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A number of physical processes in laser-plasma interaction can be described with the two-fluid plasma model.
We report on a solver for the three-dimensional two-fluid plasma model equations. This solver is particularly
suited for simulating the interaction between short laser pulses with plasmas. The fluid solver relies on two-
step Lax-Wendroff split with a fourth-order Runge-Kutta scheme, and we use the PseudoSpectral Analytical
Time-Domain (PSATD) method to solve Maxwell’s curl equations. Overall, this method is only based on finite
difference schemes and fast Fourier transforms and does not require any grid staggering. The PseudoSpectral
Analytical Time-Domain method removes the numerical dispersion for transverse electromagnetic wave propa-
gation in the absence of current that is conventionally observed for other Maxwell solvers. The full algorithm is
validated by conservation of energy and momentum when an electromagnetic pulse is launched onto a plasma
ramp and by quantitative agreement with wave conversion of p-polarized electromagnetic wave onto a plasma
ramp.

INTRODUCTION

Chirped pulse amplification technology in 1985 [1] has
made possible the generation of extremely powerful laser
pulses [2]. When a solid, liquid or a gas is irradiated by such
a powerful pulse, the ionization phenomena swiftly create a
plasma at the surface of the material or within the gas. The
development of applications such as inertial fusion [3], laser-
plasma accelerators [4], laser materials processing [2], X-Ray
lasers [5] or nonlinear plasmonics at lower intensities[6] re-
quires laser plasma interactions modeling.

Hydrodynamic models are particularly useful to describe
short pulse interaction with plasmas when each of the species
can be assumed in local thermodynamic equilibrium [7]. The
two-fluid plasma equations is the starting point of the hy-
drodynamic models [8]. This model describes the spatio-
temporal evolution of the density, mean velocity and pres-
sure of electrons and ions fluids. The two-fluid plasma equa-
tions therefore consist of two sets of Euler equations with
source term, as well as Maxwell’s equations. The fluid de-
scription involves the assumptions of local thermodynamic
equilibrium for each species (electrons, ions). The conven-
tional hydrodynamic models, e.g., two-temperature plasma
equations, single-fluid equations and MagnetoHydroDynamic
(MHD) can be derived from the two-fluid plasma model by
means of additional assumptions.

At present, solving the complete two-fluid plasma equa-
tions is a difficult challenge[9]. Their implementation is often
complex for non-specialist groups since most of these codes
are developed to be particularly robust for shock’s problems.
A good example is given in Shumlak et al. [10] which present
an algorithm based on Roe-type Riemann solver [11] for the
two-fluid plasma model. The same group added the high-
order discontinuous Galerkin method to improve the result’s
accuracy [12–15]. References [16–20] describe numerical
methods well adapted for shock’s problems. In contrast, for
problems without strong shocks, our group has recently pro-
posed a relatively simple approach [21], based on finite differ-
ence schemes and Fast Fourier Transform (FFT). This solver
is based on the PseudoSpectral Time-Domain method (PSTD)
[22] to solve Maxwell equations and a composite scheme [23]
to solve the fluid equations. However, the PSTD is based on
a temporally staggered grid, which requires temporal inter-
polations for the coupling with the fluid solver. In addition,
the PSTD algorithm is numerically dispersive. It emits wave
components that are faster than light.

J.-L. Vay et al. [24] proposed the PseudoSpectral Analyt-
ical Time-Domain (PSATD), and its application to pseudo-
spectral Particle-In-Cell (PIC) simulations. In PSTD, the tem-
poral integration is performed via finite differences, while in
PSATD, the integration is analytical (except for the integra-
tion of current). Thus, unlike PSTD, the PSATD requires no
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temporal staggered grid and is free of numerical dispersion
for transverse electromagnetic propagation in the absence of
current (see Fig. 1 of J.L. Vay et al. [24]). This method is also
particularly well adapted for laser pulse propagation. The al-
gorithm is tested with laser/plasma interaction problems with
intensities around 1014 to 1015 W/cm2, since it is intended for
the study of electron/hole plasma dynamics in solids.

