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Abstract

In this work, we propose a two-step methodology for designing and sizing a data center solely powered by
local renewable energy. The first step consists in determining the necessary IT equipment for processing a
given IT workload composed of batch and service tasks. We propose an adapted binary search algorithm and
prove its optimality to find the minimum number of servers to handle the IT workload. When the IT sizing is
computed, the second step consists in defining the supplying electrical infrastructure using wind turbines and
photovoltaic panels as primary sources. Batteries and a hydrogen system are added as secondary sources for
short- and long-term energy storage, respectively. In this electrical sizing step, first a set of primary source
configurations is determined using a binary search algorithm, then the secondary sources are calibrated so
that levels of charge are constant during one day and one year, respectively. Experiments using real IT
workload traces and actual meteorological data are conducted to illustrate the provided methodology to
decision makers for choosing the best configuration for their data center.
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1. Introduction

The growing demand for online services leads to
a significant increase in the power consumption of
data centers. In 2018, the global data center en-
ergy use has been estimated to 205 TWh, which
represents about 1% of the world electricity con-
sumption [27].

Economical, political and customer pressure pushes
data center operators to improve their carbon foot-
print. One way of coping with the related increase
of the carbon footprint is to add renewable energy
sources in the power supply chain.

Many companies, being either big players like
Google, Amazon, Facebook, etc, or smaller play-
ers, have moved to either partially operating with
renewable energies for a share of their energy con-
sumption, or rely on remote renewable power pro-

duction sites. Ultimately, the renewable energy
sources should be co-located with the data center
as it avoids losses in the transport and distribution
of electricity. Ideally, renewable energy sources are
to be directly installed on site.

The question of location and size of the data cen-
ter is nowadays mainly commercially directed: land
costs, financial advantages given by the State, mar-
ket of electricity, environmental conditions (mainly
for cooling reasons), and the power that can be
drawn from the power line influence these choices.
It is not only a research area anymore, many con-
sulting companies offer their service to build a data
center, though the integration of renewable energies
is still in its infancy.

In general, the target IT workload is roughly esti-
mated, usually using a basic peak demand, in or-

Preprint submitted to Sustainable Computing February 22, 2021



der to cope with uncertainty and future probable
usage. The number of servers in server rooms is
adapted to this overestimate, leading to resource
waste when the actual load is run on the servers.
In the best case, and in the context of renewable
energy powered data centers without connection to
the grid, some authors ([21], [8], and [36]) proposed
to dynamically manage IT workload according to
power availability, so that idle servers can be shut
down and the load consolidated on fewer servers.
In this context, an overview has been published by
Ishfaq et al. [1] about power/energy/thermal-aware
policies. [21] minimizes the makespan of High Per-
formance Computing (HPC) tasks, while [8] mini-
mizes the number of due date violations for batch
tasks, in both cases constrained by a power enve-
lope. Sharma et al. [36] propose a more optimistic
approach where web applications do not suffer from
the regular on/off power cycles of the machines,
while their execution is constrained by renewable
energy. Other existing approaches consider a “fol-
low the renewable” concept ([26], [25]) by balanc-
ing the load among several data centers and using
the right mix of renewable energies. In addition,
a theoretical and experimental study proposed by
Khargharia et al. [23] optimizes for power and per-
formance of a distributed platform. However, to
the best of our knowledge, the initial sizing of a
data center powered by renewable energy has never
been studied, and the existing works aim at coping
with the rough estimate: We support that the pres-
ence of renewable sources campaigns for less useless
servers and that the IT sizing must be revisited ac-
cordingly.

Conversely, more works have been conducted for
the sizing of a power plant integrating renewable
power sources. These include optimal solutions,
heuristics, or metaheuristics to find the proper
size and number of electrical components (see Sec-
tion 2). They are based on prediction models of
the weather conditions (solar and/or wind), some
of them in the context of data centers (solar pan-
els and batteries in [14]). However these studies do
not integrate the IT workload, nor include several
combinations for the on-site power supply.

In this work, we design an on-site data center that is
solely powered by local renewable energy and we in-
vestigate its sizing. The sizing consists of two steps.
First, the necessary IT equipment for processing a
given IT workload is determined, giving the esti-
mated power over time needed for the IT infrastruc-

ture. In a second step the electrical infrastructure
is defined to produce enough energy to power the
IT infrastructure taking into account the matching
over time of the IT power consumption and renew-
able power production. We investigate the sizing of
power-plants consisting of wind turbines (WT) and
photovoltaic panels (PV) as primary sources. To
cope with the fluctuations in the energy produc-
tion, we add batteries for short term storage and
hydrogen tanks for long term storage and seasonal
variations. Those secondary sources are also taken
into account in the sizing process.

The main contribution of our research is to provide
a methodology to propose a set of infrastructure siz-
ing combinations given an IT workload and a data
center location (with its weather conditions). These
different combinations can then be tested against a
variety of IT workloads to finally choose the best
one for the case at hand, depending on the metrics
selected by the decision maker.

The rest of this paper is organized as follows: In
Section 2 we detail the related work in electrical siz-
ing with renewable energies. Section 3 provides the
decision problem description while Section 4 details
the underlying IT and power supply models. The
sizing methodology is described in Section 5. Sec-
tion 6 is providing results of the methodology under
different IT workload and weather conditions. Fi-
nally Section 7 concludes and gives perspectives on
the work.

2. Related work

The problem addressed in this paper is twofold: de-
signing and sizing an IT infrastructure and a power
plant including only renewable sources as primary
sources. As mentioned above, the problem of the
initial IT sizing on this basis has never been ad-
dressed before. However, a great deal of work has
been carried out by researchers for more than ten
years on the design of power supply infrastructures
only or partially based on renewable energy [39]. In
practice since sun and wind are free and accessible
everywhere on earth, even in the most remote areas,
these energies are the two main renewable energies
that are commonly chosen for the construction of
such power plants [3] even if other renewable en-
ergies exist [32, 10]. Anoune et al. highlight in [3]
that separating sun and wind leads to an over-sizing
of the system.
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Due to the intermittency, sizing a Hybrid Renew-
able Energy System (HRES), whether in grid con-
nected or in standalone systems, is a very important
issue. Many research papers have been addressed
and published on this hot topic in order to find
the most suited power infrastructure to the con-
text of use and its appropriate size. They take the
power production intermittency and its forecasts
into account and allow to maximize (or minimize)
predefined performance criteria, not only the tra-
ditional economical cost, etc. For instance, Sawle
et al. in [34] published a literature analysis where
the design of HRES connected to the grid is given.
This review illustrates that hybrid systems based
on hybrid renewable sources give good indicators in
terms of energy cost and reliability. Similar results
were also obtained by Erdinc and Uzunoglu in [12]
where authors point out the advantage of an opti-
mal design for renewable energy in terms of cost,
after an analysis of “optimum sizing approaches in
the literature”.

In addition, since sun and wind are free and acces-
sible everywhere, it is advantageous and realistic to
create HRES based on stationary power generation
for isolated areas. This point has been discussed
by Anoune et al. in [3] where the authors high-
light that separating sun and wind leads to an over-
sizing of the system. In their work they review the
most common typologies and present mathemati-
cal models and comparisons between existing im-
plementations based on different sub-optimal opti-
mization techniques (nature inspired optimization
techniques). Another analysis about methods to
optimize the sizing of standalone HRES is given by
Bernal-Agustín and Dufo-López in [6]. This study
shows that these systems have a high availability
when associated with back-up sources such as bat-
teries and then become a viable and credible alter-
native to the classical energy sources.

To summarize, a state of the art on hybrid renew-
able energy source sizing is defined in the previous
reviews for all types of applications, and they do not
take particular features and usage of data centers
into account. Many researchers aim at proposing
various sizing methods in order to reach optimal so-
lutions of their own systems. These methods could
be categorized as follows.

2.1. Probabilistic method
Yang et al. [48] propose a probabilistic method in
which they prove the importance of choosing a suit-

able typical meteorological year (TMY) in order to
get an accurate assessment of performance in a hy-
brid PV-wind energy system. Another probabilis-
tic approach is suggested by Tina et al. [42]. Their
method is based on convolution techniques using
probability density functions to assess the long term
performance of hybrid solar and wind power sys-
tems.

2.2. Analytical method
Several computer tools have been developed in or-
der to help decision makers to analyze the inte-
gration of sources for optimizing, designing and
evaluating the performance of PV-wind hybrid sys-
tems as discussed in comprehensive reviews by
Bernal-Agustín and Dufo-López [6], Erdinc and
Uzunoglu [12], Sinha and Chandel [40], Al-Falahi
et al. [2], and Anoune et al. [3]. The most popu-
lar and most widely used tools are the commercial
software named HOMER for Hybrid Optimization
Model for Electric Renewable, developed by the Na-
tional Renewable Energy Laboratory (NREL) [28]
and the Hybrid Power System Simulation Model
(HYBRID2) [34]. Indeed, HOMER is defined as a
set of “the most powerful tools for this purpose” by
the authors [5]. The paper is a state-of-the-art re-
view of existing work based on the use of HOMER
for HRES planning. However, all these softwares
have strong limitations such as black box coding,
different working platforms, and they are not as
flexible as optimization techniques which can be
used as per research criteria.

