
Negotiation Game for Joint IT and Energy Management
in Green Datacenters

Minh-Thuyen Thia, Jean-Marc Piersona,⇤, Georges Da Costaa, Patricia Stolfa,
Jean-Marc Nicodb, Gustavo Rostirollac, Marwa Haddadb

aIRIT, University of Toulouse, CNRS, INPT, UPS, UT1, UT2J, France
bFEMTO-ST, CNRS, Univ. Bourgogne Franche-Comte, UTBM, France

cLAPLACE, University of Toulouse, CNRS, INPT, UPS, France

Abstract

As the power demand of datacenters is increasing sharply, a promising solution

is to power datacenters locally by renewable energies. However, one of the main

challenges when operating such green datacenters is to conciliate the intermit-

tent power supply and the power demand. To deal with this problem, we view

the green datacenter as two sub-systems, namely, Information Technology (IT)

sub-system which consumes energy, and electrical sub-system which supplies

energy. The objective is to find an efficient trade-off between the power demand

and power supply, respecting the operational requirements of both sub-systems

(i.e., the requirements on utility, or monetary gain, which includes monetary

revenue and monetary cost). First, we analyze the problem by a black-box

approach. In this approach, the models of the two sub-systems are unknown

to each other, and the two sub-systems negotiate by exchanging their power

preferences. However, we found that the black-box approach cannot guaran-

tee stable solutions in term of execution time and generational distance (which

is the distance between a solution and the Pareto front). Then we introduce

a semi black-box approach, in which the two sub-systems are modeled as the

⇤Corresponding author.
Email addresses: minh-thuyen.thi@irit.fr (Minh-Thuyen Thi),

jean-marc.pierson@irit.fr (Jean-Marc Pierson), dacosta@irit.fr (Georges Da Costa),
patricia.stolf@irit.fr (Patricia Stolf), jean-marc.nicod@femto-st.fr (Jean-Marc
Nicod), gustavo.rostirolla@laplace.univ-tlse.fr (Gustavo Rostirolla),
marwa.haddad@femto-st.fr (Marwa Haddad)

Preprint submitted to Elsevier February 26, 2021

buyer and the supplier in a buyer-supplier negotiation game. We propose an al-

gorithm that allows the buyer and supplier to negotiate, seeking for an efficient

trade-off between the power demand and power supply. The analytical results

show that the semi black-box algorithm converges to equilibrium, and these re-

sults are then confirmed by experimental results. We conduct the experiments

by implementing a middleware of a datacenter powered by renewable energies.

The experimental results show that the semi black-box algorithm improves sig-

nificantly the stability, quality of service (QoS) and utility of the datacenter,

compared to other algorithms. In term of stability, compared to the black-box

algorithm, the semi black-box algorithm reduces the standard deviation of exe-

cution time and generational distance by 23 and 27 times, respectively. In term

of QoS and utility, the semi black-box algorithm outperforms the algorithms

that do not consider joint IT-energy management, as well as the algorithms

that do not utilize a semi black-box design.

Keywords: Datacenter, Renewable energy, Game theory, Negotiation,

1. Introduction

As the demand for cloud services has been growing over recent years, the

energy consumption of datacenters is increasing rapidly. A number of studies

have showed intensive data and reports on this increase Van Heddeghem et al.

(2014), Gill and Buyya (2018), Andrae and Edler (2015), Shehabi et al. (2016).

The consumed electricity of datacenters worldwide can reach 8000 billion kilo-

watt hours (kWh) in 2030 if efficient control methods are not developed Andrae

and Edler (2015). In the US, the datacenters consumed 100 billion kWh of

electric energy in 2015, and this consumption is expected to be 150 billion kWh

in 2022 Gill and Buyya (2018). On the other hand, the traditional/brown en-

ergy sources are becoming less preferable, due to economic and environmental

concerns. One promising solution is to use renewable energies to locally power

datacenters, avoiding both greenhouse gas emission and electricity distribution

loss. We consider a green datacenter that is entirely supplied by renewable

3

sources (namely, wind turbines (WT) and photovoltaic panels (PV)), and stor-

age devices (namely, batteries (BT), electrolyzers (EZ) and fuel cells (FC)).

However, one of the main challenges of building this datacenter is to conciliate

the intermittent energy production and the continuous operation of the datacen-

ter. The production of renewable energies such as WT and PV highly depends

on environmental conditions, so we need to coordinate this intermittent energy

production with the energy demand, in order to guarantee a high quality of

service (QoS) for cloud users.

To deal with this problem, we model the datacenter with one Negotiation

Module (NM) connecting to two sub-modules, namely Information Technology

Decision-support Sub-module (ITDM) and Power Decision-support Sub-module

(PDM). The ITDM manages the scheduling of datacenter workload, while the

PDM manages the scheduling of electrical sources. The scheduling of both

ITDM and PDM are considered jointly, with the support of the NM. This NM

manages the negotiation between the PDM’s power supply and the ITDM’s

power demand. When the power supply and power demand are mismatched,

the NM aims to find a compromise between them. We provide two generic

models for the ITDM scheduler and PDM scheduler; in this way, the proposed

negotiation algorithms can work with any scheduler that is implemented based

on these generic models.

As a straightforward approach toward a distributed design, we first propose

a black-box negotiation algorithm, named Scheduling Based Negotiation (SAN).

We define that a power profile is a set of power values associated with a time

interval. In this black-box approach, each Decision-support Sub-module (DM)

learns about the other DM through exchanging power profiles. These profiles,

called hints, allow each DM to learn about the preferred power of the other DM.

Each DM is expected to gradually propose more relevant profiles based on the

similarity to the hints. However, we found that the black-box approach cannot

guarantee stable solutions in term of execution time and generational distance.

In brief, generational distance is the distance between a solution and the Pareto

front, where Pareto front in a multi-objective problem is the boundary defined

4

by the set of non-dominated solutions. Then, we show that a semi black-box

approach is more relevant to deal with this kind of problem. We model the

problem as a buyer-supplier negotiation game, and based on this game, we pro-

pose a negotiation algorithm named Game Theory Based Negotiation (GAN).

In this game, the ITDM and PDM are modeled to become two game players,

named IT-Player and PD-Player. These two players negotiate with each other

as an energy buyer and an energy supplier. Our goal is to find an efficient com-

promise between the players, respecting their operational requirements. The

final solution is a mutually acceptable profile for both players.

We use a buyer-supplier model because this model reflects the buying-supplying

relationship between the IT sub-system and the electrical sub-system. Moreover,

in a negotiation problem, when two parties negotiate on a common resource,

each party should consider its willingness when compromising. This is because

a same amount of resource may be beneficial differently to each party. This

property can be addressed by the pricing process in a buyer-supplier partner-

ship.