Here, we build a two-fluid plasma solver based on
PseudoSpectral Analytical Time-Domain PSATD for solv-
ing Maxwell’s equations. A schematic representation of our
solver is given in Fig. 1. The integration of Maxwell’s
equations is performed by using the PSATD method. The
electromagnetic fields are transmitted to the fluid equations
as a Lorentz force source term. The fluid equations are in-
tegrated by using a Strang splitting [25]. In the splitting,
the homogeneous system is solved via a Lax Wendroff (LW)
scheme, while the source terms are integrated with a fourth-
order Runge-Kutta scheme (RK4). The updated fluid vari-
ables are used to calculate the current density, which is in-
jected in Maxwell’s equations.

LW

Fluid equations

PSATD RK4

Maxwell equations

Strang splitting

FIG. 1. Schematic representation of the solver’s structure.

This paper is divided in four main parts. We will first recall
the two-fluid plasma model equations before summarizing the
numerical integration. We will then validate the solver and
demonstrate its benefits in terms of numerical dispersion and
in the reduction of the constraint imposed on time-steps with
the solver of reference [21].

RESULTS

Two-fluid plasma equations

The two-fluid plasma model equations consists of Eu-
ler equations with source term for each fluid, as well as
Maxwell’s equations. This system of equations corresponds
to continuity equations, motion equations and energy trans-
port equations for electron and ion fluids. Following reference
[26], the fluid equations can be presented under the following

form:
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where U is the fluid variables vector, F(U) is the flux ten-
sor and S(U,E,B) is the Lorentz force source term. In this
paper, i and e are indexes related respectively to the ion fluid
and to the electron fluid. q is the charge, m the mass, ρ the
mass density, u the mean velocity, p the pressure, ε the fluid
energy density, E the electric field and B the magnetic field.
⊗ is tensor product and I is the identity matrix.

One more equation is required to close the system of equa-
tion, an ideal gas closure for each fluid k is used [26]:

εk ≡
pk

γ − 1
+

1

2
ρkuk

2 (2)

where γ is the adiabatic index.
Electric and magnetic fields in the source term S(U,E,B)

are determined by the Maxwell equations. Since solving fluid
equations and Maxwell’s curl equations enforces the conser-
vation of divergence properties of the fields [27], it is not
necessary to solve Maxwell’s divergence equations. However
they must be satisfied at an initial time. Furthermore, Maxwell
curl’s equations can be written by expressing the current den-
sity J as function of fluid variables:

∇×E = −∂B
∂t

(3)
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]
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+
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c2
∂E
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(4)

Here, ε0 and µ0 are respectively the vacuum permittivity and
permeability. c = (ε0µ0)−1/2 is the speed of light. εr is the
relative permittivity of the background medium: we do the
assumption that this quantity is time and space independent.
In this model, the plasma is also contained inside a medium
of relative permittivity εr.

The numerical integration

The Maxwell solver

As mentioned in the introduction, the PSATD method [24]
is used for solving Maxwell curl’s equations. This method
is simple to implement and does not need the staggering of
spatial and temporal grids. This is in contrast with the Finite
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Difference Time Domain (FDTD) method [28] which requires
spatially and temporal staggered grids or in contrast with the
PseudoSpectral Time-Domain (PSTD) [22] which requires a
temporally staggered grid. The PSATD is therefore more flex-
ible to be coupled with another algorithm without interpola-
tions. Moreover, in absence of current, PSATD induces zero
numerical dispersion in contrast with FDTD or PSTD. An ad-
ditional strong benefit is that the PSATD is not subject to a
Courant condition for transverse electromagnetic field propa-
gation in the absence of current. The PSATD algorithm is in-
herently periodic because it is based on FFT, but open systems
can be modeled by using Perfectly Matched Layers (PML) as
in O. Shapoval et al.[29].