2.3. Iterative methods
Many hybrid renewable systems are designed using
genetic algorithms to achieve a sizing as close as
possible to the optimal solution, depending on the
target objective. For instance, Kaldellis et al. [20]
propose to minimize the system cost by means of
electrical load under some design constraints. Sim-
ilar works can be found by Dufo-López and Bernal-
Agustín [11] and Yang et al. [47, 46]. Ashok [4]
obtained a hybrid system among different combi-
nations for a rural community, minimizing the to-
tal life cycle cost and ensuring system reliability:
a numerical algorithm based on the Quasi-Newton
method is used to solve the optimization prob-
lem [31]. Numerous methods are based on Particle
Swarm Optimization (PSO). Sawle et al. [34] men-
tioned studies using this popular optimization tech-
nique with results obtained on the HOMER soft-
ware.
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2.4. Hybrid method
Finally, many researchers [7, 22, 38] modify genetic
algorithms in order to give the designer the choice
of the configuration. This can be done by consider-
ing non-dominating Pareto sets in which a criteria
has to be selected in order to find the appropriate
solution. In [22] by Katsigiannis et al., the opti-
mization objective is twofold and consists in min-
imizing the system cost of energy and greenhouse
gas (GHG) emissions by six different constraints.
The main originality comes from the assessment of
GHG emissions based on life cycle analysis. A sim-
ilar work has been proposed by Wang and Singh
in [45] where the set of non-dominated Pareto so-
lutions is obtained using a PSO algorithm. The
optimization objective is also twofold (technologi-
cal and economical), or even threefold (technical,
economical and environmental).

Khalaj et al. [16] present a whole data center de-
sign by minimizing the total amount of power con-
sumption of the data center, including the cooling
system, and based on an Integer Linear Program-
ming approach. Nevertheless, none of the afore-
mentioned methods treats a crossed data center IT
and HRES sizing. This new proposed paradigm is
the originality of this paper. It harnesses the exist-
ing relationship between power demand and power
production for the sizing process.

3. Problem Statement

3.1. Framework
This work has been developed in the context of
the DATAZERO project [30]. It aims at inves-
tigating possible solutions to design and operate
a data center which is only supplied with renew-
able energy. The goal is to study how to build
and manage such a data center without any con-
nection to the grid while taking into account inter-
mittent power production over time. The complete
removal of the connection to the power grid imposes
new challenges, such as the sizing of storage devices
and renewable energy sources in order to provide
enough energy to the data center while ensuring
the client Quality of Service (QoS). The proposed
sizing approach aims at preventing over-sizing or
under-utilization of the data center by avoiding re-
dundant equipment.

The energy supply of the data center is divided into
two main types, primary and secondary sources (see

Figure 1). We focus on solar and wind for primary
renewable sources as justified before [3], so we use
photovoltaic panels and wind turbines. To comple-
ment them, it is mandatory to associate short- and
long-term storage devices such as batteries and hy-
drogen systems as is conventionally accepted [24].
This choice is all the more justified as our project
involves the construction of a completely energy
standalone data center, therefore without external
energy input. Thus, the long-term storage device
cannot be a conventional internal combustion en-
gine, but must be a reversible storage device as the
hydrogen system (i.e., the overproduction of elec-
tricity is stored using electrolysers in the form of
hydrogen, or the production of electricity using fuel
cells when it runs out). In the latter, electrolyzers
(EZ) are used to store in the hydrogen tank excess
energy in form of hydrogen obtained through elec-
trolysis. Fuel cells (FC) allow to transform hydro-
gen into electricity by the reverse chemical reaction.
This is imposed by the fact that renewable energy
is intermittent by nature. As a matter of fact, the
data center must operate despite the alternation of
day and night and the differences in the energy pro-
duction during the seasons.

PV panels WT Turbine Batteries

DC/DC DC/AC DC/DC

DC bus

Fuel cells electrolyzer

IT loads

Thermal
loads

DC/DC DC/DC DC/AC

DC/AC

H2 tanks

primary
sources

secondary
sources

Figure 1: Electrical architecture of DATAZERO. Dark green
boxes indicate primary energy sources, secondary sources are
shaded in light green (source: Robin Roche [30]).

3.2. Problem description and hypothesis
In this work we focus on the sizing of such a data
center. The sizing can be defined as a decision prob-
lem that aims at identifying the needed IT elements
and the associated electrical devices to satisfy a
given computation service that has to be provided
over time. We consider as inputs: (i) an estimate of
the user demands over time (one year) called “the
workload”, (ii) the location of the data center and
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its historical weather conditions (solar and wind)
at least over one year, (iii) a desired Quality of Ser-
vice (QoS) for the running applications. We answer
to the following question: based on these inputs,
which IT and electrical infrastructures are needed
to process a given workload under a constrained
QoS? The answer to this question is called the siz-
ing of a standalone data center. It aims at comput-
ing: (i) the number of servers, (ii) the area of pho-
tovoltaic panels, (iii) the number of wind turbines,
(iv) the capacities and the power of the batteries,
(v) the size of the power hydrogen system (power
of electrolyzer and fuel cells) associated with the
hydrogen tank capacity.

3.3. Decision problems

This general sizing problem can be addressed by the
following steps: First, considering a workload and a
scheduling strategy, the decision problem is to find
the smallest set of servers that is able to process the
workload within a given QoS. This architecture and
the resulting schedule provide a power envelope or
profile. This profile is one input for a second deci-
sion problem which consists in defining the power
supply architecture. Two levels are to be distin-
guished: (i) short- and (ii) long-term variation of
the power production: (i) Because of the variation
of the daily power production, the battery capacity
is first sized considering the worst day conditions
(due to unbalanced workload and/or season and/or
bad weather). This problem can be viewed as a
min-max optimization problem (minimize the siz-
ing for the worst day). (ii) To take into account
the fluctuation of the renewable power production
within one year due to seasonal variations, we have
to consider long term energy storage. Consequently
since there is no connection to the power grid, the
data center should store the excess production when
possible for later use. The decision problem we face
is to define several combinations of primary sources
(photovoltaic panels and wind turbines) and short-
and long-term storage elements (batteries and hy-
drogen system) capable of ensuring the autonomy of
the data center. One combination can be selected
later by the decision maker using criteria such as
the economical cost, the footprint, the loss of power
supply probability of the system, etc.

These criteria are either chosen individually or in
combination to help to select the right configuration
for the renewable energy system.

4. Models

In the description of the sizing decision problem,
we have introduced several inputs. This section
is dedicated to both IT and power supply models.
First we detail the models used in the IT decision
part and then the models used in the electrical de-
cision part. The decision horizon H within which
decisions are made is discretized into K indivisible
time slots whose durations are ∆t with H = K∆t.
For the sake of simplicity, we assume that one time
slot takes one unit of time (∆t = 1u.t.). In prac-
tice, we assume in the following that H is one
year (365 days, 8760 hours), ∆t = 1h and hence
K = 8760.

4.1. IT models
The role of a data center is to deliver digital ser-
vices, to produce results after processing tasks, etc.
This set of work that the data center has to pro-
cess is called its workload. In the following we first
give the properties of the workload and then the
architecture on which the workload is supposed to
be executed. Notations used in this part are given
in Table 1.

The workload is the result of users’ submissions
and consists of two distinguished types, (i) services
Si ∈ S = {S1, . . . , Sr} and (ii) tasks Ti ∈ T =
{T1, . . . , Tn}. The QoS requested by a user is dif-
ferent for services and tasks. (i) Each service Si

(such as web services, databases) is defined as a load
wsi,k over time with no flexibility, i.e., an amount of
work or number of million instructions (MI) to be
executed during the time slot k for all times t such
that (k−1)∆t ≤ t < k∆t. We consider that services
can not be delayed as they are in a direct interac-
tion with the users. (ii) Tasks are considered as ap-
plications that can be delayed, providing flexibility
and malleability. We define the flexibility as a time
window during which the execution of a task can be
deferred. We consider this flexibility as a constant
δ for all tasks. Each task Ti has a requested num-
ber of instructions wtreq

i,k in MI at the time slot k
for all times t such that (k−1)∆t ≤ t < k∆t. Once
scheduled, tasks can be delayed up to a maximum
of δ u.t., i.e., csch

i − creq
i ≤ δ where creq

i and csch
i are

respectively the completion time of Ti, should Ti be
executed at its requested time (i.e., as soon as pos-
sible), and the completion time when Ti is actually
scheduled. The amount of instructions to perform
task Ti when scheduled is now wtsch

i,k at each time
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Table 1: Main notations for the IT model

H decision horizon H = K∆t
K number of time slots ∆t = 1h = 1u.t.
W the workload (W = S ∪ T )
S set of services, |S| = r
Si one service of S with 1 ≤ i ≤ r
wsi,k amount of work of Si at time k [MI]
wsk total amount of work of all services at

time k [MI]
T set of tasks, |T | = n
Ti one task of T with 1 ≤ i ≤ n
wtreq

i,k amount of work of Ti requested at time
k [MI]

wtreq
k amount of work of tasks requested at

time k [MI]
δ scheduling flexibility [u.t.]
wtsch

i,k amount of work of Ti when scheduled
during time slot k [MI]

wtsch
k total amount of work of tasks scheduled

at time slot k [MI]
csch

i completion time of Ti when scheduled
with csch

i − creq
i ≤ δ [u.t.]

m number of homogeneous machines
M set of homogeneous machines, |M| = m
Mj one machine ofM
pj = p max. power consumption of Mj [W]
nbI max. number of inst. of Mj during any

time slot (nbIj = nbI ∀j) [MI]
maxW max. number of inst. forM (maxW =

m× nbI) [MI]
PUE Power Usage Effectiveness constant
Dk power demand for the time slot k [W]
D ={Dk, 1 ≤ k ≤ K}

slot k with 1 ≤ k ≤ K. The malleability of a task
Ti means that at each time slot k the number of
processors in charge of computing instructions of
Ti can vary. The task model is a simplified version
of the models found in [43, 15].