We utilize a semi black-box model in order to retain the benefits of both

black-box and non-black-box approach. In a semi black-box approach, the IT-

Player and PD-Player are modeled independently, rather than integrally as in

a centralized approach. However, unlike the black-box approach, the players

can exchange more specific information to learn about the direction to nego-

tiate. On the other hand, our problem is a large-timescale problem, in which

the decision can be made every several days. However, we found that a semi

black-box approach is more beneficial than a centralized approach. Firstly, each

player is not required to gather a lot of information from the other player. The

independence between two players facilitates the design process and reduces the

involvement in case of modifying one player. Secondly, we propose to run the

negotiation algorithm regularly in a smaller timescale, e.g., every 6 hours, even

when there is no request from the players. In this way, the negotiation algo-

rithm can be run in an overlap manner, i.e., it is run every 6 hours, to find a

negotiation solution for 3 days. Finally, a decentralized approach facilitates the

5

design of a multi-timescale negotiation, which is one of our future works. In this

multi-timescale negotiation, we first find a long-term solution, then based on this

solution, we find multiple short-term solutions, within the long-term period.

The proposed game is a sequential and alternate-move game, rather than a

one-shot game. The players’ strategies (i.e., scheduling solutions) do not belong

to a deterministic space, so it is highly complex to solve the game analytically

using a one-shot non-cooperative approach. Moreover, this sequential game has

perfect information, since each player knows the decision taken by the other

player. However, the game is neither a complete nor incomplete information

game, because even though the players know the rules of the game (e.g., pricing

information), the players’ payoffs are not common knowledge.

The contributions of this research are as follows.

• We model the problem of joint IT and energy management for datacenters

entirely powered by renewable energies, then analyze that problem using

a black-box and a semi black-box approach. We propose two generic

models for the ITDM and PDM (section 3), then any scheduler that is

implemented based on this generic model can work with the negotiation

algorithms.

• After showing the instability of the black-box approach (section 4.2), we

propose a buyer-supplier negotiation game for the problem (section 5),

then introduce a negotiation algorithm to solve the game (section 6 and

section 7). We show that, analytically and experimentally, the proposed

algorithm converges to equilibrium.

• We setup a middleware to verify the proposed algorithms, and to evaluate

the performance of the whole system. We show that the proposed negoti-

ation algorithm can achieve efficient trade-offs between the utilities (i.e.,

monetary gains) of the IT and electrical sub-systems.

6

2. Related works

Recently there are a number of studies about datacenters partially or entirely

powered by renewable energy. Some of them consider only energy management,

some others consider only IT management, and some others jointly consider IT

and energy management. Some methodologies of the energy management prob-

lem are power source coordination Li et al. (2014), Sheme et al. (2016), and

power provisioning Liu et al. (2015). Some methodologies of the IT manage-

ment problem are IT job scheduling Goiri et al. (2015), Lei et al. (2015), Kassab

et al. (2018), virtual machine migration Wang et al. (2015), shifting demand in

time/demand response management Cioara et al. (2015), Paul et al. (2017),

assigning IT jobs to computational resources, Chonglin et al. (2015), Gu et al.

(2015), and Dynamic Voltage and Frequency Scaling (DVFS) Wu et al. (2014).

There is also some literature that proposes to combine multiple methodologies,

e.g., scheduling IT jobs over time, assigning IT jobs to servers/VMs, controlling

the states of servers/VMs, and assigning VMs to hosts Iturriaga and Nesmach-

now (2016), Beldiceanu et al. (2017). From the perspective of demand response,

we can also categorize those studies by temporal load balancing (e.g., shifting

demand in time), spatial load balancing (e.g., assigning IT jobs to multiple

computational resources), equipment state management (e.g., DVFS), and ad-

ditional storage management.

However, there are not many studies that provide a detailed consideration of

joint IT and energy management in green datacenters. Some studies that have

certain levels of that consideration are Goiri et al. (2013), Goiri et al. (2014),

Courchelle et al. (2018), Li et al. (2017), Roche et al. (2017), Caux et al. (2018),

Haddad et al. (2019). Among them, the articles Goiri et al. (2013) and Goiri

et al. (2014) are from a same research work; also, the articles Roche et al. (2017),

Caux et al. (2018), and Haddad et al. (2019) are from a same research work.

Some studies of Goiri et al. focus on IT scheduling with respect to predicted

renewable sources Goiri et al. (2011), or focus on developing a research plat-

form for green datacenters Goiri et al. (2013), Goiri et al. (2014). The authors

7

proposed Parasol, which is a prototype of datacenter powered by solar energy,

batteries, and net metering. The authors also introduced GreenSwitch, a sched-

uler for workload and energy sources. That research provides two main contri-

butions: (1) the analysis of main trade-offs in the datacenters that are powered

by solar and/or wind energy, and (2) the design of Parasol and GreenSwitch.

The authors analyze three trade-offs, namely grid-centric approach and self-

generation approach, space and cost of solar energy, and space and cost of wind

energy. In Goiri et al. (2014), the GreenSwitch tries to minimize the cost of grid

energy, with respect to the workload and the battery lifetime. The experiments

of Parasol and GreenSwitch prove that an intelligent management of IT work-

load and energy source can reduce operation cost significantly. However, only

solar panel is considered in Goiri et al. (2013) and Goiri et al. (2014). Moreover,

the IT scheduling in that research is limited. At each time period, the schedul-

ing algorithm selects which energy source (i.e., renewable, battery, and/or grid)

and which storage medium (i.e., battery or grid) to use.

The research in Li et al. (2017), Courchelle et al. (2018), Aksanli et al. (2011)

and Grange et al. (2018) also considers joint IT and energy management, though

the energy management is limited. Li et al. Li et al. (2017) presented two meth-

ods to maximize the utilization of renewable energy in a small/medium-sized

datacenter. The first method is an opportunistic scheduling, which suggests to

run more jobs when renewable energy is available. The second method is to store

renewable energy surplus to use later when the renewable energy supply is low.

The experiments are setup with real-world job workload and solar energy traces.

The authors also show that the proposed methods can reduce the demand for

energy storage. However, the proposed methods have simplified the manage-

ment of power sources. This management focuses on controlling the storage

devices with respect to their characteristics, e.g., battery depth-of-discharge,

battery charging rate limit. In Courchelle et al. (2018), the authors introduced

a priority-based scheduling, considering the battery state and the renewable en-

ergy forecast. The scheduling uses genetic algorithm to allocate jobs, taking

into account the storage capacity and the available solar energy. In general,

8

that research focuses on virtual machine scheduling, taking into consideration

the solar panel production. In Aksanli et al. (2011), the authors also introduce

an adaptive job scheduler with respect to the energy production forecast but

of both solar and wind sources. The objective is to decrease the number of

canceled or violated jobs, and increase the efficient usage of the green energy.

Similar to Courchelle et al. (2018), the research in Aksanli et al. (2011) focuses

on jobs scheduling with regard to renewable energy production. The jobs are

either web services or batch jobs; and the authors assume that each server has

one web services request queue, and one or more batch jobs slots. Web services

are executed when there are available computing resources and there is enough

brown energy to maintain these services. In Grange et al. (2018), Leo et al. pro-

posed a heuristic IT scheduling algorithm for datacenter powered by renewable

energies and the grid. The algorithm takes into account a limited knowledge

of the power sources. Specifically, each source is supposed to have a predicted

function that provides the estimation of the available energy over time. Then

the algorithm takes this prediction as an input in order to schedule IT jobs for

the datacenter.