The PSATD algorithm provides the fields in the Fourier
space [24]:

Ẽn+1 = C0Ẽ
n + ivS0κ× B̃n − 1

ε0εr

S0

kv
J̃n+1/2

+(1− C0)κ · (κ · Ẽn) +
1

ε0εr

(
S0

kv
−∆t

)
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(5)

B̃n+1 = C0B̃
n − iS0

v
κ× Ẽn + iµ0

1− C0

k
κ× J̃n+1/2 (6)

where ã is the Fourier transform of the quantity a. Here
C0 = cos (kv∆t), S0 = sin (kv∆t), κ = k/k and v = c

ε
1/2
r

.
The two main assumptions made in the PSATD method are:
1) the time-step ∆t is enough small to assume that the current
density is constant over a time-step 2) the background permit-
tivity εr is uniform.

The fluid solver

For the fluid equations solver, we consider a similar solver
as in reference [21]. Here, we simplified the solver by re-
stricting ourselves to problems without discontinuities such
that it becomes unnecessary to introduce numerical dissipa-
tion to make gradient smoother. Instead of using a compos-
ite scheme LWLFn as in reference [21], we will use a simple
two-step Lax-Wendroff (LW) scheme [30] which is second or-
der accurate and introduces less numerical dissipation than the
two-step Lax-Friedrichs (LF) scheme [31]. The LW scheme
solves the homogeneous part of Eq. (1), as we recall below.

First, we set Lx the operator for the two-step LW along x
direction:
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where j, l and m are respectively indexes for x, y and z di-
rections. Similar operations are done in y and z directions
as reference [21] to obtain Ly(Un

j,l,m) and Lz(Un
j,l,m). A ba-

sic spatially dimensionally-split scheme is used to obtain the
value Un+1

j,l,m from Un
j,l,m [32]:

Un+1
j,l,m = LxLyLz(Un

j,l,m) (10)

For the numerical integration of the source term
S(U,E,B) of Eq. (1), we use the Strang splitting technique
presented by G. Strang[25]. The Strang splitting allows an
estimation of current density Jn+1/2 at a half time step of
PSATD. The concept of Strang splitting is shown on the steps
1, 2 and 4 in Fig. 2. We first integrate the source term with an
RK4 scheme over ∆t/2, then the homogeneous system is in-
tegrated over ∆t with an LW scheme, and finally source term
is again integrated with an RK4 over time step ∆t/2.

Full two-fluid plasma solver algorithm

The full algorithm for the two-fluid plasma model is de-
scribed in Fig. 2 and can be decomposed in 4 main steps:

1. Integration of the source term with an RK4 scheme over
a temporal step ∆t/2 by using En, Bn and Un to obtain
the intermediate value of fluid variables U∗.

2. Integration of the homogeneous system with an LW
scheme over a temporal step ∆t using fluid variables
vector U∗ to obtain a new intermediate value U∗∗.

3. Computation of the current density Jn+1/2 with densi-
ties and velocities from U∗∗. Then, carry out a PSATD
step with Jn+1/2 to calculate En+1 and Bn+1.

4. Integration of the source term with an RK4 algorithm
over a temporal step ∆t/2 using U∗∗, En+1 and Bn+1

to obtain the final value of fluid variables Un+1.

The PSATD naturally represents all field values at the nodes
of a grid, it also avoids temporal interpolation of the magnetic
field that was necessary in reference [21].

For the PSATD algorithm alone without currents, the sam-
pling is in principle only limited by Nyquist theorem. How-
ever, in order to derive Eqs. (5) and (6), we make the assump-
tion that the current is constant over the temporal step ∆t.
Therefore, the temporal step is chosen small enough to make
this assumption valid. The spatial step ∆x is simply chosen
to resolve the both plasma and electromagnetic waves.
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FIG. 2. Schematic representation of the algorithm. The source term is integrated with an RK4 scheme while the homogeneous system is
integrated with an LW scheme. Maxwell’s equations are solved with the PSATD method. The algorithm requires four steps shown in red to
advance fluid variables and fields from a time step n to n+ 1.
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Validation of the numerical solver