Figure 2 presents an example of an incoming work-
load composed of batch tasks T (in blue) and ser-
vices S (in orange) within the period of one whole
year, hour by hour (8760 h). The actual load (in
green) represents the resulting workload (services
plus batch tasks) after using the flexibility to delay
batch tasks. The red line represents the maximum
number of instructions that the entire set of servers
is able to execute during one time slot. The purpose
of this figure is to show that the use of a scheduler

allows us to modify the execution of the requested
workload and to limit the number of servers with-
out reducing the required quality of service.

We assume that the hardware IT architecture con-
sists of a set M of m homogeneous servers or ma-
chines Mj ∈ M = {M1, . . . ,Mm}. Each machine
Mj consumes a maximum of power pj = pWatts for
a corresponding maximum number of instructions
nbIj = nbI MI. The addressed sizing problem for
the IT part is to compute the smallest value for m
such that a schedule exists and is able to process the
workload W with the expected level of QoS.

We recall that the QoS is different for tasks and
services. Services can not be delayed whereas tasks
can be executed while their delay respects the flex-
ibility value δ. Given a number of servers m and
a possible schedule that meets the required QoS,
it is possible to know which amount of power is
needed at each time slot k for this schedule. The
power demand for each time slot k (1 ≤ k ≤ K),
denoted D = {D1, . . . , DK}, is another output ad-
ditional to the IT architecture sizing. Dk is pro-
portional to the number of instructions that are ex-
ecuted during time slot k. Knowing that nbI in-
structions are needed and knowing the maximum
power consumption p for one machine, the average
power cost for one instruction can be approximated
by p/nbI [29]. Albeit this model is not precise [43]
for a small number of hosts as a single computer is
not power-proportional, with a larger number such
as the one aimed in this research, the error becomes
negligible. Please note that our approach does not
depend on the actual power-model used and would
stay valid using more precise power models [9]. Fi-
nally, the power demand has to take the cooling
and utilities into account. The constant PUE [33]
(Power Usage Effectiveness) measures this propor-
tional extra power cost. PUE is the ratio between
the total energy consumed by a data center and
the energy consumed only by the IT part. It is
assumed that idle nodes, that are switched off, con-
sume 0Watt.

Every power demand Dk needed for every time slot
k (1 ≤ k ≤ K) can be expressed by summing
the amount of instructions from services and tasks
scheduled at each time slot k multiplied by the
power consumption of one instruction. We recall
that wsi,k (resp. wtsch

i,k ) is the number of instruc-
tions of the service Si (resp. the task Ti) which is
scheduled onto machine Mi inM at time slot k or
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Figure 2: Example of the load (expressed as a histogram in number of requests per seconds) over time (in hours) which is
executed after the IT sizing. The requests for services are in orange, the ones for batches in blue. It results in the green
processed requests using 1098 servers considering one year discretized into K = 8760 time slots of one hour and a flexibility of
3 hours.

equal to 0 otherwise. This power demand Dk can
be expressed as follow:

Dk = p

nbI

( r∑
i=1

wsi,k +
n∑

i=1
wtsch

i,k

)
× PUE (1)

The power profile D is then given by the set of all
the power demands made at time slot k (1 ≤ k ≤
K) such that D = {D1, . . . , DK}.

The rest of this section aims at defining the power
supply models that take D and weather conditions
as inputs and define electrical devices needed to
meet the data center power demand despite the re-
newable energy source intermittency.

4.2. Power supply models

The role of the power supply part of the data cen-
ter infrastructure is to provide the computing part
with electricity. The power supply models aim at
describing the electrical architecture that has to be
defined and sized to build a standalone data cen-
ter without connection to the classical power grid.
Table 2 summarizes the main notations used in the
electrical part and in the rest of the paper. The
infrastructure consists of (i) primary sources that

supply the IT part of the data center with renew-
able energy sources such as wind and sun, and (ii)
secondary sources that are back up power devices
whose purpose is to provide power to servers when
the renewable energy is not sufficient or to store
energy otherwise.

As the data center is autonomous in terms of power
supply, the connection to the classical power grid
does not exist. So, in order to achieve its IT server
power demand, the on-site power supply architec-
ture of the data center only consists of wind tur-
bines and photovoltaic panels to produce electricity
from wind and sun, and batteries and a hydrogen
system (electrolyzers, fuel cells and hydrogen tank)
to assure the balance of the intermittency of the
primary sources.

Due to the seasonal (long-term) and the daily
(short-term) variations of the weather conditions
(wind and sun), we decide (i) to dedicate the bat-
tery usage to the day and night alternation – the
hours of overproduction will balance the hours of
underproduction during the same day (e.g. the pro-
duction will be smoothed over the day); (ii) to use
the hydrogen system to balance underproduction
days with overproduction days (e.g. the produc-
tion will be smoothed over the season).

The role of the power supply is to satisfy the power
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Table 2: Main notations for power supply models

Vk wind speed at time slot k [m/s]
V ={Vk, 1 ≤ k ≤ K}
Ik solar irradiation at time slot k [W/m2]
I = {Ik, 1 ≤ k ≤ K}
q number of wind turbines
Pr the WT rated power production of one

WT [W]
Pwk WT power prod. at time slot k [W]
Pw = {Pwk, 1 ≤ k ≤ K}
Apv surface of the whole PV [m2]
ηpv PV efficiency
Ppvk PV power production at time slot k [W]
Ppv = {Ppvk, 1 ≤ k ≤ K}
Prek renewable power production Pwk +

Ppvk at time slot k [W]
Pre = {Prek, 1 ≤ k ≤ K}
BCk battery capacity at the end of the time

slot k with BC0 = BCinit [Wh]
BC capacity of the batteries
ηch battery charging efficiency
ηdch battery discharging efficiency
Pchk charging power of the batteries during

time slot k [W]
Pdchk discharging power of the batteries dur-

ing the time slot k [W]
LOHk level of H2 in the tank at the end of the

time slot k with LOH0 = LOHinit [kg]
LOH hydrogen tank capacity
ηez electrolyzer charging efficiency
ηfc fuel cell discharging efficiency
Pezk charging power of electrolyzers during

time slot k [W]
Pefk discharging power of fuel cells during

time slot k [W]

demand D of the IT along the time horizon H dis-
cretized into K time slots. It is necessary to take
the weather conditions of the data center location
into account. The weather conditions are character-
ized by the solar irradiation Ik ∈ I = {I1, . . . , IK}
and the wind speed Vk ∈ V = {V1, . . . , VK} for ev-
ery time slot k (1 ≤ k ≤ K) of H. The goal of
the design of the power architecture is to define the
primary and secondary sources: number of wind
turbines, surface area of photovoltaic panels, maxi-
mal power of both electrolyzers and fuel cells as well
as batteries and hydrogen tank capacities.

Let q be the number of wind turbines of the same

type (homogeneous wind turbine architecture) and
Pr their rated power. Their averaged output power
production Pwk of time slot k depends on the
wind speed Vk for all k (1 ≤ k ≤ K). Let
Pw = {Pw1, . . . , PwK} be the power production of
one wind turbine within the horizon H. A turbine
starts at the “cut-in” wind speed Vci, generating a
power linearly increasing with wind speed from Vci
to the rated wind speed Vr . When the wind speed
varies between Vr and the “cut-out” wind speed
Vco, the turbine produces a constant rated power
Pr as an output electrical power. Once the wind
speed exceeds Vco, the turbine stops generating for
safety reasons. Thus, the power production Pwk of
a wind turbine at each time slot k is obtained using
formula (2) (1 ≤ k ≤ K):

Pwk =


0 if Vk ≤ Vci

Pr
Vk −Vci
Vr −Vci if Vci < Vk ≤ Vr

Pr if Vr < Vk ≤ Vco
0 if Vco < Vk

(2)

Let Apv be the surface area of homogeneous pho-
tovoltaic panels and ηpv their associated efficiency.
The averaged power produced Ppvk by a surface of
photo-voltaic panels Apv at time step k is computed
using formula (3) for all k (1 ≤ k ≤ K):

Ppvk = Ik ×Apv × ηpv (3)

Let BCk be the capacity of the batteries at the end
of the time slot k (1 ≤ k ≤ K). It represents a given
energy level in Wh. Let BC0 = BCinit be the ini-
tial battery capacity at the beginning of the time
horizon H. BCk depends on the previous capacity
of the battery BCk−1, for all 1 ≤ k ≤ K, and the
level of charge Pchk ×∆t or discharge Pdchk ×∆t
during time slot k (with respective efficiencies ηch

and ηdch). Considering the fact that we assume that
batteries are dedicated to daily balance the renew-
able energy over- and under-production, the state of
charge is cyclic and returns to the same level every
24 hours (every midnight for instance). The conse-
quence of this assumption is that the self discharge
of batteries within the duration of one day is so
small that it can be neglected, even if this discharge
remains within the model. Moreover, considering
one time slot k, if Pchk 6= 0, Pdchk = 0 and vice
versa (i.e., no charge and discharge at the same
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time slot). Formula (4) allows to compute the bat-
tery capacity BCk for each time slot k (1 ≤ k ≤ K)
with BC0 = BCinit. With all these values we can
totally define the battery operations by computing
the greatest amplitude BC of BCk as well as the
greatest needed charge PCH and discharge PDCH
powers over one day within H. The details of the
computation of the battery sizing is given in Sec-
tion 5.2.3.