The project DATAZERO
1 Roche et al. (2017), Caux et al. (2018), Haddad

et al. (2019) is among the first studies that proposes the architecture of datacen-

ters entirely powered by renewable energy, with a detailed consideration of joint

IT and energy management. The works in Roche et al. (2017) introduced the

design of the architecture, while the research in Caux et al. (2018) presented the

management of power demand, and the technical report Haddad et al. (2019)

presented the management of power supply. In this paper, we propose the nego-

tiation between the power demand and power supply. As a part of the project,

this paper presents the results of negotiation as well as the performance of the

whole system.

1www.datazero.org

9

www.datazero.org

3. Datacenter model

3.1. Generic model

We define that a power profile (or profile) x is a set of power values, associ-

ated with a time window, denoted as x = {x1, ..., xT }, where T is the length of

the time window. Depending on each specific context, a profile may have other

names, e.g., candidate profile/candidate or hint profile/hint. Table 1 is the list

of main notations used in our datacenter model.

We design a generic model for the DMs, then any scheduler whose implemen-

tation follows this model can work with the proposed negotiation algorithms.

In the generic model, the ITDM is responsible for scheduling the IT workload

in data center. Similarly, the PDM is responsible for scheduling the energy

sources and storage devices. The DMs run scheduling algorithms to find mul-

tiple feasible scheduling solutions, and the negotiation module helps to find a

compromised solution from those scheduling solutions (Fig. 1). The proposed

negotiation algorithm is a turn-based approach, i.e., when the ITDM schedules,

the PDM does not, and vice versa.

The two schedulers of the two DMs are described as follows.

• ITDM scheduler: this is an IT job scheduler; with each scheduling solution,

this scheduler generates a corresponding power profile. Specifically, with

respect to each scheduling solution, the scheduler computes the power

profile needed to execute the scheduled jobs (including both service and

batch jobs).

• PDM scheduler: this is a power sources scheduler; with each scheduling

solution, this scheduler generates a corresponding power profile, which

represents the power output from the electrical components (including

energy sources and storage devices).

3.1.1. ITDM utility

The schedulers are able to output multiple feasible scheduling solutions.

Each solution corresponds to a power profile, called candidate. Then, the nego-

10

Symbol Name Description

T
time win-

dow

T is a constant; T is equal to the number of time steps in

each profile; in experiment, T = 72 (hours)

x
power pro-

file

power profile has the form x = {x1, ..., xi, ..., xT }, i = 1, ..., T ,

where xi is the power value at i-th time step; the unit of

power value is Watt (W)

u(·) utility

the utility of a DM; the utility in the black-box approach is

normalized to [0, 1] and has no unit, whereas the utility in

the semi black-box approach is the monetary gain, which has

the unit Euro and is not normalized

r(·) revenue

the revenue of a DM; similar to the utility, the revenue in the

black-box approach has no unit, whereas the revenue in the

semi black-box approach has the unit Euro

c(·) cost

the cost of a DM; the cost in the black-box approach has no

unit, whereas the cost in the semi black-box approach has the

unit Euro

J (b)
number of

batch jobs
number of batch jobs that are being processed by ITDM

J (s)
number of

service jobs
number of service jobs that are being processed by ITDM

J
number of

all jobs

number of service and batch jobs that are being processed by

ITDM; J = J (b) + J (s)

d(x, y) distance
distance between two profiles x and y; distance can be mea-

sured by Mean Square Error or Pearson correlation

"
distance

threshold

threshold used in stopping criteria of the negotiation algo-

rithms; this threshold is set through experiment parameters

Table 1: Notations of datacenter model
11

tiation solution is selected based on the utility of the candidates. We explain

in detail this selection in the next sections. For each profile x, the ITDM’s util-

ity u(x) is computed based on the Amazon pricing 2 for on-demand instances,

which is given as

u(x) = r(x)� c(x), (1)

where the revenue r(x) = g(x)�h(x), with g(x) is job execution time multiplied

by instances cost, and h(x) is the service-level agreement (SLA) violation com-

pensation; the cost c(x) of the black-box and the semi black-box approach are

given differently, which will be described in corresponding sections. The SLA

violation compensations of IT batch job and service job are computed differ-

ently. First, with a set of J (b) batch jobs, we compute their average due date

violation v(b)(x) as

v(b)(x) =
1

J (b)

J(b)X

i=1

t(f)i � t(d)i

t(d)i � t(s)i

, (2)

where t(s)i , t(d)i and t(f)i are the starting time, due date and finishing time of

i-job, respectively. Note that in equation 2, for simplicity, we abandon x on the

right-hand side expression, implicitly implying that the expression is computed

with respect to x. Second, for service jobs, we calculate the ratio between the

amount of utilized computing resources (i.e., CPU and memory) and the amount

of reference computing resources. Specifically, when a set J (s) of service jobs

fail to receive their reference amount computing resource, and hence, undergo

QoS degradation, we calculate the under-provisioning ratio v(s)cpu(x) of CPU and

the under-provisioning ratio v(s)mem(x) of memory as

v(s)cpu(x) = v(s)mem(x) =
1

J (s)

J(s)X

i=1

r(utiz)i

r(ref)i

, (3)

2www.aws.amazon.com/ec2/pricing/on-demand

12

www.aws.amazon.com/ec2/pricing/on-demand

where r(utiz)i is the computing resource utilized, and r(ref)i is the reference com-

puting resource. In case of CPU,

r(utiz)i =
X

⇠2⌅

�i,⇠f⇠, (4)

and

r(ref)i =
X

⇠2⌅

�(ref)
i,⇠ f (ref)

⇠ , (5)

with �i,⇠ is the percentage of the processing element/processing core ⇠ that is

assigned to job i, f⇠ is the frequency of processing core ⇠, �(ref)
i,⇠ is the percentage

of reference processing core ⇠ that the job i requests, f⇠ is the reference frequency

of processing core ⇠, and ⌅ is the set of processing cores. Similar to equation 2,

in equation 3, we abandon x on the right-hand side expression for simplicity.

Finally, we compute the SLA violation compensation as

h(x) = v(b)(x) +
1

v(s)cpu(x) + v(s)mem(x)
, v(s)cpu(x) + v(s)mem(x) 6= 0. (6)

Note that for comparability, the values are normalized before applying the com-

putation.

3.1.2. PDM utility

The PDM computes its utility value, associated with each profile x, as

u(x) = r(x)� c(x, S), (7)

where S = {WT,PV,BT,EZ, FC} is the set of utilized components; the rev-

enue r(x) of the black-box and the semi black-box approach are given differently,

which will be described in corresponding sections; the cost c(x, S) is normalized

to [0,1], after being computed as

c(x, S) =
TX

i=1

X

j2S

Pj,i�t

E(max)
j

(c(op)j + c(cap)j), (8)

where xi =
P

j2S Pj,i, i = 1, ..., T , with Pj,i is the output power of component j

at time step i (this output power is obtained from the solution of PDM schedul-

ing); c(op)j , c(cap)j and E(max)
j are respectively the operational cost, the capital

13

cost (i.e., replacement cost) and the maximum energy produced by the power

source component j during its lifetime; �t is the duration of one time step. Note

that Pj,i can be positive or negative depending on the status of the source j

(i.e, charging or discharging). We define the operational cost c(op)j based on the

characteristics of each component. This cost is the fixed amount of maintenance

cost during the entire lifetime of a component. Note that the cost to purchase

hydrogen for fuel cell is not considered. In this way, we only use fuel cell when

hydrogen tank is not empty.

