parallel displacement of the mod-
ules in each partition will accelerate the convergence of the modules to the goal
shape [2]. In fact, nodes would care only for executing tasks at intra-cluster level
and will not be affected by inter-cluster changes, thus reducing scope of inter-cluster
interactions. Clustering can yield improvements to the execution of tasks related to
modular robots’ programmable matter such as self-reconfiguration where modules
forming specific parts of the initial shape can form one cluster. Therefore, it re-
quires less reconfiguration adjustments to attain a more or less similar parts of the
goal shape. Hence, here lies the importance and effectiveness of clustering.

Our objective in this paper is to show the impact and the efficiency of clustering
and parallelization on the self-reconfiguration problem. We propose a cluster-based
distributed and parallel self-reconfiguration algorithm that scales to large modular
robot systems in order to speed up the reconfiguration of the modular robot systems
from an initial shape to a goal one. Our aim in this paper is not to propose a clus-
tering technique, but to provide a new cluster-based distributed self-reconfiguration
algorithm while using our clustering techniques as described in [2]. The number of
clusters is specified based on the goal configuration and based on the density cut al-
gorithm [13]. The proposed algorithm consists in sliding the not well-placed robots
in the interior the current configuration in order to fill target free cells. For each
not well-placed robot, the method compute a gradient distance from free goal cells,
then construct a path for each not well-placed robot to a free cell which does not
cross the path of another robot, and then moves successively horizontal and vertical
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lines of robots from the end to the begin of the path. These steps are repeated un-
til all the goal cells are filled. The remainder of this paper is organized as follows.
In Section 2 we provide a short description of the related work. Section 3 presents
the system model and some assumptions. Section 4 provides the details of our self-
reconfiguration algorithm. The experimental results are presented in Section 5 and
Section 6 concludes our paper.

2 RELATED WORKS

In this paper, we consider modular self-reconfigurable robot made from centimeter-
size cubes (blocks) able to move [10]. Works with sliding cubes was widely used in
the literature [6, 7, 8]. In [6], it is showed that using homogeneous Limited Sliding-
Cube modules could be performed in quadratic time using meta-modules and tun-
neling motions. The method’s advantage is a high degree of motion parallelism. It
was then further investigated in [7] and a novel approach was proposed for hetero-
geneous modules. Moreover, a tunneling-based reconfiguration algorithm was later
proposed in [8] to remove the limitation on the arrangement of start and goal con-
figurations by employing tunneling techniques.

Self-reconfiguration is one of the most critical challenges for modular robots. It
may seem easy to solve, however, it is one of the most challenging issues. Several
solutions have been proposed in the literature and there is no general solution has
been appeared yet. For instance, in [4] the authors propose a self-reconfiguration
in two dimensions. They propose the idea of module substraction, where unwanted
modules remove themselves from the system without external intervention to attend
the desired configuration. The algorithm is composed of two parts, sequential one
for unwanted modules selection and parallel one for modules movements. The al-
gorithm has quadratic complexity and does not work in all situations especially in
hollow structures. In [11], the authors propose a distributed algorithm for reconfig-
uration of lattice-based modular robots systems made from the same cubic mod-
ules used in this paper. This iterative algorithm can transform various large modular
robots, beginning from a filled shape towards a target one by using motion rules and
creating a train of modules made up of the border of the configuration, which will be
moved gradually in order to reach the target shape. In cite [3] the authors introduced
geometric algorithms for copying,rotating, scaling and reflecting a given polyomino
and they also provided an algorithm for constructing a bounding box surrounding a
polyomino.

Most of existing Self-reconfiguration algorithms are based on sequential move-
ments which results in dramatically increasing the reconfiguration process’s dura-
tion. In fact, there exists an obvious trade-off between a high degree of motion par-
allelism and full convergence to the goal shape due to collisions and deadlocks that
may appear with increasing number of modules moving simultaneously. In the liter-
ature, existing methods with parallel motions suffer from a limitation in the number
of parallel motions depending on the approach used. In [9],a scaffolding technique
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is proposed which allows this parallelism while avoiding collisions. The contribu-
tion of this paper is to propose a fully parallel and distributed self-reconfiguration
algorithm using clustering approaches with increase in motion parallelism for accel-
erating self-reconfiguration that can manage almost to build any goal shape given
the initial shape divided into a pre-defined number of clusters.