BCk = BCk−1(1−α)+
(
ηchPchk−

Pdchk

ηdch

)
∆t (4)

where α is the self discharge rate.

Let LOHk be the level of hydrogen in the tank at
the end of time slot k, for all k (1 ≤ k ≤ K). It
represents a given hydrogen mass in kilogram [kg].
Let LOH0 = LOHinit be the initial level of hydro-
gen at the beginning of the time horizon H. LOHk

depends on the previous level of hydrogen in the
tank LOHk−1, for all k (1 ≤ k ≤ K). Given the
time slot k (1 ≤ k ≤ K), given the electrolyzers’
charging power Pezk and the fuel cells’ discharging
power Pfck, the H2 mass density ρ (33 kWh.kg−1),
the levels of charge and discharge are respectively
ηezPezk×∆t/ρ and Pfck×∆t/ηfc/ρ. Considering
the fact that hydrogen is dedicated to balance the
seasonal renewable energy production, we assume
that the level of hydrogen is cyclic and returns to
the same level at the end of the considered time
horizon H. Formula (5) allows to give the level of
hydrogen LOHk for each time slot k (1 ≤ k ≤ K)
with LOH0 = LOHinit:

LOHk = LOHk−1 +
(ηezPezk

ρ
− Pfck

ηfcρ

)
∆t (5)

Both, IT and power supply models are used in the
following in order to determine different data center
sizing configurations. A data center sizing configu-
ration corresponds to the number of servers, the
number of wind turbines, the photovoltaic panel
surface, and the sizing of the short-term and long-
term storage devices (size and power) that allow
to meet the IT power demand D of the data center
given the level of QoS requirements of the data cen-
ter. The next section describes the sizing strategy
for the IT and the power supply parts.

5. Sizing Methodology

5.1. IT infrastructure sizing
The IT sizing approach proposed here is based on
a scheduling algorithm of a workload consisting of
malleable tasks and rigid services. This case pro-
vides a good illustration of the workload adapta-
tion. The methodology remains the same if the
scheduling algorithm is replaced by another ver-
sion.

The aim of the proposed IT sizing process is to find
the minimum number of servers or machinesm nec-
essary to fully respect the quality of service (QoS)
for both the set of services and the set of tasks, i.e.,
to execute the set of tasks according to the flexibil-
ity δ. In the following equations, wtreq

k , wtsch
k and

wsk represent respectively the amount of work that
has to be performed by the IT platform concerning
the tasks before the scheduling process, the amount
of work that will be actually performed after the
scheduling process decisions, and the services for
every time slot k (1 ≤ k ≤ K) within the time
horizon H. This amount of work is a number of
instructions in MI (millions of instructions).

wtreq
k =

n∑
i=0

wtreq
i,k ∀k s.t. 1 ≤ k ≤ K (6)

wtsch
k =

n∑
i=0

wtsch
i,k ∀k s.t. 1 ≤ k ≤ K (7)

wsk =
r∑

i=0
wsi,k ∀k s.t. 1 ≤ k ≤ K (8)

The QoS implies that the completion time of any
scheduled task can not be delayed more than δ time
slots.

5.1.1. Motivating example
Figure 3 shows on the left the incoming workload
W = T ∪ S. The load is expressed as a number of
instructions for each time slot k, k = 1, . . . , 9. The
red bar represents the available computing capacity
(maxW ) of the IT platform such that maxW =
m× nbI.

The right side of Figure 3 illustrates how the
amount of work can be moved from the requested
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time slot to the scheduled time slot when it is pos-
sible to respect the flexibility δ, i.e., for all tasks
Ti, csch

i − creq
i ≤ δ. The chosen workload exam-

ple can be executed on the considered IT platform
with δ = 2u.t. because after the scheduling process,
the whole amount of work never exceeds the con-
straint maxW value and respects by construction
the QoS.

time

load

maxW

time

load

maxW

Figure 3: Workload before (wtreq
k

), left) and after (wtsch
k ,

right) the scheduling process considering a flexibility δ =
2u.t.. Colored boxes are the tasks and service demands for
each u.t.. The orange ones represent the (inflexible) services.

The next section presents the IT sizing methodol-
ogy based on the principles introduced here.

5.1.2. Optimal IT sizing algorithm
Considering a given workload W and a given flexi-
bility δ, we propose an optimal approach to min-
imize the number of servers needed to proceed
this workload. Algorithm 1 is a binary search
approach that is able to converge on the small-
est IT platform size. The optimal number of ma-
chines m can be achieved using this algorithm such
that minM ≤ m ≤ maxM and its complexity is
O(log2(maxM −minM + 1)). These lower and up-
per bounds, whose values are respectively given by
Equations (9) and (10), are as tight as possible as
proven respectively by Lemmas 5.1 and 5.2. The
corollary of these two lemmas is that the number
of iterations to reach the optimal value for m is
minimal (see Corollary 5.2.1).

minM = max
1≤k≤K

dwsk/nbIe (9)

maxM = max
1≤k≤K

d(wtreq
k + wsk)/nbIe (10)

Lemma 5.1. minM is the largest lower bound
of the number of machines needed to complete a
given workload W considering a malleable execu-
tion model.

Proof. Services consist of instructions that cannot
be deferred in time. This means that it is not pos-
sible to delay their execution to another time slot.
Conversely, the execution of tasks can be deferred
in time and then in the most extreme case, it can
be considered that there are no more tasks to be
executed within a given time slot k. In this context
the minimum amount of work that has to be done
by the IT infrastructure is wsk at each time slot
k (1 ≤ k ≤ K). The minimum infrastructure size
(number of servers minM) is then given by the time
slot k in which the amount of work devoted to ser-
vices is the highest. As one machine can only pro-
ceed nbI instructions within one time slot, minM is
given by Equation (9).

Moreoverm can be equal tominM in the case where
h = argmax1≤k≤Kdwsk/nbIe and wtk +wsk ≤ wsh

with h 6= k and 1 ≤ k ≤ K. As cases could exist
such that m = minM, then minM is the largest
lower bound for m. This concludes the proof.

Lemma 5.2. maxM is the smallest upper bound
on the number of machines needed to complete a
given workloadW considering a malleable execution
model.

Proof. wtreq
k + wsk is the amount of work at the

workload submission time of any time slot k (1 ≤
k ≤ K). In a case where it is not possible to
move instructions from one time slot to another, the
largest amount of work that determines m is given
by m = maxM = max1≤k≤Kd(wsk + wtreq

k )/nbIe.

The scheduling step aims at ensuring that the work-
load always remains below maxM. To guarantee
that, the amount of work executed in time slot k
has to decrease according to the flexibility and the
scheduling strategy.

So m should be less than maxM as wtrep
k ≥ wtsch

k

(1 ≤ k ≤ K). This concludes the proof.

Corollary 5.2.1. The number of iterations of Al-
gorithm 1 to reach its results is minimal.

Proof. m is obtained by a binary search algorithm
such that minM ≤ m ≤ maxM in dlog2(maxM −
minM + 1)e iterations in the worst case. As the
bounds minM and maxM on m are respectively
as large and as small as possible (see Lemmas 5.1
and 5.2), the number of iterations is minimal. This
concludes the proof.
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Algorithm 1: Binary search based IT sizing
algorithm that gives the minimum number of
servers to complete a given workload W consid-
ering a given constant flexibility δ
Input: W = T ∪ S: workload to complete
Input: p: the power consumption of one server
Input: δ: the QoS such that csch

i − creq
i ≤ δ

with 1 ≤ i ≤ n
1 Function IT_sizing(W, nbI, δ):
2 u← maxM
3 l← minM− 1
4 while u− l > 1 do
5 m← b(u+ l)/2c
6 valid← test_IT(W,m× nbI, δ)
7 if valid then u← m
8 else l← m

9 return u

This binary search algorithm is based on Algo-
rithm 2 that returns true if it is possible to find
a schedule of W using only m machines and false if
not. As services cannot be delayed, we only move
tasks. The principle of Algorithm 2 is to consider
each time slot k of H which is defined by W and
whose amount of work wtk as it has been requested.
As it is not possible to delay tasks from the last time
slot, we start from the second last one (k = K − 1)
(line 6) and we finish backward with time slot k = 1
if the scheduling process guarantees the flexibility
and if the workload execution using only m ma-
chines is possible. Given the time slot k, we seek to
move as much task instructions from time slot k to
time slot h = k+δ (limited byK (line 8)). If there is
enough room (line 10) on time slot h to execute an
additional amount of charge wtk, wtk is moved to
that time slot and we can consider the next time slot
k − 1 with now wtk = 0. Otherwise, the amount of
charge of the targeted time slot h is fully filled using
all the available room (lines 11 and 12) and the rest
of charge of wtk that has not been transferred yet
(line 13) is considered now to fill the previous time
slot h−1 (line 14), and so on until h remains strictly
greater than k. Then, the new computing quantity
wtk from time slot k is now less than or equal to
its value before this scheduling step. Therefore, if
wtk + wsk remains larger than the computing ca-
pacity maxW of the m machines within one time
slot (line 15), the scheduling process can stop and
returns false. On the other hand, if the process goes
to its conclusion, i.e., the amount of work from time

slot k = 1 is less than the available computing ca-
pacity maxW , m machines is enough to perform
W respecting the given flexibility δ. Algorithm 2
is then returning true. Depending on the response,
the binary search algorithm can test another config-
uration with more or less machines as before until
converging to the smallest value for m. wtk can be
considered as wtsch

k at the end of the process. Fi-
nally note that, by construction, instructions that
belong to wtk1 and wtk2 with k1 < k2 are pro-
ceeded respectively on the two time slots k1′ and
k2′ such that k1′ ≤ k2′.

