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Abstract

Extended gamma processes have been seen to be a flexible extension of standard

gamma processes in the recent reliability literature, for cumulative deterioration

modeling purpose. The probabilistic properties of the standard gamma process

have been well explored since the 1970’s, whereas those of its extension remain

largely unexplored. In particular, stochastic comparisons between degradation

levels modeled by standard gamma processes and aging properties for the

corresponding level-crossing times are nowadays well understood. The aim of

this paper is to explore similar properties for extended gamma processes and see

which ones can be widen to this new context. As a by-product, new stochastic

comparisons for convolutions of gamma random variables are also obtained.
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1. Introduction

Safety and dependability are crucial issues for many industrial systems, which have

led to the development of a huge literature devoted to reliability theory. We are here

concerned with industrial systems which deteriorate over time, and such that their

degradation level can be synthesized through a univariate indicator. For this type of
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system, a common way is to model the evolution of its deterioration level over time

through a univariate continuous-time stochastic process (Yt)t≥0, where Yt represents

the degree of degradation at time t (as measured by the univariate indicator). In such a

setting, the system is often considered as failed as soon as its degradation level exceeds

a predetermined failure threshold ` > 0. The time at which the failure occurs hence is

σ` = inf{t > 0 : Yt > `}. (1)

Most of the time, the degradation level of an industrial system is increasing over

time, or at least has an increasing trend. Based on that, many different models have

been envisioned in the literature such as Wiener process with positive drift (see, e.g.,

[7] and [8]), cumulative shock model (see, e.g., [23]), inverse Gaussian process (see, e.g.,

[25]) or inverse gamma processes (see, e.g., [10]). However, one of the most popular

model for cumulative degradation is the Standard Gamma Process (SGP), see [24] for

a comprehensive overview of applications of the gamma process to reliability theory.

Even in its non homogeneous version, a SGP has independent and non-negative (gamma

distributed) increments and it is a non-homogeneous Lévy process (also called additive

process by [19]). As any Lévy (or additive) process, a major drawback of a SGP is the

fact that its variance-to-mean ratio remains constant over time, which can be quite

restrictive for some applications. This has been highlighted by Guida et al. [11], who

have provided a real data set of sliding wear data of four metal alloy specimens, where

there is some ”empirical evidence that the variance-to-mean ratio is not a constant

but varies with [time]”. To overcome this restriction, an extended version of the

gamma process has been introduced by [4] and [9], which does not suffer from the

same limitation. Whereas a standard non homogeneous gamma process is characterized

by a shape function and a scale parameter, an Extended Gamma Process (EGP) has

both a shape function and a scale function, as its scale parameter can evolve over time.

The modeling flexibility of an EGP has been highlighted in [1], where it is shown that

beyond the fact that the variance-to-mean ratio needs not remain constant over time

as for an SGP, it is possible to model very different behaviors with an EGP: it can

have trajectories mostly similar to those of an SGP, but it can also present exploding

trajectories at a finite time or stabilizing trajectories, according to its parameters, and

one single EGP can even have one part of its trajectories which are exploding and
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another part which are stabilizing, please see Proposition 1 and Example 1 in [1] for

more details. Extended Gamma Processes hence are much more flexible than their

standard version with respect to modeling purpose. This however has a cost and they

are much less tractable from a mathematical point of view. Indeed, the probability

density function of an EGP is not available in full form in a general setting. Also,

there are no exact simulation procedures for its trajectories. This has lead Guida et

al. [11] to consider a discrete-time version of an EGP, which can be viewed as a time

discretization of a continuous-time EGP and is much easier to deal with. The authors

however do not make the connection any further with continuous-time EGPs and the

paper only deals with the discrete-time EGP. The idea of discretizing has been explored

in details in [1], where the authors construct a discrete-time approximation of a general

continuous-time EGP through discretization of the scale function of the general EGP.

Some approximate simulation procedures are derived together with numerical tools for

the approximate assessment of the distribution of a general EGP. The convergence of

both approximate simulation procedures and numerical scheme for the assessment of

the distribution is shown when the discretization step tends to zero. These tools make

it possible to simulate trajectories and make numerical computation for an EGP.

For practical use, the statistical inference of a stochastic model also is an important

task. As for EGPs, a first estimation procedure has been developed by [2] in a parametric

context and for a specific observation scheme. It is based on a generalized method of

moments, which relies on the full form expression available for the Laplace transform

of an EGP (which is not the case of its probability density function). That was a

first attempt but clearly, the subject deserves further studies based on e.g. different

observation schemes.

Except from these recent papers, we are not aware of any other study of the

probabilistic or statistical properties of an extended gamma process. The aim of this

paper is to try to go a little further in the comprehension of such properties, focusing

on stochastic comparisons and related properties in reliability theory.

Stochastic ordering and related results have been the subject of a huge literature

with application in many different areas such as insurance, risk theory and finance

(see [17] and [5]), queuing theory (see [22]) and in reliability theory, see [21] and [14],

among others. In the context of a system with cumulative degradation modeled by a
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stochastic process, stochastic comparisons between two processes belonging to the same

family (here EGPs) but with different parameters allow a better understanding of the

influence of the parameters on the behavior of the corresponding system for instance.

Related properties of interest in reliability concern the aging properties of failure times

(as defined by (1)), which are of major interest for an adequate planning of preventive

maintenance actions. As for SGPs, many results of stochastic comparisons and aging

properties have already been obtained in the previous literature or can easily be derived

from well-known properties of gamma distributions (see, e.g., [18] and [12]). In the

following, we begin with a review of these published results, for sake of completeness

and a better understanding of the new results for EGPs. Note also that the distribution

of Yt in an EGP (Yt)t≥0 can be seen as an infinite convolution of heterogeneous gamma

distributions with different rate parameters (details further). As will be seen, this leads

us to develop new results for convolution of gamma distributions in order to derive

some properties of EGPs.

The remainder of this paper is organized as follows. Section 2 provides some

preliminaries on stochastic orders and related aging notions, together with some

reminders of classical results for gamma distributions. Section 3 is devoted to stochastic

comparisons and aging properties for a SGP and its related failure time, which are

either well-known or direct consequences of Section 2. Similar properties are explored

in Section 4, in the case of an extended gamma process. A summary of all the results

for both SGP and EGP is finally provided in Section 5, for comparison purpose and a

better understanding of the similarities and the differences between the results for the

two processes, as well as some perspectives.

2. Preliminaries

In this section, we first recall the definition of the most common stochastic orders

and aging notions. We refer to [21] for more details. Some existing results for the

gamma distribution are then reminded.