3 SYSTEM MODEL AND ASSUMPTIONS

In this paper, we consider modular self-reconfigurable robot made from centimeter-
size cubes (blocks) able to move [10]. Blocks are equipped wih a micro-electro-
mechanical-system (MEMS) actuator array in the upper face to move the objects and
they are powered externally. A block can slide along the border of one of its neigh-
bors. Each block can connect to up to 4 neighbors positioned on each of its faces.
They can communicate together by using neighbor-to-neighbor message passing.

We assume that these blocks are placed in a simple 2D Cartesian coordinate sys-
tem along ~x and ~y axes. Each cell can either be occupied by a block or empty.
It is assumed that blocks can recognize their attached neighbors at any given
time and moving blocks cannot communicate with any other ones. We assume
that, at any time, a block can detect if there exists a surrounding cell ∃ f ∈
{East;West;North;South} that should be filled.

Moreover, each cluster is given its goal shape G, also know by cluster members.
We consider that this target shape is fixed during self-reconfiguration process, so no
new modules can join or quit any cluster.

Furthermore, the number of blocks in each cluster must be sufficient enough
(greater or at least equal) in order to be able to build the cluster’s target shape.

4 CLUSTER BASED SELF-RECONFIGURATION

4.1 Agents

Throughout this paper, we consider the Cluster Head agent for explaining the algo-
rithm. The Cluster Head is a special treatment to manage a cluster, the module with
this agent acts as a local coordinator guiding the transformation process to form the
target shape of its own cluster. The Cluster Head agent is dynamic and can change
throughout the algorithm. A new Cluster Head module can be elected in each cluster
during reconfiguration, it is defined as:

Definition 1. (Cluster Head Coordinator)
Let N(M,D) be the neighbor cell of M in the direction D, and G be the

goal configuration. M is a Cluster Head coordinator, if it exists: D verifying
(N(M,D) ∈ G) ∧ (N(M,D) is empty).
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4.2 Principle

In previous work [10], a module could block all the others by the path it defined to
move to an empty cell. Our algorithm allows reconfiguring a set of connected blocks
divided into clusters considering that each cluster is self-reconfigured to form its
corresponding part of the overall goal shape. This algorithm consists in exchanging
messages with data transmission in the network made up of connected blocks. Each
block is considered as an independent robot equipped with its own processing unit
and memory able to execute the program instructions. A first stage affects a position
to each each block in the grid and the goal shape for its cluster. Algorithm 2 illus-
trates how cluster-based self-reconfiguration is handled by the Cluster Head block.

At each iteration, one Cluster Head module is elected in each cluster among
potential ones. This block will trigger cluster building (see Algorithm 2) and then
propagate useful information, i.e. distance, to cluster member blocks in order to
start the motion and self-reconfigure into cluster’s goal shape. Also, it will schedule
activities in the cluster and will be in charge of handling intra-cluster interactions.
This Cluster Head block is not static during the self-reconfiguration algorithm. It
can change dynamically at the end of each blocks’ movement. It is the case when
the previous Cluster Head module does not verify the Definition 1 anymore, in other
words it no longer has any empty surrounding cell to fill. Cluster Head block will
take in charge of finding the motion path starting from the block not belonging to
goal shape with maximum distance in order to start self-reconfiguration into clus-
ter’s target configuration.

isHead

Algorithm process in cluster

Set distance = 1

Propagate distance
 information in cluster

Select new
head

Find farthest block

Path elaboration

Start motion
END

Reset all variables
send INIT(myCH)

NO

YES

Fig. 1: Algorithm of cluster-based reconfiguration.
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Algorithm 1: Distributed algorithm for the construction of a cluster’s tree.
myCH // Cluster Id
parentCluster
subTreeSize // per cluster
neighbors // set of neighbours
childrenCluster // set of children
nbExpectedAnswers
initialized // boolean value