Algorithm 2: Algorithm to check whether W
can be scheduled without ever exceeding a cer-
tain level of work maxW regardless of the time
slot of H, taking into account a given constant
flexibility δ and the IT models
Input: W = T ∪ S: the workload to complete;

maxW : maximal possible amount of
work [MI]; δ: the flexibility in u.t.

1 Function test_IT(W,maxW, δ):
2 wtk ←

∑n
i=0 wt

req
i,k ∀k 1 ≤ k ≤ K

3 wsk ←
∑r

i=0 wsi,k ∀k 1 ≤ k ≤ K
4 possible← true
5 K ← number of time slots of H
6 k ← K − 1
7 while k ≥ 1 & possible do
8 h← min(k + δ,K)
9 while h > k & wtk > 0 do

10 room← max(maxW −wsh−wth, 0)
11 work2Move← min(room, wtk)
12 wth ← wth + work2Move
13 wtk ← wtk − work2Move
14 h← h− 1
15 possible← wtk + wsk ≤ maxW
16 k ← k − 1
17 return possible

Theorem 5.3. Algorithm 1 returns the smallest
value for the number m of machines that is able to
complete the workload W with the flexibility δ.

Proof. Algorithm 1 is a binary search that is able
to access each integer value m ∈ JminM,maxMK
even if the solution is either minM or maxM. The
key point of this algorithm is the test function
test_IT(W,maxW, δ) that is able to know if a
schedule is possible to execute the workload W us-
ing only m machines or not (maxW = m × nbI).
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Algorithm 2 aims at delaying tasks as late as pos-
sible, i.e., at most δ u.t. This is a scheduling at the
latest, called L-scheduling in the following.

If such a delay is possible, the maximum amount
of work maxW of the target time slot is not ex-
ceeded and instructions are moved from their re-
quested time slot to the scheduled time slot (line
12 and line 13). If possible = true at line 17, it
means that the IT platform has sufficient comput-
ing capacity maxW to execute W with respect to
δ.

Let W = T ∪ S be a workload successfully sched-
uled with the computing capacity maxW of the
considered IT platform, but without using the L-
scheduling approach.

Then
∑n

i=1 wt
req
i,k +

∑r
i=1 wsi,k ≤ maxW for every

time slot k (1 ≤ k ≤ K). Carry over a set of in-
structions from one time slot k to another if there
is room, and if the duration between the end of
their requested time slot and the end of the tar-
get time slot does not exceed the flexibility δ of W
and respects the computing capacity. So, using a
L-scheduling does not change the value returned by
the test_IT function.

On the other hand, if the computing needs of one
time slot k exceed maxW of the platform, the com-
puting capacity is not sufficient for executing that
workload. Indeed, if at least one instruction I can
not be deferred to another time slot k+δ, . . . , k+1,
then wtsch

h +wsh is equal to maxW for any h such
that k+ 1 ≤ h ≤ k+ δ. The only possibility should
be to delay instructions in a given time slot h to
make room for the instruction I. But all instruc-
tions of time slot h (k + 1 ≤ h ≤ k + δ) have al-
ready been delayed as much as possible because the
L-scheduling begins by the end (k = K − 1, k =
K − 2, . . . , k = 1).

So if there is no room to move extra instructions
from a time slot k to any time slot h (k + 1 ≤
h ≤ k + δ), it means that it does not exist any
schedule using only a computing capacity maxW
that respects the flexibility δ to execute in time such
a workload. Algorithm 2 returns false if and only if
there does not exist a schedule to executeW in such
a computing capacity maxW and a given flexibility
δ.

Finally, the binary search is based on a test function
that returns true when the platform is large enough
and false only if the platform is not large enough. m

is then the smallest possible value for the platform.
This concludes the proof.

The next section proposes a methodology to design
the power supply architecture that is able to deliver
electrical power when the IT part of the data center
needs it. Using wtk = wtsch

k also as a result of the
IT sizing process given by Algorithm 1, it is possible
to easily compute Dk for all k (1 ≤ k ≤ K). Indeed
wtsch

k =
∑n

i=1 wt
sch
i,k . We recall that D is one of the

inputs of the power supply sizing process.

5.2. Power supply sizing
In this section, the sizing methodology dedicated to
the electrical part of the data center is presented.
The sizing of the power supply architecture depends
on different inputs: the data center power demand
D, the weather conditions that give the solar irra-
diation I and the wind speed V over the same time
horizon H including K time slots with duration ∆t
(H = K∆t). Our methodology aims at finding the
appropriated sizing for each element that composes
the power supply system of the standalone data cen-
ter: wind turbines, photovoltaic panels, batteries,
and hydrogen system. The methodology consists in
determining first the primary sources – number of
wind turbines and surface area of the photovoltaic
panels – and then designing the short- and long-
term storage devices to reach the power demand D
considering power supply models. The power sup-
ply of the data center is then only based on the
renewable power production during each time slot
Prek = Pwk + Ppvk (1 ≤ k ≤ K), the storage fa-
cilities being introduced to compensate for the in-
herent intermittency of sun and wind.

The next section presents the rule of the game ded-
icated to manage the power supply system at the
different timescales: short- and long-term.

5.2.1. Daily power supply management
During one day d (1 ≤ d ≤ 365) with Λ time
slots (as ∆t = 1h in practice, Λ = 24), consid-
ering a given power demand D and a given pri-
mary source architecture (nbWT wind turbines and
a surface area Apv of photovoltaic panels), it is pos-
sible to know if there is over or under renewable
power production for any time slot k of this day
(1 + (d− 1)Λ ≤ k ≤ d× Λ).

The rule of the game is that batteries aim at bal-
ancing day/night power production. To ensure it,
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we assume that their level of charge has to be the
same at the beginning of each day. This initial level
of charge is defined during the sizing process to pre-
vent the shortage of the batteries.

Let Opd and Upd be respectively the amount of over
produced energy and the under produced energy
during the day d. Equations (11) and (12) allow to
compute Opd and Upd:

Opd =
d×Λ∑

k=1+(d−1)Λ

1[Dk,+∞[(Prek)(Prek −Dk)∆t

(11)

Upd =
d×Λ∑

k=1+(d−1)Λ

1[0,Dk[(Prek)(Dk − Prek)∆t (12)

where Prek = Pwk + Ppvk is the renewable
power production during the time slot k (1 + (d −
1)Λ ≤ k ≤ d × Λ), and where 1[Dk,+∞[(Prek)
and 1[0,Dk[(Prek) are the two indicator functions
of Prek respectively for the Opd and Upd expres-
sions (1A(x) = 1 if x ∈ A and 0 if x /∈ A).

A day d is qualified as an overproduction day if the
following condition (13) is true:

Opd × ηch × ηdch ≥ Upd (13)

Otherwise d is an underproduction day when the
following condition (14) is true in turn:

Opd × ηch × ηdch < Upd (14)

Depending on the over- or under-production of
a day, the rule of the battery usage is not the
same:

• Overproduction day: batteries aim to sup-
ply the servers of the IT part in addition to
WT and PV if needed to meet the power de-
mand (light green part below the power de-
mand, the red line in Figure 4 being constant
for illustration purpose). Conversely, batter-
ies are charged as quickly as possible as soon
as there is sufficient renewable power produc-
tion to bring the state of charge to the same
level as at the beginning of that day as shown
in Figure 4 by the deep green part above the

power demand. The hydrogen system, i.e.,
electrolyzer (EZ), has to store the rest of the
power overproduction in form of H2 (blue part
above the power demand, the red line in Fig-
ure 4);

• Underproduction day: unlike the day of over-
production, batteries are charged by using
power overproduction of every overproduction
time slot (deep green part in Figure 5) and sup-
ply the IT part in addition to primary sources
and fuel cells (FC) as quickly as possible and
as soon as possible as shown in Figure 5 by the
light green part. Then FC take over when the
batteries have supplied the amount of energy
equivalent of the overproduction after consid-
ering charge and discharge efficiencies.

Note that in both cases, battery efficiencies, to
charge (ηch) or discharge (ηdch), have to be taken
into account. Figures 4 and 5 summarize both cases
described before giving the rules of the game ob-
served to use short term and long term storage de-
vices within a given day. Deep green and light green
parts take efficiencies into account. These rules are
the basis for the algorithm used to determine the
amplitude of the battery state of charge each day
and the level of hydrogen at the end of the time
horizon H. The largest battery amplitude gives the
battery capacity BC for the short term storage de-
vice and the amplitude of the level of H2 gives the
size of the tank of hydrogen of the system. These
values are obtained considering a given power de-
mand D and the given renewable power production
allowed by weather conditions and the primary ar-
chitecture.

Let storageSizing(D,Pre) be such an algorithm
that returns the level of hydrogen at the end of H.
This algorithm is used day after day to size the pri-
mary sources such that the level of hydrogen LOHK

at the end of the time horizon has to be greater than
or equal to its level at the beginning LOH0 but as
close as possible. The sizing of the storage devices
is given in the subsequent section.