Electrical Infrastructure

IT Infrastructure

PDM

ITDM

Negotiation

Users
Information flow
Electrical flow

Figure 1: Datacenter model

3.1.3. Difference between two profiles

In order to quantify the difference between two profiles x and y, we define the

distance between them, denoted as d(x, y). Though d(x, y) can be implemented

by any method, in the experiment, we use Mean Square Error (MSE) and inverse

Pearson correlation to implement this distance.

14

3.2. A specific implementation of DMs

Based on the above generic model, we implement one ITDM scheduler and

one PDM scheduler, which were described partially in our previous works Caux

et al. (2018), Haddad et al. (2019). As in Caux et al. (2018), the ITDM sched-

uler is implemented with three versions of Best Fit algorithm; these versions are

different on the way that the jobs are sorted: (i) due date, closest job first; (ii)

arrival time, first come first served; and (iii) job size, longest one first. Each

of those algorithms takes one profile as an input, called power constraint Caux

et al. (2018). We use the PDM’s profile with highest utility for that power

constraint. However, the scheduling algorithms are not required to strictly re-

spect the power constraint, because each PDM’s profile has a relaxation value

⇢̄, indicating how much the ITDM is allowed to violate the power constraint.

For instance, when ⇢̄ = 0.2, the power demand can be arbitrarily lower than the

power supply, but the power demand can only exceed the power supply by 20%.

In other words, denoting the power constraint as l(PD), the output profile of the

scheduling algorithm must be lower than or equal to (1+ ⇢̄)⇥ l(PD). The ITDM

has three techniques to generate multiple scheduling solutions, and therefore

multiple profiles. The first technique is to vary the relaxation value. The sec-

ond technique is to use different versions of Best Fit algorithm. As the third

technique, the ITDM supports multiple service grades, i.e., multiple QoS levels

of a job. For example, video streaming service can provide multiple encoding

quality levels. We define that the degraded QoS of a batch job is associated with

delay violation, whereas the degraded QoS of a service job is associated with

resource under-provisioning. In this way, when a job has multiple service grades,

the ITDM finds one scheduling solution for each service grade. In other words,

the ITDM generates multiple scheduling solutions, each solution corresponds to

a service grade.

As described in Haddad et al. (2019), the PDM scheduler is based on the

following integer linear program.

15

max
TX

i=1

P (prod)
i

s.t. P (prod)
i  PWT,i + PPV,i + (PFC,i + P (out)

BT,i)⌘

� (P (in)
EZ,i + P (in)

BT,i)⌘, i = 1, ..., T,

(1� �̄)⇥ l(IT)
i  P (prod)

i  (�̄+ 1)⇥ l(IT)
i , i = 1, ..., T,

state of charge equations,

electrolyzer equations,

fuel cell equations,

level of hydrogen equations,

bounds of FC, EZ,

bounds of state of charge,

bounds of level of hydrogen,

(9)

where corresponding to the time step i, P (prod)
i , l(IT)

i , PWT,i, PPV,i, PFC,i, and

P (out)
BT,i , are respectively the produced power, load power, wind turbine power,

photovoltaic power, power delivered by fuel cell, and power discharged from

battery; P (in)
EZ,i and P (in)

BT,i are the power put into electrolyzer, and the power used

to recharge battery, respectively; ⌘ is the inverter efficiency. The resolution of

the integer linear program takes the load l(IT) as an input Haddad et al. (2019).

We use the ITDM’s profile with highest utility for that input. To output multiple

scheduling solutions, the PDM varies the relaxation value �̄. The meaning of

relaxation in PDM is similar as in ITDM, except the case when the power supply

is higher than the power demand. For example, when �̄ = 0.2, the power supply

cannot be arbitrarily higher than the power demand, but can only be higher by

20%.

Inside the scheduling algorithms, the distance between two profiles is imple-

mented by MSE and inverse Pearson correlation. Denoting T as the number

of time steps in each profile, the MSE distance between x = {x1, ..., xT } and

y = {y1, ..., yT } is given as

16

d(x, y) =
1

T

TX

i=1

(xi � yi)
2. (10)

Note that, similar to Euclidean distance, MSE is invariant if we change the order

of power values inside the profiles. In contrast, inverse Pearson correlation can

recognize that change, because it can realize the trends and evolution of power

values. As a result, we implement both methods and compare their performance.

When using inverse Pearson correlation, the distance between x and y is given

as

d(x, y) =

qPT
i=1 (xi � x̄)2

qPT
i=1 (yi � ȳ)2

PT
i=1(xi � x̄)(yi � ȳ)

, (11)

where x̄ and ȳ are the averages of the sets {x1, ..., xT } and {y1, ..., yT }, respec-

tively.

4. Black-box approach

As a straightforward approach, we introduce and analyze a black-box nego-

tiation algorithm, named Scheduling Negotiation Algorithm. Instead of consid-

ering the whole system by a global model, we consider the sub-systems of NM,

ITDM and PDM separately. The sub-problems are solved with as little specific

information as possible. The only exchanged information is power profiles.

In SAN, at the first negotiation round, each Decision-support Sub-module

generates its feasible profiles, called candidates, and sends them to the NM.

Each DM generates its profiles without considering the other DM. As described

in section 3, each profile has an associated utility. The NM selects half of the

candidates of each DM as hints, and abandons the other half. The selection is

based on the weighted sum of utilities and similarity, which is called weighted

similarity. We will describe this selection in detail in the next subsection. In

the next negotiation round, the NM requests a DM to generate a new half of

candidates. The NM selects the DM to request based on the negotiation mode,

which will be also described in the next subsection. If the ITDM is selected,

17

Symbol Name Description

x̌
the set of ITDM

hints

x̌ = {x̌1, ..., x̌m, ...x̌M}, where x̌m is an ITDM

hint

y̌
the set of PDM

hints

y̌ = {y̌1, ..., y̌n, ...y̌N}, where y̌n is a PDM

hint

ẋ

one variable in

the binary integer

program (12)

ẋ = {ẋ1, ..., ẋM} indicates which ITDM hint

is selected for the matched pair, for example,

ẋ = {0, 1, 0} indicates that x̌2 is selected for

the matched pair

ẏ

one variable in

the binary integer

program (12)