Throughout the paper, ”increasing”, ”decreasing” and ”positive” mean ”non-

decreasing”, ”non-increasing” and ”non negative”, respectively.
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2.1. Stochastic orders

Definition 1. Let X (respectively Y ) be a positive random variable with cumulative

distribution function (cdf) FX , survival function F̄X and probability density function

(pdf) fX (respectively FY , F̄Y and fY ). Then:

(a) X is said to be smaller than Y in the usual stochastic order (denoted by

X ≺sto Y ) if F̄X(x) ≤ F̄Y (x), for all x ∈ R;

(b) X is said to be smaller than Y in the hazard rate order (denoted by X ≺hr Y )

if F̄Y (t)/F̄X(t) is increasing in t (on the union of the supports of F̄Y and F̄X);

(c) X is said to be smaller than Y in the reversed hazard rate order (denoted by

X ≺rh Y ) if FY (t)/FX(t) is increasing in t (on the union of the supports of FY

and FX);

(d) X is said to be smaller than Y in the likelihood ratio order (denoted by

X ≺lr Y ) if fY (t)/fX(t) is increasing in t (on the union of the supports of fY

and fX).

The likelihood ratio order implies both hazard rate and reversed hazard rate orders.

Also, both of the latter imply the usual stochastic order.

Note that the stochastic order is equivalent to E (ϕ (X)) ≤ E (ϕ (Y )) for all increasing

function ϕ for which the expectations exist. In addition, the definitions of the hazard

rate, reversed hazard rate and likelihood ratio orders can be rewritten in a more common

form for the reliability community:

Lemma 1. Let X and Y be two random variables. Then:

(a) X ≺hr Y if and only if [X|X > l] ≺sto [Y |Y > l] for all l;

(a) X ≺rh Y if and only if [X|X ≤ l] ≺sto [Y |Y ≤ l] for all l;

(a) X ≺lr Y if and only if [X|l1 ≤ X ≤ l2] ≺sto [Y |l1 ≤ Y ≤ l2] for all l1 ≤ l2.

The previous orders compare the locations of random variables. We now introduce

orders that can be used for the joint comparison of location and dispersion.

Definition 2. Let X and Y be two positive random variables such that the support

of X is assumed to be included in the support of Y and the support of Y to be an

interval. Then:
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(a) X is said to be smaller than Y in the increasing convex order (denoted by

X ≺icx Y ) if E (ϕ (X)) ≤ E (ϕ (Y )) for all increasing convex function ϕ.

(b) X is said to be smaller than Y in the increasing concave order (denoted by

X ≺icv Y ) if E (ϕ (X)) ≤ E (ϕ (Y )) for all increasing concave function ϕ.

Provided the expectations exist, the monotone convex (respectively concave) order

means that E(X) ≤ E(Y ), plus the fact that X is less (respectively more) variable than

Y , in a stochastic sense (see [21, p.182]).

Note that the usual stochastic order implies both increasing convex and concave orders

([13]).

2.2. Aging notions

In this section, we provide the definitions and equivalent conditions of some aging

properties.

Definition 3. Let X be a positive random variable with cdf FX , survival function F̄X

and pdf fX :

(a) X is said to have the increasing failure rate (IFR) property if F̄X is log-concave

on R;

(b) X is said to have the decreasing failure rate (DFR) property if F̄X is log-convex

on R;

(c) X is said to have the decreasing reversed hazard rate (DRHR) property if FX

is log-concave on R.

In the sequel, for the sake of brevity, we will say that X is IFR (or DFR, or DRHR).

Following [21, p.35 and p.42] and [20], the previous definitions are equivalent to the

conditions below:

Lemma 2. Let X be a random variable.

(a) X is IFR if and only if [X − t|X > t] �hr [X − t′|X > t′] for all t ≤ t′;

(b) X is DFR if and only if [X − t|X > t] ≺hr [X − t′|X > t′] for all t ≤ t′;

(c) X is DRHR if and only if [t−X|X ≤ t] ≺hr [t′ −X|X ≤ t′] for all t ≤ t′.
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Remark 1. Note that the three points of the previous lemma remain valid if the usual

stochastic order is used in place of the hazard rate order. If X refers to the lifetime

of a system, then [X − t|X > t] represents the residual life of the system at time t

(given that the system still operates at time t). The IFR property for X says that

the residual life decreases when the system is aging, that is when t increases. The

interpretation for the DFR property is similar, with a reversed monotonicity. As for the

DRHR property, imagine that the failure can only be observed through an inspection

and that by an inspection at some time t, the system is observed to be failed. Then,

[t−X|X ≤ t] represents the time since failure, which can be seen as an unavailability

period. The DRHR property now means that the larger the inspection time, the longer

the unavailability period, which can be seen as an aging property for X.

2.3. Results for gamma distributed random variables

We recall that the gamma distribution Γ0 (a, b) with shape and scale parameters

a, b > 0, respectively, admits the following pdf:

f (z) =
ba

Γ (a)
za−1e−bz1R+

(z)

with respect to Lebesgue measure, where Γ(a) =
∫∞
0
sa−1 exp(−s)ds for all a > 0.

The corresponding mean and variance are a/b and a/b2, respectively. Note also that

if Z1, · · · , Zn are independent gamma distributed random variables with respective

distributions Γ0 (a1, b) , · · · ,Γ0 (an, b), where a1 > 0, . . . , an > 0, b > 0, then bZ1 and∑n
i=1 Zi are gamma distributed with parameters (a1, 1) and (

∑n
i=1 ai, b) , respectively.

Finally, we recall some classic results for gamma distributions:

Lemma 3. [16, p.62] Let Z1 and Z2 be gamma distributed random variables with

parameters (a1, b1) and (a2, b2), respectively, where ai, bi > 0 for i = 1, 2. Then:

(1) If a1 ≤ a2 and b1 ≥ b2, then Z1 ≺lr Z2, and hence Z1 ≺hr Z2 and Z1 ≺rh Z2;

(2) If a1 ≥ a2 and a1/b1 ≤ a2/b2, then Z1 ≺icx Z2;

(3) If b1 ≤ b2 and a1/b1 ≤ a2/b2 (and hence a1 ≤ a2), then Z1 ≺icv Z2.

Lemma 4. [26, ] Let Zi ∼ Γ0(ai, bi), i = 1, . . . , n, be independent gamma distributed

random variables. Let us set SZ =
∑n
i=1 Zi, Ui = biZi ∼ Γ0 (ai, 1) for i ∈ {1, · · · , n},

SU =
∑n
i=1 Ui ∼ Γ0 (

∑n
i=1 ai, 1) and a+ =

∑n
i=1 ai. Then,
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• β−1 SU ≺hr SZ is equivalent to β−1 SU ≺sto SZ and it is true if and only if

β ≥
∏n
i=1 b

ai
a+

i ;

• β−1 SU ≺lr SZ is equivalent to β−1 SU ≺rh SZ and it is true if and only if

β ≥ 1
a+

∑n
i=1 aibi.

Lemma 5. [15, Proposition 9.A.3] Let Z ∼ Γ0(a, b0). Then Z is IFR if a ≥ 1, DFR

if a ≤ 1 and DRHR for all a > 0.

3. Standard Gamma Processes

We here recall the definitions as well as some properties of SGPs. Throughout the

paper, we let A : R+ → R+ to be an increasing and continuous function with A(0) = 0

and a (.) to be its derivative (which exists almost surely).