5.2.2. Sizing of the primary sources using a binary
search approach

Primary sources consist of photovoltaic panels (PV)
and wind turbines (WT). As this architecture is ho-
mogeneous (only one type for PV and WT), the
number of configurations is not combinatorial. Pri-
mary sources aim at collaborating to supply the
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Figure 4: Rule of the game of an overproduction day for the
usage of batteries and the hydrogen system. Power demand
is constant for illustration purpose. The whole renewable
production that does not meet the power demand is supplied
thanks to batteries that are recharged using a fraction of the
overproduction.
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Figure 5: Rule of the game of an underproduction day for
the usage of batteries and the hydrogen system. Power de-
mand is constant for illustration purpose. The whole power
production that exceeds the power demand is stored into
batteries so as to partially compensate the underproduction.

power needed D by the data center to complete
its computation demand, i.e., the workload W. As

mentioned before, both power production of pho-
tovoltaic panels and wind turbines are added to
supply the data center and the back up power de-
vices. The size of the primary sources has to be
large enough to reach overproduction in order to
allow sufficient energy storage for time slots where
primary power production is not sufficient to power
the entire data center. The primary sources must
compensate for the day/night alternation as well
as seasonal variations by a necessary overproduc-
tion.

Considering a given power demand D and weather
conditions I and V for one given year, the principle
is to find the appropriate primary source set that al-
lows to end the year with a hydrogen level (LOKK)
that has to be greater than or equal to the hydro-
gen level at the beginning of the same year (LOH0),
i.e., LOHK and LOH0 are as close as possible to
make the supply for another year possible. Hence,
the following condition has to be respected:

LOHK − LOH0 ≥ 0 (15)

Let maxWT be the minimal number of WT that
does not need any PV to respect Equation (15).
Then, there are only maxWT + 1 different configu-
rations including respectively maxWT , maxWT −
1, maxWT − 2, . . ., 1, 0 WT. The maxWT last
configurations are complemented by the minimum
surface area of photovoltaic panels that allow to re-
spect Constraint (15).

Computation of maxWT . The data center energy
need (EDC) can be evaluated by computing the in-
tegral of the power demand D on the considered
time horizon H. By choosing historical weather
conditions V on the same period of time, it is pos-
sible to know which quantity of energy E1W T one
WT is able to produce. Indeed, maxWT is greater
than or equal to the upper integer part of the ratio
between EDC and E1W T :

maxWT ≥

⌈
EDC

E1W T

⌉
(16)

EDC =
K∑

k=1
Dk ×∆t (17)
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E1W T =
K∑

k=1
Pwk ×∆t (18)

Since there is no reason for the data center power
demand to coincide with the wind power, it is nec-
essary to store a part of the produced energy. But
a significant part of wind energy is lost due to the
efficiency of the storage process. This loss can be
covered rounding up the ratio given above up to
the next integer value. If this is not enough, and
depending on the type of wind turbine, another
turbine may be necessary until Condition (15) be-
comes true. The configuration with only maxWT
WT, without PV, is the first configuration. The re-
maining configurations are given in the next para-
graph.

The maxWT other configurations. Let Q =
{Q0, Q1, . . . , QmaxW T−1, QmaxW T } the set of possi-
ble configurations that correspond to themaxWT+
1 different options for the primary source configura-
tions for the power supply architecture of the data
center. The qth configuration Qq = (q, Apvq) con-
sists of a surface area Apvq in [m2] for the PV and q
WT (0 ≤ q ≤ maxWT ). Q0 and QmaxW T are two
special cases with respectively no WT or no PV.
To meet the data center power demand when the
number of WT is less than maxWT , the point is
to find the appropriate surface area of PV. By con-
sidering the same historical weather conditions as
before (i.e., solar irradiation I and wind speed V),
a given surface area Apvq of PV and the number q
of WT of the qth configuration of Q, it is possible
to compute the overall renewable power production
for any time slot k (1 ≤ k ≤ K):

Prek = Ik ×Apvq × ηpv + q × Pwk (19)

Finally, by considering the daily power supply man-
agement rules (Section 5.2.1), it is possible to find
the level of hydrogen LOHK at the end of the hori-
zon H. If this level is higher than LOH0, Apvq is
too large and vice-versa.

Algorithm 3 is a binary search algorithm that is able
to find, for each possible number of WT, the small-
est value for the surface area of PV that respects
Constraint (15) and makes it possible to meet the
data center power demand. This algorithm com-
plexity is obviously logarithmic: O(log2(maxApv))
with maxApv the largest possible surface area for

PV. This algorithm returns the setQ ofmaxWT+1
configurations (q, Apvq) including a number of q
WT between 0 to maxWT and the correspond-
ing surface area values Apvq of PV. Note that the
configuration with maxWT wind turbines does not
contain any photovoltaic panels.

A value of maxApv could be obtained by consid-
ering the surface area of PV required to produce
the total amount of energy EDC needed in the data
center only using PV so that the renewable power
production is not similar with the computer con-
sumption.

A value of maxApv could be obtained by consid-
ering the surface area of PV required to produce
the total amount of energy EDC needed in the data
center only using PV taking into account the fact
that the power production and the power consump-
tion occurs at different times, hence the need to use
the storage infrastructure.

In this worst case, energy production could be
stored first in hydrogen using electrolyzers be-
fore being consumed by the data center using fuel
cells. In this case maxApv is given by Equa-
tion (20):

maxApv =
⌈

EDC

E1P V × ηez × ηfc

⌉
(20)

where E1P V is the energy obtained by using spv =
1m2 of PV during the time horizon H.

E1P V =
K∑

k=1
Ik × spv × ηpv ×∆t (21)

Now, considering a given primary source configura-
tion (x WT and a surface area APVx of PV), it is
possible to size the storage devices, batteries and
hydrogen system.

5.2.3. Sizing of the storage system:
The strategy to design the storage system relies on
computing time slots of overproduction and under-
production for each day during the time horizon.
As a reminder of the rules of the storage usage given
in Section 5.2.1, the batteries are used during the
day to balance the hours of overproduction and un-
derproduction (fluctuations between day and night)
and the hydrogen system composed of electrolyzers

15



Algorithm 3: Computation of the set Q of pos-
sible configurations that respect Condition (15)
Input: maxWT , Pw, D
Output: Q = {(0, Apv0), . . . , (q, Apvq), . . .}

1 Function Electrical_sizing():
2 Q = ∅
3 for q = 0 to maxWT − 1 do
4 u← maxApv
5 l← −1
6 LOH0 ← LOHinit
7 LOHK ← 0
8 while u− l > 1 & LOHK 6= LOH0 do
9 apv ← b(u+ l)/2c

10 Ppv ← I × apv × ηpv (vector operation)
11 Pre← Ppv + q× Pw (vector operation)
12 LOHK ← storageSizing(D, P re)
13 if LOHK < LOH0 then
14 l← apv

15 else
16 u← apv

17 Q← Q ∪ {(q, u)}
18 return Q ∪ {(maxWT, 0)}

and fuel cells is used to balance days of overproduc-
tion and days of underproduction (seasonal fluctu-
ations).

Storage capacity. As the batteries operate on a day
scale, the difference between the maximum and the
minimum values of their capacity within the same
given day determines the sizing of the battery for
that day. The capacity BC of the batteries is equal
to the maximum computed daily capacities:

BC = max
1≤d≤K/Λ

(maxBCd) (22)

with ∀h such that 1 + (d− 1)Λ ≤ h ≤ d×Λ:

maxBCd = max
h

(BCh)−min
h

(BCh) (23)

As the hydrogen system operates on the seasonal
scale, the sizing of the tank is equal to the difference
between the maximum and the minimum level of
hydrogen. This is expressed as follows for all k (1 ≤
k ≤ K):

LOH = max
0≤k≤K

(LOHk)− min
0≤k≤K

(LOHk) (24)

As it is not possible to imagine before the sizing
process the initial level for batteries and hydrogen
tank to supply the data center using the mentioned
input data, they are arbitrarily set to 0. But after
the process it is then possible to set these initial
levels, BCinit at the beginning of each day and
LOHinit at the beginning of the year. They are
computed as absolute values of the minimum values
for BCk (respectively LOHk), 1 ≤ k ≤ K, since at
least one is necessary negative or null at that step
of the process:

BCinit =
∣∣∣∣ min

1≤k≤K
BCk

∣∣∣∣ (25)

LOHinit =
∣∣∣∣ min

1≤k≤K
LOHk

∣∣∣∣ (26)

Power of storage devices. To complete the sizing of
the storage system, batteries, and hydrogen system,
the power required for each device has to be defined
to be sure that the appropriate power is delivered
when the renewable sources are able to meet the
data center power demand. Considering the daily
storage usage as defined by the rules of the game
(Section 5.2.1), day after day for the entire duration
of the time horizon H, the nominal required power
globally for each device (PCH and PDCH for the
power the batteries, PEZ for electrolyzers, PFC for
fuel cells) are:

PCH = max
1≤k≤K

(Pchk)
PDCH = max

1≤k≤K
(Pdchk)

PEZ = max
1≤k≤K

(Pezk)
PFC = max

1≤k≤K
(Pfck)

(27)

5.3. IT and Power supply sizing summary
As a result, the optimal number of servers is ob-
tained from the IT workload. Then, the power sup-
ply sizing process is able to propose maxWT + 1
configurations: one only with wind turbines (full
WT configuration); one only with photovoltaic pan-
els (full PV configuration); the others with both
primary sources (1 WT, 2WT, etc.). Each config-
uration is known by its number of wind turbines,

16



its surface area of photovoltaic panels, and for each
of them the associated storage devices, power and
capacity for the batteries as a short term storage de-
vice, power and hydrogen tank size for the hydrogen
system as a long term storage device (electrolyzers
and fuel cells).

In the remainder of the paper, experiments show
the behavior and characteristics of these configura-
tions to help decision makers to choose the appro-
priate configuration for a standalone data center
only supplied with renewable energy.