1 if isHead() then
2 TriggerCluster()

3 Msg Handler CLUSTER GO(msgCH,msgDistance):
4 initialized← false
5 if myCH = msgCH then
6 distance← msgDistance+ 1
7 if parentCluster = null then
8 parentCluster ← sender
9 nbExpectedAnswers← neighbours.size− 1

10 if nbExpectedAnswers = 0 then
11 subTreeSize← 1
12 send CLUSTER BACK(myCH ,1) to sender

13 else
14 foreach nId ∈ neighbours do
15 if nid 6= Mj .id then
16 send CLUSTER GO(myCH) to nId

17 else
18 send CLUSTER BACK(myCH ,−1) to sender

19 else
20 send CLUSTER BACK(myCH ,−1) to sender

21 Msg Handler CLUSTER BACK(msgCH,msgSize):
22 nbExpectedAnswers← nbExpectedAnswers− 1
23 if msgSize 6= −1 and myCH = msgCH then
24 childrenCluster.add(sender)
25 subTreeSize← subTreeSize+msgSize

26 if nbExpectedAnswers = 0 then
27 subTreeSize← subTreeSize+ 1
28 if parentCluster 6= null then
29 send CLUSTER BACK(myCH ,subTreeSize) to sender
30 else

// head
31 foreach child ∈ childrenCluster do
32 send REQUEST MAX(myCH) to child

The algorithm is detailed in the following. It allows to start the motion events
once all the computation is done on all blocks. Mainly, our algorithm consists of 3
major steps. As shown in Figure 1, these three steps will be executed in parallel and
repeated in each cluster until the cluster’s goal shape is reached.

1. Set blocks distance in each cluster.
2. Find the block Bmax with maximum distance not in the goal shape.
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3. Displacement of blocks by establishing motion path following decreasing dis-
tance order starting from Bmax.

4.3 Self-reconfiguration algorithm

We use message passing system to communicate and transmit data between con-
nected blocks. As aforementioned, our reconfiguration approach follows three main
steps we detail bellow.

Algorithm 2: Distributed control algorithm for the Cluster Head agent.
neighbours // maximum 4 neighbours
head← true
bmaxId // farthest block’s id not in goal shape
bmaxDistance // bmaxId’s distance
myCH // Cluster Id

1 while head do
2 TriggerCluster()
3 isHead()

4 Function TriggerCluster():
5 setNeighbours()
6 distance← 1
7 nbExpectedAnswers← neighbours.size()
8 foreach nId ∈ neighbours do
9 send CLUSTER GO(myCH ,distance) to nId

10 Event Handler TRANSLATION END:
11 setNeighbours()
12 nbExpectedAnswers← neighbours.size
13 foreach nId ∈ neighbours do
14 reset all variables
15 send INIT(myCH) to nId

16 Function isHead():
17 return (∃emptyCell ∈ {West,North,East, South} ∧ emptyCell ∈ goal)

4.3.1 Defining distances to blocks in each cluster

• CLUSTER GO: Sent by Cluster Head block to its connected neighbors to start
construction of its own cluster’s tree while distributing distance. When received
by a cluster member blocks, it defines its distance as being that received in the
message plus 1.
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• CLUSTER BACK: Response to CLUSTER GO sent by a block to either acknowl-
edge receipt of distance and that all its neighbors have successfully set their dis-
tance, or to notify the sender that it does not belong to the same cluster.

Once cluster tree is built, the block with maximum distance and not in goal shape
must be found, then the motion starts by following the decreasing path order of
distance. Algorithm 1 illustrates the first step in details. Cluster tree construction is
done by calling the helper function TriggerCluster. Starting from a Cluster Head
module in each cluster, a structure tree rooted at the Cluster Head node is built with
distance assignment using two messages CLUSTER GO and CLUSTER BACK.