S-polarized electromagnetic wave over a plasma ramp

In this first test, we check the conservation of momentum
and energy during reflection of a s-polarized electromagnetic
wave over a plasma ramp. The numerical setup is shown in
Fig. 3. A laser pulse is propagating toward an overcritical
plasma ramp with an angle of incidence θ = 15◦. The ini-
tial plasma density profile is invariant in y and z directions,
and the following initial density profiles, for electron and ion
fluids, are used in x direction:

ne = ni =

 0 for x > −5µm
0.57× 1021(5− x) for − 5µm ≤ x ≤ −10µm

2.85× 1021 for x < −10µm
(11)

where ne ≡ ρe/me and ni ≡ ρi/mi are given in cm−3.
The length in x direction at which the critical density nc =
1.75× 1021 cm−3 is reached is L = 3.08 µm. We add a weak
uniform background density of 1017 cm−3 to avoid divisions
by zero in the algorithm and too strong discontinuity at the
ramp onset. In this test, the uniform background is vacuum:
εr = 1. For the plasma, we take me = 9.11 × 10−31 kg,
mi = 1837me and γ = 5/3. The initial mean velocities and
pressure are zero.

The laser pulse is a spatially Gaussian beam with a waist
w0 = 4 µm and is described temporally by a single period of
a sin2 function (period T = 40 fs). The free-space wave-
length is λ = 0.8 µm and the amplitude in free-space is
E0 = 4.3×1010 V/m. We choose this electric field amplitude
to demonstrate the possibility of working with high field am-
plitudes with this algorithm. Note that the beam is invariant
along z direction.

The number of points in x and y directions is Nx = Ny =
512 and Nz = 2 is z direction. PML (resp. open) bound-
ary conditions in x and y directions for PSATD (resp. fluid
algorithm) are implemented. For fluids and fields, periodic
boundary condition are used in z direction. The spatial step
is ∆x = ∆y = ∆z = 60 nm and the temporal step is
∆ = 96 as.

In Fig. 4(a), we plot the different momenta in x direction
as function of the simulation time. These momenta are nor-
malized to the absolute value of the x momentum P0 of the
incident pulse. To measure the normalization factor P0, we
performed beforehand the simulation without the plasma, and
we measure the x momentum of the pulse defined by the x
component of the Eq. (12) integrated over the simulation win-
dow.

The density of electromagnetic momentum is defined by
[33]:

Pem = ε0E×B (12)

The dashed red curve of Fig. 4(a) corresponds to the nor-
malized electromagnetic x momentum density integrated in

the simulation window. The dashed dotted blue curve corre-
sponds to the normalized fluids xmomentum integrated in the
simulation window. The momentum of fluids is defined by:

Pf = ρeue + ρiui (13)

The black line of Fig. 4(a) is the sum of the electromagnetic
and fluids x momentum.

We observe three main sequences in Fig. 4(a):

• 1: Since the laser pulse goes from the right to the left,
the electromagnetic momentum along x (red dashed
curve) decreases as the pulse enters into the simulation
window (between t = 0 and t < 50 fs). At t = 50 fs,
the pulse is completely contained in the simulation win-
dow and has not yet interacted with the plasma ramp.
We see that the electromagnetic x momentum corre-
sponds to the incident pulse x momentum −P0.

• 2: In the temporal window 70-130 fs, momentum ex-
change with the plasma takes place: the fluids momen-
tum decreases until−2P0, whereas the electromagnetic
x momentum increases until reaches +P0. This is the
signature that the laser pulse transfers twice its initial
momentum to the plasma during its reflection, as can
be expected.

• 3: Between 170 fs and 210 fs, the reflected pulse leaves
the simulation window, thus the electromagnetic mo-
mentum goes back to zero.

We see that the momentum is preserved over the temporal
window over which the pulse is fully enclosed within the sim-
ulation window. The error on the conservation of the total
momentum is slightly less than 1%. It is reasonable in view
of the chosen spatial and temporal steps. The numerical al-
gorithm also preserves the conservation of momentum with a
good accuracy.