6. Experiments

6.1. Input data
In this section, we explain the data used in the ex-
periments:

Workload The workloadW is generated following
the data from user requests recorded during
the Soccer World Cup in 1998 and available on
the web site1. We have used the same method-
ology as in [44].

The days with a high load in the trace (days 45
to 79) are first selected, then the load for each
of the 365 days of our workload is randomly
chosen among those selected days. The flexi-
bility of the tasks δ is set to 3 hours. Service
load is generated with a uniform distribution
requesting an equivalent of work in the 100-400
servers range;

Servers The servers are quad-core processors run-
ning at 2.5GHZ and consuming 350W .

Weather conditions To simulate the power pro-
duction of the primary sources (PV and WT),
one needs to download meteorological data
such as the irradiance I and wind speed V for
one year. These data can be obtained online
from various databases. In our case, the irra-
diance data is downloaded from the National
Solar Radiation Database (NSRDB) [35], and
the wind speed data is downloaded from the
wind prospector from the National Renewable
Energy Laboratory (NREL) [13]. These data
are collected hourly, every day from 2004 to
2012. The chosen localization is Los Angeles

1WorldCup’98 logs. http://ita.ee.lbl.gov/html/
contrib/WorldCup.html

with the coordinates: Latitude: 34.57; Longi-
tude -118.02; Elevation 807. The selected year
is 2004.

Power sources The input values of the primary
sources used in the power supply sizing process
are summarized in Table 3.

Table 3: Input values of the power supply sizing process

Notation Value Units
Pr 400 [kW ]
Vr 14 [m/s]
Vci 4 [m/s]
Vco 25 [m/s]
ηfc 0.6 –
ηez 0.6 –
ηch 0.8 –
ηdch 0.8 –
ηpv 0.15 –

6.2. Sizing of the IT infrastructure
The resulting sizing reaches 1098 servers with a
maximum power consumption of 384.3 kW. The re-
sult is shown in Figure 2 with the initial workload
(services in orange and batch tasks in blue) along
with the shifted load (due to the limited number
of servers) using Algorithms 1 and 2 which results
in the actual load in green. The peak power con-
sumption is 499.59 kW including the environmental
consumption (PUE of 1.3).

6.3. Sizing of the power supply infrastruc-
ture

In the following, as an illustrative case, the chosen
year of reference to size the power supply of the
data center is 2004 using the IT workload W pre-
sented before. As shown in [18], mathematical mod-
els based on time series are suitable to model solar
irradiation but are more difficult to apply to the
wind. We have also shown that the obtained power
supply sizing is different depending on the reference
year. The choice of the year 2004 is led by the fact
that during this reference year, the production of
electrical power by the photovoltaic panels and the
one by the wind turbines exhibit a complementar-
ity. It emphasizes the effect of the hybridization of
both primary sources. Indeed the power supply siz-
ing depends on the weather conditions and then on
the data center location. This work intends to show
how the sizing process works and does not intend
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Figure 6: Renewable power production in 2004 for each possible configuration found by the sizing algorithm to meet the data
center demand.

to infer general rules for the sizing itself. This lat-
ter choice stays with the decision maker who could
iterate on this process to take his decision choosing
between different locations and therefore weather
conditions.

Considering one reference year for the weather con-
ditions and a target workload demand, different
configurations are obtained for primary and sec-
ondary sources. For the year 2004, Table 4 il-
lustrates the possible configurations starting from
a configuration with only photovoltaic panels (full
PV), reaching a configuration with only wind tur-
bines (full WT), and exploring configurations with
both PV and WT. Each configuration is described
by the number of WT, the surface area of PV, the
power of electrolyzers, fuel cells and storage capac-
ity (batteries and hydrogen tank).

Table 4: Four different sizings of the power supply based on
the year 2004 and the workload of the 1998 soccer world cup
servers. Configurations are indexed by the number of WT.

config q Apvq [m2] BC [kWh]
#0 0 7258 5387
#1 1 3142 3050
#2 2 203 3889
#3 3 0 5613

config PEZ [kW] PFC [kW] H2 tank [kg]
#0 632 836 6296
#1 482 836 2884
#2 442 836 2216
#3 676 836 14643

As can be seen on Table 4, the choice of one pri-
mary source configuration (i.e., the surface of PV
and the number of WT) has a huge impact on the
secondary sources (i.e., the batteries and the hydro-
gen components).

6.3.1. Influence of the primary source configuration
on the annual power production

Algorithm 3 has computed each possible primary
source configuration to face the data center demand
during the year 2004, considering the sun and the
wind profiles. Figure 6 shows the power supplied by
these primary sources, day after day for the four dif-
ferent configurations obtained, the power demand
(in red) being the same. As expected, the power
profile in the full PV configuration (#0) follows a
bell shaped curve, due to the seasonal alternation of
the day duration: the maximum is reached in sum-
mer and the lowest level in winter but from day
to day, the evolution of the power production is
smooth. On the contrary, in the full WT configura-
tion (#3), the mean value of the power production
is much more regular all along the year, even if a
seasonality is sensible with a slight deficit of wind in
summer (see Figures 7 and 8). But its variability is
much higher from one day to another. In Configura-
tion #1 and Configuration #2, the variability of the
WT production dominates, but the higher the PV
surface area, the lower the production peaks.
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Figure 7: Renewable power production in February 2004 for
each possible configuration found by the sizing algorithm to
meet the data center demand.

6.3.2. Influence of the primary source configuration
on the battery sizing

The rule governing the battery sizing is that its
charge should return to its initial state at the end
of each day. The initial state has been set to an
intermediate value between fully charged and fully
discharged, the reason being that it should be able
to face any situation at dawn, a sunny day or a
cloudy one. Then, the sizing of the battery depends
on a daily variation. In the full PV configuration,
the longer nights in winter are dominant in the siz-
ing of the battery, i.e., the 172nd day of the year
at the summer solstice, leading to a 5387 kWh ca-
pacity. In the full WT configuration, the highest
variation of the power production from one day to
another governs it, leading to the largest capacity
of 5613 kWh, being of the same order than Con-
figuration #0. Configurations #1 and #2 lead to
lower capacities as they take advantage of the com-
plementarity of the primary production, the pho-
tovoltaic panels smoothing the daily variability of
the WT and the wind power smoothing the seasonal
variation of the PV production.

6.3.3. Influence of the primary source configuration
on the hydrogen component sizing

It can be seen that the configuration has no influ-
ence on the sizing of the fuel cell. Indeed, for each
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Figure 8: Renewable power production in June 2004 for each
possible configuration found by the sizing algorithm to meet
the data center demand.

configuration, there is one solely time slot in the
IT workload which sets this value at the same peak
power demand, according to Equation (27).

Concerning the hydrogen tank and the electrolyzer,
their sizing is governed by two rules. First, all the
renewable energy should be stored and cannot be
lost. It means that the disconnection of a wind
turbine or a PV module is not considered. Once
the battery is fully charged, the electrolyzer has to
convert all the excess primary power produced into
hydrogen which should be stored in the hydrogen
tank. Second, the level of the hydrogen tank should
tend to go back to its initial level as imposed by
Condition (15).

Figure 9 shows the evolution of the hydrogen stor-
age during the year. The hydrogen storage of the
full WT configuration diverges. As a matter of fact,
the number of WT is set to comply with the de-
mand of the data center but the power produced
by one turbine cannot be modulated. This leads to
an oversizing of the installation, as the third WT
is used in place of only 203m2 of PV. As a conse-
quence the constraint on the level of the hydrogen
tank at the end of the year cannot be respected. To
convert all the power overproduced by the oversized
WT set, the electrolyzer sizing reaches the highest
value of 676 kW.
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In the case of the full PV configuration (#0), the
constraint on the level of hydrogen back to its ini-
tial value is respected. The evolution of the storage
follows the seasonal bell shaped curve of the so-
lar production. The lowest storage level is reached
at the winter solstice (i.e., 172nd day of the year)
and the highest at the summer solstice (i.e., 355th

day of the year). As the gap between the primary
power available in summer and the power available
in winter is rather high, the power need of the elec-
trolyzer is of the same order as the full WT case
(#3).

In Configuration #1, the amplitude of the storage is
reduced compared to the full PV but the evolution
is still dominated by the seasonality. In Configura-
tion #2, the seasonality between summer and win-
ter is almost damped and the constraint of the level
of hydrogen back to the initial value is respected.
In both cases, the power of the electrolyzer is about
the same, about 30% reduced compared to full PV
or full WT cases.
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Figure 9: Evolution of the level of hydrogen in tons for each
configuration day after day during year 2004.

6.4. Sizing assessment

In this section, in order to evaluate the sizing as-
sessment, the same IT load as used in the previous
section is shifted repeatably by one hour during a
day until reaching a shift of 23 hours. As a result,
we obtain 23 new IT power demands. These loads
are used as inputs of the proposed sizing method-
ology.

6.4.1. 24 IT loads
First of all, in order to identify the nature of the
considered workload (i.e., if the demand is greater
during the night or during the day), the average
of the load has been calculated per hour over the
year. This computation provides the hourly aver-
age demand of power considering the whole year
(Figure 10).
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Figure 10: The average hours accumulated over the year of
the IT load. Hour 0 corresponds to 0:00 am.

One can see that the majority of the power demand
is executed after the second part of the afternoon.
By shifting this workload hour by hour, the impact
on the sizing of the power supply infrastructure is
identified.