ẏ = {ẏ1, ..., ẏN} indicates which PDM hint

is selected for the matched pair, for example,

ẏ = {1, 0, 0} indicates that y̌1 is selected for

the matched pair

�(x̌, y̌)

minimum distance

between two sets x̌

and y̌

this minimum distance is defined as

min{d(x̌1, y̌1), d(x̌1, y̌2), ..., d(x̌M , y̌N)}

�
the relaxation val-

ues of ITDM hints

� = {�1, ...,�m, ...,�M}, where �m 2 (0, 1] is

the relaxation value of the hint x̌m; the ITDM

assigns one relaxation value to each hint

⇢

the relaxation val-

ues of the PDM

hints

⇢ = {⇢1, ...⇢n, ..., ⇢N}, where ⇢n 2 (0, 1] is the

relaxation value of the hint y̌n; PDM assigns

one relaxation value to each hint

Table 2: Main notations of black-box approach

18

the NM requests this ITDM by sending to it the PDM hint with highest utility

as power constraint (i.e., l(PD)). Similarly, if the PDM is selected, the NM

requests this PDM by sending to it the ITDM hint with highest utility as load

(i.e., l(IT)). As mentioned in the previous section, l(PD) and l(IT) serve as the

inputs of ITDM scheduler and PDM scheduler, respectively. After receiving

the request, the DM reschedules to generate its new half of candidates. Then

the DM sends this new half to the NM. The NM combines this new half of the

DM with the hints of this DM in the previous round, in order to form a new

candidate set for this DM. Again, the NM selects new hint set based on the

new candidate set. The process is repeated until the NM found a pair of {1

ITDM hint, 1 PDM hint} that are matched. A pair is called matched when it

consists of two profiles that have maximized summation of utilities, while the

distance between these two profiles is below a given threshold ". Note that,

in this black-box approach, we set the ITDM’s cost c(·) = 0, and the PDM’s

revenue r(·) = 1.

The proposed negotiation algorithm has two stages, namely, checking for

matched pair and negotiating. After executing stage 1, the algorithm checks

whether to continue the stage 2 or not. We describe these two stages as follows.

• Stage 1 - Checking for matched pair : after having a new hint set, the

NM checks whether there is a pair of {1 ITDM hint, 1 PDM hint} that

approximately matches with each other. If this matched pair exists, the

NM returns these two hints to the DMs as the final negotiation solution.

Then it is not necessary to continue the stage 2.

• Stage 2 - Negotiating : if the NM cannot find any matched pair, stage 2

is executed. We propose a turn-based mechanism in which the two DMs

do not reschedule at the same time. In each negotiation round, the NM

determines the negotiation mode, which indicates which DM is allowed to

reschedule at the next negotiation round. To do this, the NM monitors the

quality of the rescheduling, in order to decide which DM should reschedule

at the next round. In the next subsection, we describe this negotiation

19

algorithm in detail.

PDM NM

PDM hints

check for
matched pair

ITDM

reschedule,
evaluate candidates,
select new hints

ITDM hints

new PDM hints

reschedule,
evaluate candidates,

select new hints

PDM hints

checking
for matched

pair

FLW_IT

FLW_PD

ITDM hints

evaluate quality of
rescheduling

new ITDM hints

evaluate quality of
rescheduling

negotiating

evaluate quality
of rescheduling

matched pair found

PDM NM ITDM

final solution final solution

YES

NO

PDM NM ITDM PDM NM ITDM

Figure 2: Scheduling-based negotiation algorithm. How to evaluate quality of rescheduling is

explained in subsection 4.1.2.

4.1. Details of algorithm

In Fig. 2, we show diagram of the proposed algorithm; stage 1 is depicted at

the upper part, and stage 2 is depicted at the lower part of the figure. In stage

1, if a matched pair is found, the final solutions are sent to the DMs, and the

negotiation stops. If a matched pair is not found, stage 2 is performed. In stage

2, the algorithm is in one of these two negotiation modes: (i) following ITDM

(named FLW_IT), and (ii) following PDM (named FLW_PD). In the FLW_IT

20

mode, the NM requests the PDM to reschedule; then the PDM reschedules

to generate a new half of candidates, and sends back to the NM. Similarly,

in the FLW_PD mode, the NM requests the ITDM to reschedule, then the

ITDM reschedules to generate a new half of candidates. In brief, a negotiation

round includes three tasks: (i) scheduling, (ii) evaluating the candidates using

weighted similarity, and (iii) selecting new hints. In the FLW_IT mode, after

receiving new half of candidates from the PDM, the NM evaluates the quality

of rescheduling in order to decide the mode for the next negotiation round. The

procedures in the FLW_PD mode follow the same processes.

The details of the two stages are provided in the following subsections.

4.1.1. Stage 1 - Checking for matched pair

We denote the set of ITDM hints as x̌ = {x̌1, ...x̌m, ..., x̌M}, and the set

of PDM hints as y̌ = {y̌1, ..., y̌n, ...y̌N}, where M and N are respectively the

number of ITDM hints and PDM hints. We describe the main notations of

the black-box approach in table 2. Stage 1 checks whether there is a pair of

{1 hint x̌m, 1 hint y̌n} that matches. In order to find that pair, we solve a

binary integer program with two variables ẋ and ẏ. These variables are two

binary vectors: ẋ = {ẋ1, . . . , ẋm, . . . , ẋM}, ẏ = {ẏ1, . . . , ẏn, . . . , ẏN}, where

ẋm 2 {0, 1}, m = 1, . . . ,M , and ẏn 2 {0, 1}, n = 1, . . . , N . Each ẋm is a binary

value, indicating that x̌m is selected or not.

Stage 1 is represented by the following binary integer program.

max
ẋ,ẏ

MX

m=1

u(x̌m)ẋm +
NX

n=1

u(y̌n)ẏn,

s.t.
MX

m=1

NX

n=1

(1� �m)(1� ⇢n)ẋmẏnd(x̌m, y̌n) < ",

MX

m=1

ẋm = 1,
NX

n=1

ẏn = 1,

ẋm, ẏn 2 {0, 1},

(12)

where

21

• u(x̌m) and u(y̌n) are the utilities of the hints x̌m and y̌n, respectively,

• d(x̌m, y̌n) is the distance between x̌m and y̌n,

• �m and ⇢n are the relaxation values of the hints x̌m and y̌n, respectively,

• " is the distance threshold, which is set through experiment parameters.

The binary integer program finds a pair of profiles that maximizes the summa-

tion of utilities, while the distance between these two profiles is lower than the

distance threshold ".

4.1.2. Stage 2 - Negotiating

In this stage, the NM continues to use the hints of the previous stage. This

stage includes the scheduling process of the DMs and the evaluating process of

the NM. The scheduling process is for generating multiple feasible scheduling

solutions, corresponding to multiple candidates. The evaluating process is for

assessing the candidates against the hints, based on weighted similarity.

We describe the FLW_PD mode as follows. Note that the FLW_IT mode

undergoes similar processes. After receiving the request with l(PD) from the

NM, the ITDM reschedules to find a new half of candidates. Then the ITDM

sends these new candidates to the NM. The NM combines the ITDM hints

of previous round with the newly received candidates to form the new ITDM

candidate set. Then, the NM computes the quality w of each ITDM candidate

x based on weighted similarity, as follows.

w =
NX

n=1

u(x) + u(y̌n)

d(x, y̌n)
, (13)

where

• d(x, y̌n) is the distance between the candidate x and the hint y̌n,

• u(x) is the utility of the candidate x, and u(y̌n) is the utility of the hint

y̌n.

22

The NM selects half of ITDM candidates to become the ITDM’s new hints.