3.1. Definition

Let b0 be a positive constant. Recall that a standard (non-homogeneous) gamma

process Y = (Yt)t≥0 ∼ Γ0(A(·), b0), with A(·) as shape function and b0 as scale param-

eter, is a stochastic process with independent, non-negative and gamma distributed

increments:

Yt − Ys ∼ Γ0(A(t)−A(s), b0),

for all 0 < s < t, and such that Y0 = 0 a.s.. The pdf of an increment Yt − Ys is then

given by

f(x) =
b
A(t)−A(s)
0

Γ(A(t)−A(s))
xA(t)−A(s)−1 exp(−b0x),∀x ≥ 0. (2)

The mean and variance of Yt are given by E[Yt] = A(t)/b0 and V[Yt] = A(t)/b20 for all

t ≥ 0, respectively. Hence, the variance-to-mean ratio V[Yt]/E[Yt] = b0 is constant over

time.

3.2. Stochastic ordering and aging properties for SGPs

We first review aging properties and stochastic comparisons for the increments of a

given SGP, and next provide stochastic comparisons between two SGPs with different

parameters.

Based on Section 2.3 (and particularly on Lemmas 3 and 5), the three following lemmas

are easily obtained.
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Lemma 6. Let Y = (Yt)t≥0 be a SGP with shape function A(·) and scale parameter

b0. Then,

• if A (t+ h) − A(t) ≥ 1, Yt+h − Yt is IFR; in particular Yt is IFR as soon as

A (t) ≥ 1;

• if A (t+ h)− A(t) ≤ 1, Yt+h − Yt is DFR; in particular Yt is DFR as soon as

A (t) ≤ 1;

• Yt+h − Yt and Yt are DRHR for all t and all h.

Lemma 7. Let Y = (Yt)t≥0 be a SGP with shape function A(·) and scale parameter

b0. Then,

• if 0 ≤ s ≤ t, then Ys ≺lr Yt;

• if A (·) is convex, then Ys+h − Ys ≺lr Yt+h − Yt for all 0 ≤ s ≤ t and h ≥ 0;

• if A (·) is concave, then Ys+h − Ys �lr Yt+h − Yt for all 0 ≤ s ≤ t and h ≥ 0.

Lemma 8. Let Y (i) =
(
Y

(i)
t

)
t≥0
∼ Γ0(Ai (·) , bi) for i ∈ {1, 2}.

• If A1 (t) ≤ A2 (t) and b1 ≥ b2, then Y
(1)
t ≺lr Y (2)

t ;

• If A2 (·) − A1 (·) is an increasing function and b1 ≥ b2, then for all t, h ≥ 0,

Y
(1)
t+h − Y

(1)
t ≺lr Y (2)

t+h − Y
(2)
t ;

• If A1 (t) ≥ A2 (t) and A1(t)
b1
≤ A2(t)

b2
, then Y

(1)
t ≺icx Y (2)

t ;

• If A2 (·) − A1 (·) is a decreasing function and A2(·)
b2
− A1(·)

b1
is an increasing

function, then Y
(1)
t+h − Y

(1)
t ≺icx Y (2)

t+h − Y
(2)
t for all t, h ≥ 0;

• If A1 (t) ≤ A2 (t), A1(t)
b1
≤ A2(t)

b2
and b1 ≤ b2, then Y

(1)
t ≺icv Y (2)

t ;

• If b1 ≤ b2 and A2(·)
b2
−A1(·)

b1
is an increasing function (and necessarily A2 (·)−A1 (·)

too), then Y
(1)
t+h − Y

(1)
t ≺icv Y (2)

t+h − Y
(2)
t for all t, h ≥ 0.

Finally, we come to present the properties of the crossing time of a given threshold `,

which can stand for the failure time of a system modeled by a SGP, as mentioned in

the introduction. Note that in the context of a SGP which is a pure jump process, the

level ` is almost surely crossed by a jump, so that the level ` is almost surely never hit.

That is why we call it a crossing time, and not a hitting time, which is the common

vocabulary for continuous processes such as Wiener processes for instance. The same
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remark is valid for an EGP hereafter. Note also that a threshold crossing time can

also represent the time for a required preventive maintenance action, if ` stands for a

preventive threshold (lower than the failure threshold). In that case, the maintenance

action is triggered as soon as the deterioration level is beyond ` (at time σ`), the aim

being to avoid failures that could have unsafe or costly consequences.

The results below can be found in [18] and [12].

Lemma 9. Let Y = (Yt)t≥0 be a SGP with shape function A(·) and scale parameter

b0, and let ` > 0.

• If A(·) is convex, then σ` is IFR.

• If A(·) is concave, then σ` is DRHR.

4. Extended gamma processes

The aim of this section is to study how the results of Section 3 on SGPs can be

adapted to EGPs. We first remind basic definitions and properties of EGPs in Subsection

4.1. Aging properties and comparison results of EGP increments are next discussed in

Subsections 4.2 and 4.3. The comparison between two different EGPs is investigated in

Subsection 4.4. Finally, aging properties of threshold crossing times are studied in the

context of EGPs in Subsection 4.5.

In all the sequel, we refer to a SGP by Y = (Yt)t≥0 and to an EGP by X = (Xt)t≥0.

4.1. Definition

Let b : R∗+ → R∗+ be a measurable positive function such that:∫
(0,t]

a(s)

b(s)
ds <∞, ∀t > 0. (3)

Following [4] and [9], the process X = (Xt)t≥0 is said to be an EGP with shape function

A(·) and scale function b(·) if Xt can be represented as a stochastic integral with respect

to a SGP Y with Yt ∼ Γ0(A(t), 1):

Xt =

∫
(0,t]

dYs
b(s)

, ∀t > 0, (4)

and X0 = 0. If b(·) is constant and equal to b0, the EGP simply reduces to a SGP

Γ0(A(t), b0). An EGP is much more flexible than a SGP and can be proved to have
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independent increments, and its distribution to be infinitely divisible. It allows to model

many possible behaviors for the system deterioration (see [1] for more precision). Also,

an explicit formula is available for the Laplace transform of an increment ([4]), with

LXt+h−Xt
(λ) := E

(
e−λ(Xt+h−Xt)

)
= exp

(
−
∫ t+h

t

log

(
1 +

λ

b(s)

)
a(s)ds

)
, (5)

for all t, λ ≥ 0 and h > 0.

Finally, the mean and variance of an EGP are given by

E(Xt) =

∫
(0,t]

a(s)

b(s)
ds and V(Xt) =

∫
(0,t]

a(s)

b(s)2
ds, ∀t > 0. (6)

4.2. Aging properties of EGP’s increments

We first explore the aging properties of an EGP increment, as provided by Lemma 6

in the case of a SGP. We start with the DRHR property. With that aim, we begin with

a technical lemma.

Lemma 10. Let Zi ∼ Γ0(ai, bi), i = 1, . . . , n, be n independent gamma distributed

random variables. Then
∑n
i=1 Zi is DRHR.