4.3.2 Finding Bmax

Bmax is defined as the block with maximum distance and not belonging to clus-
ter’s goal shape. The root (Cluster Head) in each cluster will then launch the search
for Bmax by sending REQUEST MAX to its children through its cluster tree. This
message will be transmitted locally across all cluster members. When received by
a block already in the cluster’s goal shape this message is propagated to children
blocks until leaf ones, otherwise block is not in cluster’s goal shape and should
send its id and distance back to tree’s root using SEND MAX message which
is progressively returned to the parent until it reaches the root.Thus, the root will
maintain the block’s id (bmaxId) not in goal shape having the maximum distance
(bmaxDistance) value.

4.3.3 Blocks displacement

The motion path can be easily established. Starting from Bmax block and following
decreasing order distance by gradually crossing parentCluster blocks benefiting
from the tree structure. This way back leads us to the Cluster Head block that has
empty spot to fill, once Cluster Head is reached the displacement of the blocks starts
where each block has to replace and move to its parentCluster’s position.

Using programming, the blocks are able to deal with state changes locally and to
handle different events, such as connection/disconnection of a new block, or the end
of a motion. When a Cluster Head block finishes motion, i.e, all the blocks on the
path succeeded in moving to its parentCluster’s position, it resets all its variables
and sends a message of type INIT(myCH) to all neighbors in order to notify the
blocks to reinitialize all their variables with a new iteration taking place. Then, this
Cluster Head must verify if it can still acts as Cluster Head block or not. If it is
the case, old Cluster Head triggers a new iteration and repeat the process, otherwise
a new Cluster Head takes over.This reconfiguration algorithm is being repeated in
each cluster, until all cluster’s blocks converge towards goal shape, hence cluster’s
target shape is well formed.
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Algorithm 3: Message Handler for any module Mi.
wellP laced // module ∈ goal shape or not

1 Msg Handler REQUEST MAX(msgCH):
2 if ¬wellP laced and myCH = msgCH then
3 send SEND MAX(Mi.id,distance) to parentCluster
4 foreach child ∈ childrenCluster do
5 send REQUEST MAX(msgCH) to child

6 Msg Handler SEND MAX(msgId,msgDistance):
7 if parentCluster 6= null then
8 send SEND MAX (msgId,msgDistance) to parentCluster
9 else

10 if bmaxDistance < msgDistance then
11 bmaxDistance← msgDistance
12 bmaxId← msgId
13 start motion

14 Msg Handler INIT(msgCH):
15 if myCH 6= msgCH then
16 send INIT ACK() to sender
17 else
18 if !initialized then
19 reset all variables
20 toAnswer ← sender
21 nbExpectedAnswers← neighbours.size− 1
22 if nbExpectedAnswers = 0 then
23 send INIT ACK () to sender
24 else
25 foreach nId ∈ neighbours do
26 send INIT(myCH) to nId

27 else
28 send INIT ACK () to sender

29 Msg Handler INIT ACK():
30 nbExpectedAnswers← nbExpectedAnswers− 1
31 if nbExpectedAnswers = 0 and toAnswer 6= null then
32 send INIT ACK () to toAnswer
33 else
34 if isHead() then
35 TriggerCluster()
36 else
37 foreach nid in neighbours do
38 send NEW HEAD (id) to nid

39 Msg Handler NEW HEAD(msgId):
40 if Mi.id = msgId then
41 TriggerCluster(); // new Head
42 foreach nid ∈ neighbours do
43 if nid 6= Mj .id then
44 send NEW HEAD (msgId) to nid; // except sender



10 Mohamad Moussa, Benoit Piranda, Abdallah Makhoul and Julien Bourgeois

4.4 Message evaluation

The proposed cluster-based self-reconfiguration algorithm operates by using a message–
passing model. Our algorithm involves only local and intra-cluster interactions be-
tween blocks. The messages are used in the system for communication purposes,
where a block sends a message to a neighbor one asking for data. We note m the
maximum number of connections a module can have, n the number of blocks, and
k the number of clusters. During the first step, except for the Cluster Head, when
a block receives a CLUSTER GO message, it will send it back to all its neigh-
bours except the sender hence the number of CLUSTER GO messages exchanged is
O(k × n× (m− 1)). Each reception of a CLUSTER GO is followed by a response
of CLUSTER BACK message. Therefore, the total number of messages exchanged
during step 1 is O(2k×n(m−1)). The total number of messages exchanged during
the last two steps, by using 〈REQUEST MAX, SEND MAX〉 and 〈INIT, INIT ACK〉
is O(2k×m) at each step. Then, the new Cluster Head selection requires O(k×m)
messages. Therefore, the total number of messages exchanged at each iteration’s ex-
ecution is O(k × n×m).