Then the NM decides whether to continue the FLW_PD mode or switch to

the FLW_IT mode. To this end, the NM evaluates the quality of the ITDM’s

reschedule by comparing two distances: (i) the minimum distance �(·) between

the PDM hints and the ITDM hints of previous negotiation round, and (ii)

the minimum distance �(·) between the PDM hints and the ITDM’s new hints

of current negotiation round. If the former is greater than the latter, we say

that the quality of the ITDM’s reschedule is satisfactory. Then the NM allows

the ITDM to execute another reschedule at the next negotiation round. If

the former is smaller than the latter, the PDM is allowed to reschedule. The

intuition behind this comparison is that, when the former is greater than the

latter, we expect that the ITDM will generate new candidates that get closer to

the PDM hints. To compute the minimum distance �(·) between two sets, we

compute the distance of every pair between two sets, then select the smallest

distance.

The negotiation process repeats until the NM finds a pair of matched profiles,

or the number of negotiation rounds reaches a given threshold. This threshold

is set via an experiment parameter. When the NM cannot find a matched pair,

the pair with the smallest distance is selected as the final solution. Then the

PDM’s profile in that pair is implemented as the power supply, and there is a

possibility that the performance of the datacenter is degraded when the power

supply is lower than the power demand.

4.2. Stability of black-box approach

We implement a middleware of datacenter powered by renewable energies

in order to carry out experiments for our research, as described in Sayah et al.

(2017). With SAN, we evaluate and analyze the execution time, as well as

the generational distance of each individual execution, as showed in Fig. 3 and

Fig. 5. Generational distance is first introduced by Van Veldhuizen and Lam-

ont Van Veldhuizen and Lamont (1998), for estimating the average Euclidean

distance between a solution and the nearest point on Pareto front. We measure

23

this distance in order to evaluate the trade-off of our final solution. To to this,

we trace the generated solutions and approximate their Pareto front by finding

the set of non-dominated solutions; then we measure the generational distance

of our final solution to this Pareto front (Fig. 4). We note that the Pareto front

is the best known approximation, because in order to compute the complete

Pareto front, we need to have the set of all feasible solutions, which is highly

complex to generate.

In Fig. 3, we depict the execution time, grouped by the number of hints. Each

gray dot represents the execution time of an individual execution. The vertical

line and the middle bar, respectively, represent the standard deviation and the

mean, which are computed from the values of gray dots. We can see that, when

the number of hints is 4, the execution time varies widely. When the number

of hints is high, the execution time becomes more consistent but also grows

higher. In Fig. 5 and Fig. 6, we show the generational distance with respect

to the number of negotiation rounds and the number of hints, respectively. In

these experiments, we set the distance threshold " = 1.12. Fig. 6 shows that

the black-box model cannot guarantee stable results, in term of generational

distance.

The experiments show that SAN is not able to provide highly consistent and

stable results. In the next section, we propose a semi black-box approach for

negotiation.

5. Semi black-box approach

To deal with the instability of the black-box approach, in this section, we

propose a semi black-box approach, which includes a game model and a ne-

gotiation algorithm, named Game Theory Based Negotiation. The game has

two players, namely IT-Player and PD-Player, corresponding to the two sub-

systems. The PD-Player controls the electrical sub-system, playing the role of

a supplier; the IT-Player controls the IT sub-system, playing the role of a buyer

(Fig. 7). The IT-Player and PD-Player have the functionality of game players,

24

Symbol Name Description

⇡ price

price is in Euros/kWh, proposed by the PD-Player,

indicating the per-unit payment that the IT-Player

has to pay to the PD-Player, having the form ⇡ =

{⇡1, ...,⇡T }

x̂ order

an order is a power profile, proposed by the IT-

Player, indicating how much power the IT-Player

wants to buy from the PD-Player, having the form

x̂ = {x̂1, ..., x̂T }

⇡IT
IT incentive

price

⇡IT is the price that the IT-Player can offer to the PD-

Player, i.e., willing-to-pay price; ⇡IT has the vector

form like ⇡

⇡PD
PD incen-

tive price

⇡PD is the price that PD-Player can offer to IT-Player;

⇡PD has the vector form like ⇡

xIT
aspiration

order

xIT is the profile that the IT-Player desires, with re-

spect to users’ demand; xIT has the vector form like

x̂

xPD
aspiration

supply

xPD indicates the power that the PD-Player wants to

supply to the IT-Player, with respect to the states of

electrical components; xPD has the vector form like x̂

↵
sacrifice

variable

this variable is used in sacrifice mechanism, making

the DMs sacrifice their utility in order to continue ne-

gotiation

�
sacrifice

step-size

� indicates how much ↵ is increased every time we

use sacrifice mechanism; this step-size is set though

experiment parameters

Table 3: Main notations of semi black-box approach

25

Figure 3: Execution time with respect to the number of hints

Figure 4: Illustration of solutions (gray dots), final solution (red square), and Pareto front

(blue stars)

and they only use ITDM and PDM as their schedulers. With this game design,

we abandon the role of the NM.

We introduce the new terms order, aspiration order, aspiration supply, and

price. Among them, order, aspiration order, and aspiration supply are profiles.

We will provide the detailed definitions of aspiration supply and aspiration order

in the next section. The definitions of order and price are as follows.

26

Figure 5: Generational distance with respect to the number of negotiation rounds

Figure 6: Generational distance with respect to the number of hints

• Order : a power profile, which indicates how much power the IT-Player

plans to buy from the PD-Player.

• Price: similar to opening price in Krause et al. (2006), price is the per-

unit payment that the IT-Player has to pay to the PD-Player, price is in

Euros/kWh.

The roles of the IT-Player and PD-Player are different, specifically, the PD-

Player first proposes price, then the IT-Player places order based on that price.

27

Electrical Infrastructure

IT Infrastructure

Users

Information flow

Electrical flow

Payment from IT-
Player to PD-Player

Payment from users

Operating cost

Negotiation

Jobs

3

1

1

2

Environmental
condition

1

2

3ITDM

IT-Player/Buyer

PDM

PD-Player/Supplier

Figure 7: Game model

In other words, the PD-Player controls the price, while the IT-Player controls

the order. In this way, the PD-Player is able to reflect the availability of energy

in the price.

In the proposed game, each player has its own objective and constraints,

which are described as follows.

• IT-Player: maximizes its utility (i.e., monetary gain), while satisfying the

users’ demand. Unlike SAN where the utility is an abstract value and nor-

malized to [0, 1], the utility in GAN is the amount of money a DM earns.

Specifically, the IT-Player utility is defined as the difference between: (i)

the payment that the users give to the IT-Player, and (ii) the payment

that the IT-Player gives to the PD-Player. The first payment is r(x), cor-

responding to an ITDM profile x, computed based on the Amazon pricing.

Each ITDM profile indicates how much power the IT-Player will buy from

the PD-Player. This power provides a certain computing capacity to the

28

users; then, the users pay to the IT-Player.

• PD-Player: maximizes its utility (i.e., monetary gain), while considering

the environmental conditions and operating cost (i.e., operational and

capital cost, as in section 3). That utility is defined as the difference

between: (i) the payment from the IT-Player and (ii) the operating cost

of the electrical infrastructure.

We depict the two players and their relationship as in Fig. 7.