Proof. It is a direct consequence of the closure property of DRHR random variables

under convolution [21, Corollary 1.B.63.], and of the fact that gamma random variables

are DRHR (see Lemma 6). �

Next proposition shows that the DRHR property of a SGP increment remains valid

for an EGP.

Proposition 1. Let X = (Xt)t≥0 ∼ Γ(A(·), b(·)) be an EGP. Then Xt and Xt+h−Xt

are DRHR for all h ≥ 0 and all t ≥ 0.

Proof. Note that it is enough to show that Xt+h−Xt is DRHR. The proof is divided

into two parts. Following some arguments developed in [1], we first assume that the

scale function b (or the rate function 1/b) is a piecewise constant function given by:

1

b (v)
=

m∑
i=0

1

bi
1(ui,ui+1] (v) for all v ≥ 0, (7)

where u0 = 0 < ui < ui+1 < um+1 ≤ +∞ for all 1 ≤ i ≤ m − 1 and bi > 0 for all

1 ≤ i ≤ m. Assuming uit < t ≤ uit+1, uit+h
< t + h ≤ uit+h+1, and without loss of
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generality that uit+1 < uit+h
we have:

Xt+h −Xt =
1

bit

∫
(t,uit+1]

dYv +

it+h−1∑
i=it+1

1

bi

∫
(ui,ui+1]

dYv +
1

bit+h

∫
(uit+h

,t+h]

dYv

=
1

bit

(
Yuit+1

− Yt
)

+

it+h−1∑
i=it+1

1

bi

(
Yui+1

− Yui

)
+

1

bit+h

(
Yt+h − Yuit+h

)
(8)

where

1

bit

(
Yuit+1

− Yt
)
∼ Γ0 (A (uit+1)−A (t) , bit) ,

1

bi

(
Yui+1

− Yui

)
∼ Γ0 (A (ui+1)−A (ui) , bi) ,

and
1

bit+h

(
Yt+h − Yuit+h

)
∼ Γ0

(
A (t+ h)−A

(
uit+h

)
, bit+h

)
.

The increment Xt+h −Xt can therefore be written as a convolution of independent

gamma random variables. This shows, by Lemma 10, that Xt+h −Xt is DRHR when

b (·) is piecewise constant.

We now consider a general function b : R∗+ → R∗+. Then, there exists an increasing

sequence
(
β(n) (·)

)
n∈N of piecewise constant functions of the shape (7) that converges

to 1
b . Let

(
X

(n)
t

)
t≥0
∼ Γ(A(·), b(n)(·)) with b(n)(t) = 1

β(n)(t)
. We have:

lim
n→+∞

L
X

(n)
t+h−X

(n)
t

(λ) = LXt+h−Xt (λ) for all λ > 0

by the monotone convergence theorem so that

X
(n)
t+h −X

(n)
t

D→ Xt+h −Xt when n→ +∞

for all t > 0, where the symbol
D→ stands for convergence in distribution. The result

is next easily derived from the piecewise constant case and letting n → +∞ (as the

DRHR property is preserved by convergence in distribution, see [21]). �

We now come to the DFR property of an EGP increment, in the case where

A(t+ h)−A(t) is smaller than 1. Here again, we begin with a technical lemma.

Lemma 11. Let Zi ∼ Γ0(ai, bi), i = 1, . . . , n, be n independent gamma distributed

random variables such that
∑n
i=1 ai ≤ 1 (so that ai ≤ 1 for all i ∈ {1, · · · , n}). Then∑n

i=1 Zi is DFR.
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Proof. The DFR property is known not to be stable through convolution in general,

so that the proof of Lemma 10 for the DRHR case should be adapted. Let us set SZ =∑n
i=1 Zi, Ui = biZi ∼ Γ0 (ai, 1) for i ∈ {1, · · · , n} and SU =

∑n
i=1 Ui ∼ Γ0 (

∑n
i=1 ai, 1).

Using a similar argument as in the proof of Theorem 3 of [26], we may write:

SZ =

n∑
i=1

1

bi
Ui = V SU

with

V =

n∑
i=1

1

bi

Ui
SU

.

The random vector
(
U1

SU
, · · · , Un

SU

)
is known to be independent on SU so that V also is

independent on SU . Then:

fSZ
(z) =

∫
R+

fV SU |V=v (z) fV (v) dv

with fV SU |V=v the conditional pdf of V SU given that V = v. The distribution of SZ

appears therefore as a mixture of the vSU ’s. As
∑n
i=1 ai ≤ 1, we know that SU is

DFR and vSU as well. Then, the distribution of SZ appears as a mixture of DFR

distributions and since the DFR property is closed under mixture [15], the proof is

completed. �

Proposition 2. Let X = (Xt)t≥0 ∼ Γ(A(·), b(·)) be an EGP. Let h ≥ 0 and t ≥ 0 be

such that A(t+ h)−A(t) ≤ 1. Then Xt+h −Xt is DFR. In particular, Xt is DFR as

soon as A(t) ≤ 1.

Proof. We can use similar arguments as for the proof of Proposition 1 as the DFR

property is also preserved by convergence in distribution, see [21]. �

We now explore the possibly IFR property in the case where A(t+h)−A(t) is larger

than 1, and for that, a numerical example is considered.

Example 1. Let us consider A (t) = t (which is both a concave and convex function)

and let b (t) = 10 1[0,0.75) (t) + 0.1 1[0.75,∞) (t) (decreasing function). The function

log
(
F̄X1

)
is plotted in Figure 1 for t = 1 (and hence A(t) = 1). As can be seen,

log
(
F̄X1

)
is not a concave function, which shows that X1 is not IFR.

Considering the increasing function b (t) = 0.1 1[0,0.25) (t) + 10 1[0.25,∞) (t) provides
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the same distribution for X1 (convolution of the gamma distributions Γ0 (0.25, 0.1) and

Γ0 (0.75, 10)) and the same conclusion.

0.0 0.5 1.0 1.5 2.0

-1
.2

-0
.8

-0
.4

0
.0

x

lo
g
(1
-F

X
1
)

Figure 1: Plot of log
(
F̄X1

(t)
)

with respect to t for A (t) = t and b (t) = 10 1[0,0.75) (t) +

0.1 1[0.75,∞) (t), Example 1.

Based on the previous example, we can see that even considering a convex or a

concave shape function and a monotonous scale function, an increment Xt+h−Xt needs

not be IFR when the shape parameter A(t+ h)−A(t) is larger than 1. Hence, it seems

difficult to find sufficient conditions to ensure the IFR property of an increment. As a

by-product, we observe that not all aging properties provided in Lemma 6 for SGPs

remain true for an EGP.

4.3. Monotonicity of an EGP and stochastic comparison between incre-

ments

We here explore how to adapt the results of Lemma 7 in the case of an EGP. We

first look at the possible monotonicity of an EGP with respect to the likelihood ratio

order. For that, a numerical example is considered.