5 SIMULATION AND RESULTS

We implemented our proposed algorithm in VisibleSim [12], a simulation and devel-
opment environment that supports multi-target large scale modular robot systems
(Smart Blocks, Blinky Blocks, Claytronics...). We conducted extensive simulations
to evaluate the performance of the proposed algorithm. In order to visualize cluster-
ing impact, we focus on comparing cluster-based and without clustering algorithms
with varying number of clusters and ensemble sizes. Two types of complex reconfig-
uration scenarios have been carried out on several shapes while varying the number
of modules in the ensemble. For each scenario, we generated different versions of
the goal configurations using different scales ranging from hundreds to ten thou-
sands of blocks. The first scenario formed by the text: ’smart’ with various number
of blocks. ’Smart’ word is composed from five letters, one idea is to let each cluster
form one letter as shown in Figure 2a. In fact, we have five clusters, each corre-
sponding to one letter with a specific color. We consider that blocks are initially
divided into 5 clusters using [2]. Each block belongs to a cluster and the cluster’s
goal shape is stored in all cluster members.

(a) Smart word formed by 5 clusters. (b) Large comb formed by 2 clusters.
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The second scenario is to build a large comb. We test our algorithm to self-
reconfigure large networks of more than 10,000 blocks. In this experiment (cf. Fig-
ure 2a), a large set of Smart Blocks is assembled presenting very regular volumes of
blocks with symmetries. For each experiment, blocks can glow in different colors
depending on running program in order to show a state upon receipt of a message,
detection of an event or to indicate that it has successfully reached the goal shape.
They are also able to display value upon their front face, used in our case to display
useful information such as distance and cluster identifiers. In Figure 3, we studied
the number of messages exchanged in the two scenarios according to the size of the
goal shape. Firstly, using five clusters to form the smart’ word with various network
sizes (up to 4,800 blocks) and compare it with results obtained without clustering.
The total messages exchanged by both algorithms linearly increases with the num-
ber of blocks. Obviously, the number of messages exchanged using 5 clusters is
much lower without clustering. Secondly, Figure 3 also shows the total number of
messages sent to construct a comb. It displays the messages exchanged for a di-
viding into 2,4 and 8 clusters, versus those exchanged without clustering. Without
clustering approach requires the highest number of messages exchanged due to the
fact that the whole system is considered as a single cluster, hence a higher number
of connections and messages exchanged between blocks. When no cluster is used,
the number of messages increases exponentially, while it decreases gradually and
becomes linear with the increase in the number of clusters. Hence, in each cluster a
lot of messages will be dropped, especially by modules at the boundaries between
clusters. As a consequence, this confirms that our algorithm only involves local
intra-cluster interactions as announced in previous sections. Figure 3 enables one to
easily notice that with the increase of both number of clusters and ensemble size,
also the gap between the two approaches is largely increasing.

6 Conclusion and future work

In this paper, we propose a cluster based self-reconfiguration algorithm in a fully
distributed fashion. We conducted two types of complex reconfiguration experi-
ments, and we evaluated the algorithm on several shapes while varying the number
of clusters and the number of modules in the ensemble. Our proposal has shown
to be effective, i.e, self-reconfiguration algorithms can be aided by clustering ap-
proaches to speed up reconfiguration process. From obtained results, one can easily
notice that the speed of algorithm’s convergence with clustering is much way better
than without clustering. The results also show that clustering has many benefits in-
cluding energy-efficiency by reducing communication load (messages exchanged),
scalability. As a future work, we aim to improve the proposed algorithm by making
many possible motions within each cluster while avoiding collisions, thus achieving
a high degree of motion parallelism per cluster. This will surely affect the reconfig-
uration speed and reduce complexity, but it is a complex task since it involves more
interactions at the inter-cluster level.
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