The decision variables of the PD-Player are price and energy source schedul-

ing, whereas those of the IT-Player are order and job scheduling. The players

obtain scheduling solutions from the ITDM and PDM. The PD-Player obtains

the energy source scheduling solution from the PDM; similarly, the IT-Player

obtains the IT job scheduling solution from the ITDM. We described the DMs’

scheduling algorithms in section 3.

The proposed game is not completely a cooperative game or a non-cooperative

game. The players are partially selfish, i.e., each player maximizes its own util-

ity, however, at some points, the players sacrifice their utility, in order to reach

a negotiation agreement. We will define this sacrifice mechanism in subsec-

tion 6.2.

6. Overview of GAN algorithm

6.1. Terms definitions

Fig. 8 shows the variables and procedures of the proposed algorithm. In the

figure, we introduce some new terms.

• Aspiration order : the power profile that the IT-Player desires to order,

after considering users’ demand. We also use aspiration order as the load

l(IT) for the PDM’s scheduler.

• Aspiration supply : the power profile that the PD-Player desires to supply,

after considering the environmental conditions and operating cost. The

29

scheduling

Price

Price

scheduling

max utility

IT incentive
price

Aspiration order Order

Aspiration
supply

x
IT

x̂

x
PD

π
IT

it_place_order() it_est_price() it_sched()

pd_sched() pd_propose_price()

PD incentive
price π

PD

π

pd_est_price()

π

PD-Player

IT-Player

ITDM

PDM

Figure 8: Variables and procedures in the algorithm

final solution of the negotiation is the aspiration supply in the last negoti-

ation round. We also use aspiration supply as the power constraint l(PD)

for the ITDM’s scheduler.

The aspiration order and aspiration supply are used as two reference points Krause

et al. (2006). Also, we introduce two other reference points, namely, IT incen-

tive price and PD incentive price. In a buyer-supplier game, reference points

are important; and the players can revise these points during the negotiation,

in order to reach an agreement. That revision is necessary because there is a

possibility that the game has negative bargaining zone Krause et al. (2006).

Fig. 9 is an example of the aspiration supply, order, and aspiration order.

30

time step

x
PD

x̂

x
IT

power

1 2 3

Figure 9: An example of power profiles

time step

job 1
job 2 job 3

job

x
IT

1 2 3

power

(a)

x
PD

available energy

1 2 3

power

time step

(b)

Figure 10: The generating of (a) xIT and (b) xPD

In that example, the power supply of PD-Player is generally lower than the

power demand of IT-Player. We suppose that the reasons are the environmental

conditions, operating cost, and/or users’ demand. The PD-Player proposes the

price ⇡ that is inversely proportional to xPD. Then, the IT-Player places the

order x̂, considering the IT-Player utility and the price ⇡. Since ⇡ is inversely

31

proportional to xPD, we can expect that x̂ has similar curve with xPD. Fig. 10

shows how to generate the aspiration order xIT and the aspiration supply xPD.

The IT-Player generates xIT based on the scheduling solution of job 1, job 2

and job 3. The difference between xIT and x̂ is that xIT is the direct result of

a scheduling solution, whereas x̂ is the output of another computation after we

already had a scheduling solution. Similar to IT-Player, the PD-Player generates

xPD based on the scheduling solution of available energy. We will describe in

detail these generations in the formulations of IT-Player and PD-Player. Table 3

summarizes the main notations in semi black-box approach.

In GAN, the two modes FLW_IT and FLW_PD correspond to follow IT-

Player and follow PD-Player. Due to our turn-based design, at a time, the

algorithm follows only IT-Player or PD-Player. The decision of which mode to

follow is not made by any player, but by the global variable mod, as will be

explained in section 7. On the other hand, the players are selfish, and they

negotiate just because they foresee their benefit. Specifically, the IT-Player

wants the PD-Player to follow it, i.e., the IT-Player wants the PD-Player to

reschedule, in order to propose a more attractive supply. Similarly, the PD-

Player wants the IT-Player to reschedule and propose a more attractive order.

In this way, a problem of selfishness may occur: both players do not want to

follow each other, and they stop negotiating without reaching any agreement. To

deal with this problem, we introduce the mechanism of incentive pricing. In this

mechanism, each player proposes an incentive price that is possibly attractive

to the other player. However, the players cannot freely propose this price; they

must guarantee that their utilities are not reduced if this price is used. The

intuition behind this mechanism is as follows.

• IT incentive pricing : if the PD-Player is attracted by the IT incentive

price, and the PD-Player wants this price to be used, then the PD-Player

must supply a power profile that is equal to the aspiration order.

• PD incentive pricing : if the IT-Player is attracted to the PD incentive

price, and the IT-Player wants this price to be used, then the IT-Player

32

must place an order that is equal to the aspiration supply.

The incentive prices are the signals of the willingness to cooperate. Incentives

can be a powerful tool for the buyer to seek for agreement with the supplier Ter-

pend and Krause (2015). In our model, we allow both supplier and buyer to use

this tool. We utilize cooperative incentive, instead of competitive incentive Ter-

pend and Krause (2015), since cooperative incentives enable players to share

cost Giunipero (1990) and/or revenue Modi and Mabert (2007).

6.2. Sacrifice mechanism

We found that, even with incentive pricing mechanism, the problem of self-

ishness may still occur, i.e., both players stop negotiating while an agreement

is not reached. The problem of selfishness occurs when the incentive is not

attractive enough for both players to follow each other. From the system-wide

perspective, this situation is unacceptable, since the system will stop working.

To deal with this problem, we introduce sacrifice mechanism. At first, both

players negotiate without sacrificing. If the problem of selfishness occurs, the

players sacrifice their utility to continue negotiating, trying to reach an agree-

ment.

A player sacrifices by giving more attractiveness to the incentive price, even

though the utility of that player is reduced. The intuition behind this is that,

if the players stop negotiating without reaching any agreement, we can assume

that the players and the end-users receive a very low utility (e.g., negative

infinity utility); therefore, the players need to continue negotiating, even though

their utility decreases. We introduce the sacrifice variable ↵, which indicates

how much utility the players sacrifice. Every time the problem of selfishness

occurs, we increase ↵, raising the sacrifice quantity that each player should

abide by.

6.3. Two modes of negotiation

Fig. 11 depicts two sequential diagrams of two modes FLW_IT (i.e., fol-

lowing IT-Player) and FLW_PD (i.e., following PD-Player). Those modes are

33

PD-Player
price

new order,
new modes

 recompute
order & mode

reschedule

recompute
mode

reschedule

new modes

FLW_IT FLW_PD

new aspiration supply,
new price,

new PD incentive price,
new modes

new aspiration order,
new order,

new IT incentive price,
new modes

(with stored aspiration
order & IT incentive price)

 (with stored price,
 aspiration supply,

& PD incentive price)

IT-Player PD-Player IT-Player

Figure 11: Two modes of GAN algorithm

described as follows.

• FLW_IT: The PD-Player reschedules and computes new aspiration sup-

ply, new price, new PD incentive price, and new mode. After that, the

PD-Player sends these new information to the IT-Player. The IT-Player

computes new order and new mode, then sends to the PD-Player.