6.4.2. Power supply infrastructure
Based on the results obtained by Algorithm 3, one
can see in Figure 11 that the configuration of the
primary sources is hardly changed. As a matter of
fact, the energy supplied to the load over the whole
year is produced by the primary sources, i.e., the
wind turbines and the photovoltaic panels. The
shifting of the load has not changed significantly
the global need of energy over the year, the impact
is indirect due to the efficiency of the power con-
version involving the storage. In Figure 11, it can
be seen that the surface of PV is slightly decreased
around the 9 hours shift in the full PV and the 1WT
configuration because it corresponds to a load pro-
file following more or less the bell shaped profile
of the solar illumination. The maximal number of
wind turbines is submitted to Constraint (16): it
remains equal to 3 because the variation of the an-
nual energy load induced by the efficiency of the
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storage conversions is much smaller than the yearly
production of one additional wind turbine.
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Figure 11: Evolution of the surface area of the photovoltaic
panels as a function of the shift of the IT load.

In the same way, the capacity of the hydrogen tank
is almost stable. Indeed, shifting the workload dur-
ing the day only affects the daily but not the annual
imbalance between demand and power supply. In
Figure 12, one can see that the load shift has a
strong impact on the battery sizing. In fact, from
a shift of one hour to another, the battery capacity
significantly changes. As expected, the highest im-
pact concerns the full PV configuration when shift-
ing the initial workload by 8 hours makes the work-
load following the bell shaped solar production, re-
ducing the need for the daily storage. This synchro-
nization is still reasonable for Configuration #1.
The effect of the shifting on the battery sizing in
Configurations #2 and #3 is lower but exists and
is more complex to analyze as the wind profile is
not as regular as the solar one. Nevertheless, there
is a better synchronization between the workload
and the wind production with a shifting beyond 10
hours.

To conclude, the variation of the IT load during
the hours of the day has only an impact on the siz-
ing of the battery capacity which balances the day
and night alternation. The proposed sizing method-
ology provides different possible configurations for
the renewable primary sources that are not affected
by workload variations. The overall approach leads
to a robust sizing. In case the workload has more
variability, a negotiation can be initiated at runtime
between the IT scheduling and the power supply

storage management to adapt the power demand
(i.e., by changing the task scheduling of the cur-
rent workload) and to make the supply of the data
center demand possible [41].
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Figure 12: Evolution of the battery capacity as a function of
the shift of the IT load.

6.5. Discussion
Now that we have analyzed the influence on dif-
ferent parameters on the sizing, it is legitimate
to question the robustness of the approach de-
fended in the paper and to extend this discussion
to external parameters such as weather conditions
(sun and wind) and submitted workloads day after
day.

The first question concerns the influence of mete-
orological conditions. There is no reason that the
meteorological conditions of future years should be
the same as the one used for sizing the power sup-
ply part of the data center. What is the risk in
such an unavoidable case? If the wind blows often
enough, especially in winter and if the sun shines
without clouds, the primary renewable energy pro-
duction will be higher than expected by the sizing
process. In this case, either the hydrogen level at
the end of the year of the considered horizon H
will be larger than expected or, in a worst case, the
hydrogen tank capacity will not be large enough
to store the whole energy overproduction. Indeed,
the overproduction is stored in form of hydrogen as
shown in Figure 4. Conversely, if the wind does not
blow and the sky is cloudy especially in summer,
the part of the renewable energy supplying directly
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the data center demand will be reduced compared
to the expected one. Then the hydrogen storage
will be more frequently solicited to compensate the
shortage of power. The stored hydrogen level will
decrease and will not be regenerated enough by the
overproduction days. So, it appears, that the risk
of having meteorological conditions that differ from
the one on which the sizing process is based on, is
that the tank could be full or empty sooner than ex-
pected. A way to cope with this problem is to buy
or sell hydrogen. The capacity of the tanks is high
(we consider tons of hydrogen), so this decision can
be easily scheduled without risking to jeopardize
the safety of the data center supply. This decision
has not to be seen as a failure in the data center
management: the hydrogen market exists and new
hydrogen usage is expanding, especially in the vehi-
cle domain, electrical bus or cars using fuel cells and
batteries [19]. Moreover, buying certified green hy-
drogen (i.e., hydrogen certified to be produced from
renewable energy and not from fossil fuels) is con-
venient and keeps the computation within the data
center totally green.

Another possible way to deal with meteological con-
ditions is to apply the generic methodology pro-
posed on several years to cover different meteorolog-
ical scenarios and to prevent such a situation. But
as shown in Sections 4 and 5, the primary source
combination depends on the whole energy that has
to be produced so as to meet the power demand us-
ing more or less storage facilities. So the sizing pro-
cess will result in a worst case solution only based
on the year with adverse weather conditions which
leads to an oversizing of the infrastructure in most
cases as shown by M. Haddad in her PhD thesis [17].
This oversizing versus most of the annual weather
conditions leads to an oversized total cost of owner-
ship and is hardly acceptable from the economical
point of view. In any case, situations can occur in
which the hydrogen tank will never be large enough
and the data center becomes a hydrogen producer
and uses a small part of the hydrogen produced to
supply the computation facilities. But this is an-
other economical model beyond this study.

An alternative is to consider each sizing combina-
tion set, one for each reference year, and to pro-
pose the average sizing to the decision makers. In
this case, M. Haddad also shows in [17] that the
hydrogen shortage or hydrogen overproduction is
reduced when considering a year with either ad-
verse or favorable weather conditions. In this case,

the volume of hydrogen to buy or to sell each year
for keeping Constraint 15 true is not huge. In
some cases, a small oversizing of the tank capac-
ity could be tolerated in order to increase slightly
the system resilience. This is a promising option be-
cause using the most representative year in terms
of weather conditions is very difficult. Indeed,
weather models are very difficult to built, especially
for the wind [18], and remain extremely location-
dependent.

Finally, the last situation in which the sizing can
be less efficient than expected is when the data cen-
ter computation demand is not what was foreseen,
leading to a miss-predicted power demand. If the
demand is low, the power supply part will produce
more than the data center consumes and hydrogen
will be sold or stored, waiting for days where the
demand will be higher. But this is not the most
probable scenario. Conversely, if the demand is in-
creasing day after day knowing that digital services
and applications are more present everywhere each
day, and knowing that the power supply infrastruc-
ture is built for years, buying hydrogen is not the
right answer. In the particular case where compu-
tation demands are exceptionally high, they can be
regulated using a negotiation process between parts
at runtime as mentioned before. In the other cases,
one option is to overestimate the demand but the
risk is now to oversize the power supply part. On
the other hand, since the life cycle of the servers
is about five years, much less than the wind tur-
bines (between thirty and fifty years), and since
the computation efficiency of servers increases while
their power consumption decreases, the increased
demand can be contained by the power supply part
even if designed years before. In addition, PUE to-
day is smaller than it was ten years ago thanks to
other cooling technologies, it should decrease more
in the future. Sheikh et al. have proposed a com-
prehensive survey in [37] of thermal aware schedul-
ing research that aim at improving the cooling effi-
ciencies of a multi-core processing systems in data
centers or computing centers. Changing partially a
given surface area of photovoltaic panels will also
be mandatory because of aging and acts to increase
the global efficiency of the platform.

To conclude, it does not seem impossible to use the
initial sizing for years using these recommendations,
if the initial specifications of the data center are the
right ones.
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7. Conclusion and Future Work

In this research work, we designed an on-site data
center solely powered by local renewable energy
(sun and wind) and using short term and long term
energy backups. The hybrid renewable energy sys-
tem consists of photovoltaic panels and wind tur-
bines as primary sources. Batteries and hydrogen
system aim at storing energy to overcome the short-
comings of primary sources energy during days and
to compensate seasonal variations in the renewable
power production. Moreover, the IT power demand
is also not constant. The proposed sizing methodol-
ogy allows following the data center power demand
day after day and provides the necessary produc-
tion by the primary sources to start each year with
the same level of hydrogen.

Specifically, we investigated both the IT and power
supply infrastructures. This study was divided in
two steps: (1) determining optimally the necessary
number of servers of the data center for processing
a given IT workload and (2) giving a set a power
supply infrastructure needed to meet the IT power
demand. To the best of our knowledge, this study is
the first of its kind, proposing a proven optimal IT
sizing together with associated power supply com-
binations. One originality of the paper is to pro-
pose a generic methodology for both IT and elec-
trical sizing. First, the workload and the scheduling
that obtain the minimal needed number of servers
to process the workload by respecting a given qual-
ity of service could be replaced by others depending
on the target IT applications or IT models without
impacting the methodology. Second, the meteoro-
logical conditions of a reference year and the yearly
power demand (hour by hour) could be changed,
resulting in a different power sizing.

Another originality of this work is that the output
of the sizing process is a set of infrastructure sizing
combinations, given an IT workload and a data cen-
ter location with its weather conditions. Indeed the
specificity of the WT in comparison with PV is that
the WT can be considered as a discrete entity (0, 1,
2 or 3 WT) while PV as continuous value (surface
area): For each possible number of WT corresponds
a surface area of PV and associated energy storage.
Comprehensive experiments are conducted to show
the pros and cons of each possible PV-WT combi-
nation. A discussion allows the decision maker to
select the best data center infrastructure depending
on the context.

Finally, we showed that the workload peak within
a day has only an influence on the battery capac-
ity, the sizing of other elements being robust. This
corroborates the fact that a better synchroniza-
tion between the power demand and the renewable
power production leads to a smaller battery over-
sizing. This is a very promising perspective to in-
crease cross-dependencies between IT and HRES
sizing. Moreover, discarding extreme values (power
demand and weather conditions) while using our
proposed sizing methodology could probably reduce
the sizing with only a small percentage of QoS vio-
lations.
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