Example 2. Let us consider A (t) = t and b (t) = 0.1 1[0,0.25) (t) + 10 1[0.25,∞) (t).

The function r (x) = F̄X1
(x)/F̄X0.25

(x) is plotted in Figure 2. We can observe that

the function r (x) is not monotonous with respect to x. Based on Definition 1, we can

derive that X0.25 and X1 are not comparable with respect to the hazard rate order.

Hence, they are not comparable either with respect to the likelihood ratio order.

Remark 2. Based on the previous example, we can see that the relationship Xs ≺lr Xt

for s < t is not valid in a general setting. To be more specific, considering a convex or
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Figure 2: Plot of r (x) = F̄X1
(x)/F̄X0.25

(x) as a function of x for A (t) = t and

b (t) = 0.1 1[0,0.25) (t) + 10 1[0.25,∞) (t), Example 2.

a concave shape function, and an increasing scale function, the property needs not be

true. However, we could not find any numerical counterexample with A(t) = t (both

convex and concave) and a decreasing scale function, and the property might hence be

true under such assumptions. Unfortunately, we have not been able to prove it so that

the question remains open. Note that the proof would require to get likelihood-ratio

comparison results for convolution of heterogeneous gamma distributions with shape

parameter smaller than 1 (tending to 0, in a similar spirit as for the proof of Proposition

1). This seems quite difficult as it seems that all the results from the literature are

valid for shape parameters larger than 1 (see [27] for instance). It hence is quite a

challenging (open) question.

Even though, under specific conditions, we were not able to conclude about the

possible likelihood-ratio monotonicity of an EGP, we now show its monotonicity with

respect to the reversed hazard rate order out of any conditions.

Proposition 3. Let X = (Xt)t≥0 ∼ Γ(A(t), b(t)) be an EGP. Then, for all s < t, we

have

Xs ≺rh Xt.

Proof. Let s < t. As Xt −Xs ≥ 0, it is easy to check that

0 ≺rh Xt −Xs.
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Since Xs is DRHR (see Proposition 1), we derive from [21, Lemma 1.B.44.] that

Xs = 0 +Xs ≺rh Xt = (Xt −Xs) +Xs, which achieves the proof. �

We now provide comparison results between increments in the reversed hazard rate

ordering. We begin with a technical lemma.

Lemma 12. Let Z
(1)
i ∼ Γ0(ai, bi) and Z

(2)
i ∼ Γ0(ci, di), i = 1, . . . , n, such that ai ≤ ci

and bi ≥ di for all i. Then,
n∑
i=1

Z
(1)
i ≺rh

n∑
i=1

Z
(2)
i .

Proof. From Lemma 3, we have

Z
(1)
i ≺lr Z(2)

i ∀i = 1, . . . , n,

so that

Z
(1)
i ≺rh Z(2)

i ∀i = 1, . . . , n.

As the reversed hazard rate order is stable under the convolution of DRHR random

variables [21, Theorem 1.B.45], the result follows. �

Proposition 4. Let X = (Xt)t≥0 ∼ Γ(A(t), b(t)) be an EGP. Assume that:

• A (·) is convex,

• b (·) is decreasing.

Then,

Xs+h −Xs ≺rh Xt+h −Xt

for all s ≤ t and all h > 0.

Proof. Let s ≤ t ≤ t + h. Here again, we first consider the case where b (·) is

piecewise constant (and decreasing). Then, (0, h] is the union of a finite number of

disjoint intervals (ui, ui+1], 0 ≤ i ≤ n such that b (s+ z) is constant for all z ∈ (ui, ui+1]

and all 0 ≤ i ≤ n. Cutting each of these intervals into pieces when necessary, we can

construct disjoint intervals (vj , vj+1] for 0 ≤ j ≤ m with v0 = 0 and vm+1 = h, such

that ∪mj=0(vj , vj+1] = (0, h] and on which both b (s+ z) and b (t+ z) are constant for
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all z ∈ (vj , vj+1] and all 0 ≤ j ≤ m. This provides:

Xt+h −Xt =

m∑
j=0

1

b (t+ vj+1)

(
Yt+vj+1

− Yt+vj
)

=

m∑
j=0

Z
(t)
j ,

Xs+h −Xs =

m∑
j=0

1

b (s+ vj+1)

(
Ys+vj+1 − Ys+vj

)
=

m∑
j=0

Z
(s)
j .

For all j = 1, . . . ,m, we have Z
(z)
j ∼ Γ0 (A (z + vj+1)−A (z + vj) , b(z + vj+1)) for

z ∈ {s, t} with

A (s+ vj+1)−A (s+ vj) ≤ A (t+ vj+1)−A (t+ vj)

and

b(s+ vj+1) ≥ b(t+ vj+1)

because A is convex and b is decreasing. From Lemma 12, it then comes:

Xs+h −Xs ≺rh Xt+h −Xt.

For a general decreasing function b, we proceed as in the proof of Proposition 1 and

the result follows since ≺rh is preserved by convergence in distribution. �

Reversing the assumptions, we obtain a reversed inequality, as provided in the

following proposition. The proof is similar and it is omitted.

Proposition 5. Let X = (Xt)t≥0 ∼ Γ(A(t), b(t)) be an EGP. Assume that:

• A (·) is concave,

• b (·) is increasing.

Then,

Xs+h −Xs �rh Xt+h −Xt

for all s ≤ t and all h > 0.

Remark 3. In Propositions 4 and 5, the monotonicity of b (·) is essential. Indeed, it is

not difficult to provide a counterexample to the previous results when the monotonicity

assumption is not satisfied any more. Let A(t) = t and b(t) = 1/2 1[0,1)(t)+1/3 1[1,2)(t)+

1 1[2,3)(t) + 1/4 1[3,∞)(t) (which is not monotonic). Then,

X2 −X0
D
= 2Y1 + 3Y2 and X4 −X2

D
= Y3 + 4Y4,
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where
D
= means ”is identically distributed as” and where Yi ∼ Γ(1, 1) for i = 1, . . . , 4.

As noticed by [6], we have V [X2 − X0] < V [X4 − X2], so that the distributions

of the two increments are not identical. They however share the same expectation

(E[X2 − X0] = E[X4 − X2]), which entails that the sign of FX2−X0(x) − FX4−X2(x)

changes at least once on (0,∞) (in fact, exactly once, see [6, Proposition 2.1]). As a

consequence, the two increments are not comparable with respect to the usual stochastic

order, and hence they are not comparable either with respect to the hr, rh and lr

orders.

4.4. Stochastic comparisons between two EGPs

We here provide comparison results between two different EGPs.

Proposition 6. Let X(i) =
(
X

(i)
t

)
t≥0
∼ Γ(Ai (·) , bi (·)) for i ∈ {1, 2}. Assume that:

• A2 (·)−A1 (·) is increasing,

• b1(t) ≥ b2(t) for all t ≥ 0.

Then, for all t ≥ 0 and all h ≥ 0:

X
(1)
t+h −X

(1)
t ≺rh X(2)

t+h −X
(2)
t .