In Fig. 4(b), we plot the linear density of energy as function
of simulation time. The dashed red curve correspond to the
electromagnetic energy density [33]

Uem =
1

2

[
ε0E2 +

1

µ0
B2

]
(14)

that we have integrated over the x − y plane. The dashed
dotted blue (resp. dashed green) corresponds to the electron
fluid (resp. ion fluid) energy density given by Eq. (2) and then
integrated over the x − y plane. The total energy plotted in
black line is defined as the sum of electromagnetic, electron
fluid and ion fluid energies. The linear density of energy of the
input pulse in the x − y plane can be calculated analytically
and is given by: ELaser =

E2
0

2

√
ε0
µ0

3
8Tw0

√
π
2 = 0.19 J/m.

This analytical linear density of energy is shown as a black
dotted line in Fig. 4(b).

We observe the three main sequences in Fig. 4(b):

• 1: The electromagnetic energy increases as the pulse
enters into the numerical window between t = 0 and
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t < 50 fs. At t = 50 fs, the pulse is completely
contained in the numerical window and has not yet in-
teracted with the plasma ramp. The electromagnetic
energy corresponds to the predicted analytical value
ELaser.

• 2: In the temporal window 70-130 fs, energy exchange
with the plasma takes place (the electron energy in-
creases).

• 3: Between 170 fs and 210 fs, the reflected pulse leaves
the integration volume and the electromagnetic energy
decreases. No electromagnetic energy remains in the
simulation window. This is expected for s-polarized
wave.

We remark the conservation of the energy when the pulse is
fully in the simulation window. The error on the conservation
the total energy is around 0.1%. The numerical algorithm also
preserves the energy conservation with a good accuracy.

Figs. 4(a) and 4(b) demonstrated conservation of momen-
tum and energy during s-polarized reflection over a plasma
ramp.

Wave conversion on plasma density ramp

In this second test, we consider the same numerical setup
as shown in Fig. 3, but we inject a p-polarized laser pulse.

The energy of the system is plotted as a function of time
in Fig. 5(a). In the central white area, the error on the con-
servation the total energy is around 0.1%. Furthermore, we
observe for the sequence n◦4 that a fraction of the input en-
ergy remains in the simulation box while the laser pulse has
left. This is due to the phenomenon of wave conversion onto a
inhomogeneous plasma, i.e. conversion of an electromagnetic
wave into a plasma wave which occur only for p-polarization
[34].

The conversion factor depends in particular on the plasma
density gradient and the angle of incidence. Obtaining analyt-
ical solutions to this difficult problem usually requires a num-
ber of approximations. We performed a series of simulations
with different angles of incidence, and we plot (blue circles)
in Fig. 5(b) the factor of the energy conversion as function of
the quantity τ2 =

(
2πL
λ

)2/3
sin2 θ.

We compare conversion factors obtained with the
PSATD/Hydrodynamic code (this work) and results of the lit-
erature. The PSATD/Hydro conversion factor curve is quan-
titatively superimposable to the one obtained the PSTD/hydro
simulation (blue crosses) obtained in reference [21]. Our re-
sults are also in agreement with the analytical results of D.E.
Hinkel-Lipsker et al. [35], with T. Speziale et al. who de-
scribed the asymptotic behaviors [34] and also with those of
D.W. Forslund et al. who have used Particle-In-Cell (PIC)
simulations [36]. The fact that we injected a short pulse (poly-
chromatic) gaussian beam instead a monochromatic plane

wave can explain the tenuous differences. In addition, the an-
alytical results of references T. Speziale et al.[34] and D.E.
Hinkel-Lipsker et al.[35], have carried out assumptions that
are not exactly fulfilled in our numerical test. This can explain
the minor discrepancies observed. But overall, the results we
obtained with the present solver are in good agreement with
the state of the art.