As a specific case, for all t ≥ 0:

X
(1)
t ≺rh X(2)

t .

Proof. Let t ≥ 0 and h ≥ 0. Here again, we first consider the case where the functions

b1(·) and b2(·) are piecewise constant and we proceed as in the proof of Proposition 4.

It then possible to consider disjoint intervals (vj , vj+1] for 0 ≤ j ≤ m with v0 = 0 and

vm+1 = h, such that ∪mj=0(vj , vj+1] = (0, h] and on which both b1 (t+ z) and b2 (t+ z)

are constant for all z ∈ (vj , vj+1] and all 0 ≤ j ≤ m. This provides:

X
(1)
t+h −X

(1)
t =

m∑
j=0

Z
(1)
j ,

X
(2)
t+h −X

(2)
t =

m∑
j=0

Z
(2)
j ,
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with Z
(i)
j ∼ Γ0 (Ai (t+ vj+1)−Ai (t+ vj) , bi(t+ vj+1)) for i ∈ {1, 2}.

By hypothesis, for all j = 1, . . . ,m,

A2 (t+ vj+1)−A1 (t+ vj+1) ≥ A2 (t+ vj)−A1 (t+ vj) ,

since vj+1 ≥ vj , which leads to,

A2 (t+ vj+1)−A2 (t+ vj) ≥ A1 (t+ vj+1)−A1 (t+ vj) .

Moreover,

b1(t+ vj+1) ≥ b2(t+ vj+1).

From Lemma 12, it then comes:

X
(1)
t+h −X

(1)
t ≺rh X(2)

t+h −X
(2)
t ,

which achieves the proof in the case of piecewise constant scale functions.

For general functions bi, i = 1, 2, we proceed as in the proof of Proposition 1 and

the result follows since ≺rh is preserved by convergence in distribution. �

The previous proposition allows to compare an EGP and a SGP which share the

same shape function, as stated in the following corollary. It is an immediate consequence

and it is stated without proof.

Corollary 1. Let Y = (Yt)t≥0 ∼ Γ0(A(t), β) (SGP) and X = (Xt)t≥0 ∼ Γ(A(t), b(t))

(EGP). We have the following results:

• If b(t) ≤ β for all t in a given interval [t1, t2], then

Yt+h − Yt ≺rh Xt+h −Xt,

for all t ∈ [t1, t2[ and all h such that t+ h ≤ t2.

• In particular, if b(t) ≤ β for all t ≥ 0, then

Yt ≺rh Xt.

• The inequalities of the two previous points are reversed if b(t) ≥ β.

By considering more stringent constraints on parameter β and function b(·), it is

possible to give necessary and sufficient conditions for the hr and lr orders.
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Proposition 7. Let Y = (Yt)t≥0 ∼ Γ0 (A (·) , β) (SGP) and X = (Xt)t≥0 ∼ Γ (A (·) , b (·))

(EGP). Then:

1. Assume that there exists b0 > 0 such that b0 ≤ b (s) for all s ∈ [t, t+ h] and∫ t+h
t
|log (b (s))| a (s) ds < +∞. Then:

Yt+h−Yt ≺hr Xt+h−Xt is equivalent to Yt+h−Yt ≺sto Xt+h−Xt and it is true

if and only if

log (β) ≥ 1

A (t+ h)−A (t)

∫ t+h

t

log (b (s)) a (s) ds. (9)

2. Assume that
∫ t+h
t

b (s) a (s) ds < +∞. Then:

Yt+h − Yt ≺lr Xt+h −Xt is equivalent to Yt+h − Yt ≺rh Xt+h −Xt and it is true

if and only if

β ≥ 1

A (t+ h)−A (t)

∫ t+h

t

b (s) a (s) ds. (10)

Proof. Assume first that b (·) is piecewise constant with b (s) =
∑n
i=1 bi1(ti,ti+1] (s)

where t1 = t, tn+1 = t+ h and let ai = A (ti+1)−A (ti) for i ∈ {1, · · · , n}. Then, using

the notation of Lemma 4, Xt+h −Xt and Yt+h − Yt are identically distributed as SZ

and β−1 SU , respectively. In that case, we have

1

A (t+ h)−A (t)

∫ t+h

t

log (b (s)) a (s) ds =
1

a+

n∑
i=1

∫ ti+1

ti

log (b (s)) a (s) ds =
1

a+

n∑
i=1

ai log (bi)

and, using Lemma 4, condition (9) is equivalent to

β ≥ e
1

a+

∑n
i=1 ai log(bi) =

n∏
i=1

b
ai
a+

i .

This proves the first point in case of a piecewise constant function b (·).

Now, let us consider the case of a general function b (·) and let (bn (·))n∈N be an

increasing sequence of piecewise constant positive functions on R∗+, such that bn (s)

tends to b (s) when n→ +∞ for all s ∈ [t, t+ h], and let
(
X

(n)
t

)
t≥0
∼ Γ (A (·) , bn (·)).

Assume that condition (9) is true. Then, as bn (s) ≤ b (s), condition (9) is also

true when b (s) is substituted by bn (s), and hence Yt+h − Yt ≺hr X(n)
t+h − X

(n)
t and

Yt+h−Yt ≺sto X(n)
t+h−X

(n)
t . Letting n go to infinity, we get that Yt+h−Yt ≺hr Xt+h−Xt

and Yt+h − Yt ≺sto Xt+h −Xt.
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Conversely, assume that Yt+h − Yt ≺sto Xt+h −Xt (or Yt+h − Yt ≺hr Xt+h −Xt).

Observe that as (bn (·))n∈N increases with n, X
(n)
t+h −X

(n)
t decreases in the rh ordering

(due to Proposition 4.11), and hence also in the usual stochastic ordering, when n

increases.

Then

F̄Yt+h−Yt
(x) ≤ F̄Xt+h−Xt

(x) = lim
m→+∞

F̄
X

(m)
t+h−X

(m)
t

(x) ≤ F̄
X

(n)
t+h−X

(n)
t

(x)

for all x ∈ R and all n ∈ N. This implies that Yt+h − Yt ≺sto X(n)
t+h −X

(n)
t , and hence

condition (9) is true for bn (·):

log (β) ≥ 1

A (t+ h)−A (t)

∫ t+h

t

log (bn (s)) a (s) ds (11)

for all n ∈ N∗. As |log (bn (s))| ≤ |log (b0)| + |log (b (s))|, we get by dominated

convergence that

lim
n→+∞

∫ t+h

t

log (bn (s)) a (s) ds =

∫ t+h

t

log (b (s)) a (s) ds.

Then, letting n go to infinity in (11) tells us that condition (9) is true for b (·), and

the first point is true. The second point is similar and its proof is omitted. �

Note that when condition (9) is not fulfilled, then Yt+h − Yt and Xt+h −Xt are not

comparable with respect to the hazard rate ordering, as can be easily checked through

a counter-example. The same for condition (10).