DISCUSSION

In this section, we compare the benefits and drawbacks of
PSATD/Hydro solver compared to PSTD/Hydro solver. We
numerically simulate a single cycle pulse plane wave in nor-
mal incidence onto a plasma ramp. The laser wavelength and
plasma parameters are identical to the ones of Fig. 3. The
pulse amplitude is E0 = 4.3× 1010 V/m. The computation is
performed in 3D, with the same numerical sampling param-
eters as in Fig. 3. We use the periodic boundary conditions
in y and z directions. For the PSTD/Hydro solver, the time-
step is fixed to ∆t = 50 as since we are constraint by Courant
Friedrichs Lewy (CFL) conditions [22]. In contrast, the time-
step for the PSATD/Hydro solver is set to ∆t = 200 as, as it is
only constrained by the sampling of the laser and the plasma
wave frequencies.

In Fig. 6(a), we show a snapshot during propagation of
the laser pulse with the different solvers. The snapshot is
taken when the pulse has propagated through vacuum and
just reaches the onset of the plasma ramp. We see that the
PSATD/Hydro solver result (solid blue line) is precisely su-
perimposed on the analytical solution in black dashed line. In
contrast, the PSTD/Hydro solver (red dashed-dotted line) ex-
hibits distortion of the laser pulse. Indeed, pre-pulses are gen-
erated by numerical dispersion of the PSTD algorithm. The
amplitude of the last artifact pre-pulse (located at x ≈ −5 µm)
reaches around 15% of the amplitude of the main peaks.

In Fig. 6(b), we plot the velocity component vz of the elec-
tron fluid at the same time of the snapshot of Fig. 6(a). We ob-
serve that the laser pulse has not yet interacted with the plasma
in the PSATD/Hydro simulation (blue line). However, in the
PSTD/Hydro simulation (red dashed-dotted line), the artifact
pre-pulses already interact with the plasma and accelerate the
electrons to velocities around 105 m/s. This effect is obvi-
ously undesirable, particularly in the case of the simulation of
few cycle laser pulses with plasmas [37].

We also obtained better results in the PSATD/Hydro simu-
lation whereas the time-step ∆twas 4 times greater than those
in PSTD/Hydro simulation.

The PSATD/Hydro solver is well suited to pulse propaga-
tion. Specifically, the fact that PSATD is not constraint by
the CFL condition, releases the strong numerical link between
spatial and temporal sampling. The computational gain is
therefore particularly significant in the case where high spa-
tial resolution is required together with less demanding tem-
poral resolution. We finish this section by reminding that the
PSATD method requires that the background medium permit-
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tivity is uniform.
As a conclusion, we have developed a solver for the two-

fluid plasma model based on a relatively simple technique,
which does not necessitate staggered grids and which ben-
efits of fundamentally having no numerical dispersion for
the propagation of electromagnetic waves in absence of cur-
rent. The algorithm relies on the PseudoSpectral Analyti-
cal Time-Domain (PSATD) technique which is a powerful
method for propagating laser pulses, and on a combination of
two-step Lax-Wendroff (LW) and fourth-order Runge-Kutta
(RK4) for the fluid equations. We have demonstrated that the
PSATD/Hydro solver preserves momentum and energy dur-
ing a test with s-polarized laser pulse incident over a plasma
ramp. The tests of wave conversion on plasma ramps have
demonstrated an excellent quantitative agreement with numer-
ical and analytical results of the state of the art. We have
shown that PSATD/Hydro solver has two main advantages
compared to the PSTD/Hydro solver: the pre-pulses gener-
ated by numerical dispersion are removed and the time-step is
not constraint by CFL conditions. For simulations which re-
quire low temporal resolution and high spatial resolution, the
gain in terms of computational resources with PSATD/Hydro
solver can be really significant. The PSATD/Hydro solver is
a computationally inexpensive but powerful tool for the study
of laser-plasma interaction.

METHODS

Simulations were performed with Nvidia Tesla K40 GPU
card. This card has 12 GB memory size, 2880 CUDA cores
and 745 MHz processor core clock.
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ing to these results has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No
682032-PULSAR), Région Bourgogne Franche-Comté, the
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