Note also that, under the conditions of Proposition 6, the results obtained for the rh

order are also valid for the usual stochastic order, and hence also for both increasing

convex and concave orders. We now provide other conditions for the increasing convex

and concave orders, which extend some results from Lemma 8 (points 4 and 6) to EGPs.

Proposition 8. Let X(i) =
(
X

(i)
t

)
t≥0
∼ Γ(Ai (·) , bi (·)) for i ∈ {1, 2}. Assume that:

• A2 (·)−A1 (·) is decreasing,

• A2(·)
b2(·) −

A1(·)
b1(·) is increasing,

• b1 (·) is decreasing and b2 (·) is increasing.

Then, for all t ≥ 0 and all h ≥ 0:

X
(1)
t+h −X

(1)
t ≺icx X(2)

t+h −X
(2)
t .
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As a specific case, for all t ≥ 0:

X
(1)
t ≺icx X(2)

t .

Proof. Let t ≥ 0 and h ≥ 0. Following the proof of Proposition 6, we have:

X
(1)
t+h −X

(1)
t =

m∑
j=0

Z
(1)
j ,

X
(2)
t+h −X

(2)
t =

m∑
j=0

Z
(2)
j ,

with Z
(z)
j ∼ Γ0 (Az (t+ vj+1)−Az (t+ vj) , bz(t+ vj+1)) for z ∈ {1, 2}.

By hypothesis, for all j = 1, . . . ,m,

A2 (t+ vj+1)−A1 (t+ vj+1) ≤ A2 (t+ vj)−A1 (t+ vj) ,

since vj+1 ≥ vj , which leads to,

A2 (t+ vj+1)−A2 (t+ vj) ≤ A1 (t+ vj+1)−A1 (t+ vj) .

Moreover,

A2(t+ vj+1)

b2 (t+ vj+1)
− A1 (t+ vj+1)

b1 (t+ vj+1)
≥ A2(t+ vj)

b2 (t+ vj)
− A1 (t+ vj)

b1 (t+ vj)
.

This implies that

A2(t+ vj+1)−A2(t+ vj)

b2 (t+ vj+1)
≥ A2(t+ vj+1)

b2 (t+ vj+1)
− A2(t+ vj)

b2 (t+ vj)

≥ A1 (t+ vj+1)

b1 (t+ vj+1)
− A1 (t+ vj)

b1 (t+ vj)

≥ A1 (t+ vj+1)−A1 (t+ vj)

b1 (t+ vj+1)
,

since b1 (·) is decreasing and b2 (·) is increasing.

From Lemma 8, we then have for all j = 1, . . . ,m:

Z
(1)
j ≺icx Z(2)

j .

As the increasing convex order is stable under convolution [21, Theorem 4.A.8], then

X
(1)
t+h −X

(1)
t ≺icx X(2)

t+h −X
(2)
t .
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We now consider a general function b : R∗+ → R∗+. Then, there exists two increasing

sequences
(
β(i,n) (·)

)
n∈N of piecewise constant functions of the shape (7) that converges

to 1/bi with i ∈ {1, 2}. Let
(
X

(i,n)
t

)
t≥0
∼ Γ(Ai(·), b(i,n)(·)) with b(i,n)(t) = 1/β(i,n)(t).

We have:

lim
n→+∞

L
X

(i,n)
t+h −X

(i,n)
t

(λ) = L
X

(i)
t+h−X

(i)
t

(λ) for all λ > 0

by the monotone convergence theorem so that

X
(i,n)
t+h −X

(i,n)
t

D→ X
(i)
t+h −X

(i)
t when n→ +∞

for i ∈ {1, 2}.

Now, we show that the previous convergence result also holds in the L1 sense.

First note that

E
[∣∣∣(X(i,n)

t+h −X
(i,n)
t )− (X

(i)
t+h −X

(i)
t )
∣∣∣] ≤ E

[∣∣∣X(i,n)
t+h −X

(i)
t+h

∣∣∣]+ E
[∣∣∣X(i,n)

t −X(i)
t

∣∣∣]
(12)

with

E
[∣∣∣X(i,n)

t −X(i)
t

∣∣∣] ≤ E

[∫
(0,t]

∣∣∣∣β(i,n)(s)− 1

bi(s)

∣∣∣∣ dY (s)

]
→

n→+∞
0

by dominated convergence, because
∣∣β(i,n)(s)− 1/bi(s)

∣∣ ≤ 2/bi(s) and

E

[∫
(0,t]

1

bi(s)
dY (s)

]
= E(X

(i)
t ) < +∞,

see Subsection 4.1.

The same reasoning shows that

E
[∣∣∣X(i,n)

t+h −X
(i)
t+h

∣∣∣]→ 0,

which allows to conclude from (12) that

X
(i,n)
t+h −X

(i,n)
t

L1

→ X
(i)
t+h −X

(i)
t when n→ +∞.

Finally, the result is easily derived from [21, Theorem 4.A.8] and from the piecewise

constant case. �

Example 3. One can check that the assumptions of Proposition 8 are satisfied for

A1(t) = log(2t+ 1), A2(t) = log(t+ 1), b1(t) = 1/(t+ 1) + 2 and b2(t) = 1− 1/(t+ 2).

Note that this example does not fulfill the conditions of Proposition 6, and hence

Proposition 8 provides new results when compared to Proposition 6.
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We now provide similar results for the increasing concave order. The proof follows

the same steps as in Proposition 8 and it is omitted.

Proposition 9. Let X(i) =
(
X

(i)
t

)
t≥0
∼ Γ(Ai (·) , bi (·)) for i ∈ {1, 2}. Assume that:

• b1 (t) ≤ b2 (t) for all t ≥ 0 ,

• b1 (·) is decreasing and b2 (·) is increasing,

• A2(·)
b2(·) −

A1(·)
b1(·) is increasing (and hence A2 (·)−A1 (·) is also increasing).

Then, for all t ≥ 0 and all h ≥ 0:

X
(1)
t+h −X

(1)
t ≺icv X(2)

t+h −X
(2)
t .

As a specific case, for all t ≥ 0:

X
(1)
t ≺icv X(2)

t .

Example 4. One can check that the assumptions of Proposition 9 are satisfied for

A1(t) = log( t2 + 1), A2(t) = exp(t) − 1, b1(t) = 1
t+1 + 1

2 and b2(t) = 2 − 1
t+2 . Here

again, this example does not fulfill the conditions of Proposition 6, and Proposition 9

provides new results when compared to Proposition 6.

4.5. Aging properties of threshold crossing times

We finally come to aging properties of threshold crossing times. We begin with a

first result when the threshold is an IFR random variable.

Proposition 10. Let L be an IFR non negative random variable independent of an

EGP X with Xt ∼ Γ(A(t), b(t)). Let

σL = inf {t ≥ 0 : Xt ≥ L} .

Assume that

• A (·) is convex,

• b (·) is decreasing.

Then, σL is IFR.
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Proof. Let us first note that, by construction, any EGP X belongs to the class IPII

(Independent Positive Increasing Increments) in the vocabulary of [18, Definition 2.7].

Also, based on Proposition 4, X increases with respect to the rh order. Then, the result

is a direct consequence of [18, Proposition 3.1]. �

We derive the following corollary, considering a deterministic threshold `.

Corollary 2. Let ` > 0 and let X be an EGP with Xt ∼ Γ(A(t), b(t)). Let

σ` = inf {t ≥ 0 : Xt ≥ `} .

Assume that

• A (·) is convex,

• b (·) is decreasing,

Then, σ` is IFR.

Proof. For n ∈ N∗, let L(n) ∼ Γ0(n`, n). As L(n) is IFR for a sufficiently large n, we

know from Proposition 10 that σL(n) is IFR. Also, as E((L(n)−`)2) = var(L(n)) = `
n → 0

when n→ +∞, we have L(n) D→ ` when n→ +∞. We now have

P(σL(n) > t) = P(Xt ≤ L(n))→ P(Xt ≤ `) = P(σ` > t)

for all t so that σL(n)
D→ σ`. As IFR is stable through convergence in distribution, we

derive that σ` is IFR. �

We next consider the DRHR property. Recall that for a SGP, the concavity of A(·) is

a sufficient condition to ensure that σ` is DRHR. This is not the case for an EGP, neither

when b (·) is decreasing nor when it is increasing, whatever the convexity/concavity of

the shape function is, as show the two following examples.

Example 5. LetA (t) = t. We consider a decreasing scale function b (t) = 2 1[0,0.25) (t)+

1 1[0.25,∞) (t). As can be seen in Figure 3 (left), the function log (Fσ2) is not concave

and hence σ2 is not DRHR. In Figure 3 (right), we can notice that the function log
(
F̄σ2

)
is concave so that σ2 is IFR. This is coherent with the result of the Corollary 2.

Example 6. Let A (t) = t. We now consider an increasing scale function b (t) =

0.1 1[0,0.25) (t) + 10 1[0.25,∞) (t) As can be seen in Figure 4 (left), log (Fσ2) is not
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Figure 3: Plots of log (Fσ2) and log
(
F̄σ2

)
for A (t) = t and b (t) = 2 1[0,0.25) (t) +

1 1[0.25,∞) (t)

concave and σ2 is hence not DRHR. In addition, we can observe in Figure 4 (right)

that the function log
(
F̄σ2

)
is not concave and hence σ2 is not IFR.
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Figure 4: Plots of log (Fσ2
) and log

(
F̄σ2

)
for A (t) = t and b (t) = 0.1 1[0,0.25) (t) +

10 1[0.25,∞) (t)

5. Recap and perspectives

Stochastic comparisons and aging properties have been found, considering an EGP
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as a model for cumulative deterioration in reliability theory. Note that the results can

naturally be used in other contexts, such as finance or risk theory for instance.

Most of the results of the paper are summed up in Table 1, where previous results

for SGPs are recalled, for comparison purpose with their extended version (EGPs).

Note that the comparison results between a SGP and an EGP from Corollary 1 and

Proposition 7 do not appear in this table, for a better readability.

As can be seen in Table 1, the results previously obtained for SGPs and dealing with

the DFR/DRHR property of an increment remain true. Those dealing with icx/icv

comparison results and the IFR property of a crossing time have a natural extension,

adding a monotonicity assumption on the scale function(s) of the EGP(s). However, we

can notice that the lr (and hr) results for SGPs do not remain valid considering EGPs,

and only results with the weaker rh order have been obtained (with counter-examples

showing that the results cannot be extended to the lr order in most cases). Also, we

remind to the reader that we have not been able to conclude whether Xs ≺lr Xt for

s < t could be valid assuming the shape function to be convex or concave, and the scale

function to be increasing (see Remark 2). This (challenging) question hence remains

open.

Clearly, there remain many other stochastic orders (and aging properties) to be

investigated in the context of an EGP, such as the stochastic precedence order [3], for

which one might hope to obtain results under weaker conditions than for the usual

stochastic order studied in this paper, or for more technical stochastic orders such as

(harmonic) mean residual life order, dispersive order, excess wealth order, convex order,

to quote only a few. (We refer to the seminal books quoted in the introduction, where

the interested reader can find further stochastic ordering and aging notions, for which

the degree of importance may vary according to the application context). There hence

remain many investigation needed for a better understanding of the possible stochastic

behavior of an EGP, even restricting the study to the domain of stochastic comparisons

and aging properties.
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Table 1: Aging properties and stochastic ordering for SGPs (second column) and EGPs

(third column)

Aging properties of Xt+h −Xt (with t, h ≥ 0)

X ∼ Γ0(A(·), b) SGP X ∼ Γ(A(·), b(·)) EGP

Xt+h −Xt IFR true if A(t+ h)−A(t) ≥ 1 not true (even if A(·) is con-

vex/concave and b is monotonous)

Xt+h −Xt DFR true if A(t+ h)−A(t) ≤ 1 true if A(t+ h)−A(t) ≤ 1

Xt+h −Xt DRHR always true always true

Monotonicity and comparison of increments (with 0 ≤ s ≤ t) and h ≥ 0

X ∼ Γ0(A(·), b) SGP X ∼ Γ(A(·), b(·)) EGP

Xs ≺ Xt lr order always true • rh order always true

• hr (and lr) order not true when b(·)

increases

Xs+h − Xs ≺

Xt+h −Xt

lr order true if A(·) is convex rh order if A(·) is convex and b(·)

decreases

Xs+h − Xs �

Xt+h −Xt

lr order true if A(·) is concave rh order if A(·) is concave and b(·)

increases

Comparisons between two processes

X(1) ∼ Γ0(A1(·), b1) SGP X(1) ∼ Γ(A1(·), b1(·)) EGP

X(2) ∼ Γ0(A2(·), b2) SGP X(2) ∼ Γ(A2(·), b2(·)) EGP

X
(1)
t+h − X

(1)
t ≺

X
(2)
t+h −X

(2)
t

• lr order if A2(·)−A1(·) is increasing

and b1 ≥ b2
• icx order if A2(·)−A1(·) is decreas-

ing and A2(·)
b2
− A1(·)

b1
is increasing

• icv order if b1 ≤ b2 and A2(·)
b2
− A1(·)

b1

is increasing

• rh order if A2(·)−A1(·) is increasing

and b1(t) ≥ b2(t)

• icx order if A2(·) − A1(·) is de-

creasing, A2(·)
b2
− A1(·)

b1
increasing, b1(·)

decreasing and b2(·) increasing

• icv order A2(·)
b2(·) −

A1(·)
b1(·) is increasing,

b1(·) decreasing and b2(·) increasing

and b1(t) ≤ b2(t)

Aging properties of a crossing time σ`
X ∼ Γ0(A(·), b) X ∼ Γ(A(·), b(·))

σ` IFR true if A(·) is convex true if A(·) is convex and b(·) is

decreasing

σ` DRHR true if A(·) is concave not true even if A(·) is concave and

b(·) increases or decreases
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