• FLW_PD: The IT-Player reschedules and computes new aspiration order,

new order, new IT incentive price, and new mode. Then the IT-Player

sends these new information to the PD-Player. The PD-Player computes

new mode, then sends to the IT-Player.

We note that, as showed in Fig. 11, if some information is not modified, it

can be stored and reused. For example, in the FLW_IT mode, the PD-Player

can reuse the aspiration order and the IT incentive price.

6.4. Mode controlling

In order to control the mode, we use 3 variables: IT-Player local variable

it_pre 2 {FLW_IT,

FLW_PD}, PD-Player local variable pd_pre 2 {FLW_IT, FLW_PD}, and

global variable mod 2 {FLW_IT, FLW_PD}. Both players always run the

34

Algorithm 1 Procedures of IT-Player
procedure follow_it()

x̂ it_place_order()

Send a message of {x̂, it_pre,mod}, and wake up the PD-Player Loop

procedure follow_pd()

xIT it_sched()

x̂ it_place_order()

⇡IT it_est_price()

Send a message of {xIT , x̂,⇡IT , it_pre,mod}, and wake up the PD-Player

Loop

Algorithm 2 Mode Updating
1: procedure update_mode(i_pre, p_pre, g_mod)

2: if i_pre = FLW_IT and p_pre = FLW_IT then

3: return FLW_IT

4: else

5: if i_pre = FLW_PD and p_pre = FLW_PD then

6: return FLW_PD

7: else

8: return g_mod

35

Algorithm 3 IT-Player Loop
1: ↵ 0, ⌧ 1

2: while d(xPD, x̂) > " and ⌧  ITER do

3: if it_pre = FLW_IT then

4: if pd_pre = FLW_PD then

5: ↵ ↵+ �

6: else

7: follow_it()

8: else

9: if pd_pre = FLW_PD then

10: follow_pd()

11: else

12: if mod = FLW_IT then

13: follow_it()

14: else

15: follow_pd()
16: if c(xPD,⇡PD)� ↵ < c(x̂,⇡) and d(xPD, x̂) > " then

17: it_pre FLW_PD

18: else

19: it_pre FLW_IT

20: mod update_mode(it_pre, pd_pre, mod)

21: ⌧ ++

22: Sleep until received new message from PD-Player

36

if then

checking current values updating new

value

updating system mode

variable

it_pre

variable

pd_pre

variable

mod

variable mod system mode

FLW_IT FLW_IT (*) FLW_IT follow IT-Player

FLW_PD FLW_PD (*) FLW_PD follow PD-Player

FLW_PD FLW_IT
FLW_IT FLW_IT (keep

unchanged)

follow IT-Player

FLW_PD FLW_PD (keep

unchanged)

follow PD-Player

FLW_IT FLW_PD (*) mod cannot be

determined

system mode cannot be

determined, the problem of

selfishness occurs; we have to

use sacrifice mechanism to solve

this problem

Table 4: The determining of system mode; (*) means either FLW_IT or FLW_PD

same mode, called system mode; this mode depends only on mod. And mod,

in turn, is jointly controlled by two local variables. The two local variables

cannot directly control the system mode, but instead, indirectly through the

global variable. The local variable it_pre indicates the mode that the IT-

Player prefers; similarly, the local variable pd_pre indicates the mode that the

PD-Player prefers. Based on the current values of the variables, we update the

new value of mod and the system mode. Specifically, if it_pre = FLW_IT

and pd_pre = FLW_IT , we will set mod = FLW_IT regardless of current

value of mod. Similarly, if it_pre = FLW_PD and pd_pre = FLW_PD,

37

we will set mod = FLW_PD regardless of the current values of mod. If

it_pre = FLW_PD and pd_pre = FLW_IT , we keep the mod unchanged.

If it_pre = FLW_IT and pd_pre = FLW_PD, we cannot determine either

mod or system mode. This means that we encounter the problem of selfishness,

and negotiation cannot be continued. We have to use sacrifice mechanism to deal

with this problem. We summarize how to determine system mode in table 4.

If the players are completely selfish, then each player always wants the other

player to follow itself, regardless of whether it foresees benefit from following the

other player or not. In this way, there is high possibility that we encounter the

situation when it_pre = FLW_IT and pd_pre = FLW_PD, meaning that

the negotiation cannot be continued. In order to reduce the possibility of this

situation, instead of designing the players to be completely selfish, we design

them to be partially selfish, i.e.,

• when the IT-Player foresees benefit from following the PD-Player, the

IT-Player sets it_pre = FLW_PD

• when the PD-Player foresees benefit from following the IT-Player, the

PD-Player sets pd_pre = FLW_IT .

In this way, the problem of selfishness only occurs when both players cannot

foresee any benefit of following each other.

7. Details of GAN algorithm

Corresponding to two modes, the algorithm of each player has two proce-

dures, namely follow_it() and follow_pd(). Moreover, each player has a main

loop, named IT-Player Loop (algorithm 3) and PD-Player Loop (algorithm 5).

Note that, in the loops, the parameter ITER is the maximum number of it-

erations. The two loops have the same values of ITER, distance threshold ",

and sacrifice step-size �; other variables and parameters are different; especially,

each player has its own value of ↵. The parameters ITER, ", and � are con-

stants, and they are set via experiment parameters. We note that, two players

38

have the procedures with same names, but their implementations are different.

Two procedures of IT-Player are showed in algorithm 1; two procedures of PD-

Player are showed in algorithm 4. When the negotiation starts, the two main

loops run in parallel. Within a loop, depend on the system mode, a procedure

can be called accordingly. A player, after finishing a procedure, sends a message

containing updated information to the other player. On the other hand, a loop

goes to sleep after reaching its end, and wakes up after receiving a new message

from the other player’s procedure (i.e., line 22 in algorithm 3 and algorithm 5).

In the proposed game, the players have the choice to stop negotiating. How-

ever, both players have the opportunity to increase their utility if they continue

to negotiate. We define that if both players stop negotiating before reaching an

agreement, each player receives a very low utility. That is why we introduce the

incentive pricing mechanism and the system mode controlling. In this way, no

player is allowed to unilaterally stop the negotiation process.

7.1. IT-Player algorithm

7.1.1. Overview of IT-Player algorithm

Two IT-Player procedures follow_it() and follow_pd() are showed in algo-

rithm 1. During one iteration, the IT-Player Loop can call one procedure; after

finishing the iteration, the IT-Player Loop sleeps and waits for new message

from PD-Player. Meanwhile, the called procedure starts to run; when this pro-

cedure finishes, this procedure wakes up the PD-Player Loop (algorithm 5). The

two procedures are described as follows.

• follow_it(): the IT-Player runs this procedure when mod = FLW_IT .

In this procedure, the IT-Player only needs to compute and sends to PD-

Player the new order x̂ and new modes (Fig. 11). This computation uses

the price proposed by the PD-Player. The IT-Player computes x̂ by the

procedure it_place_order().

• follow_pd(): the IT-Player runs this procedure when mod = FLW_PD.

In this procedure, the IT-Player must reschedule to compute the new

39

aspiration order xIT , the new order x̂, and the new IT incentive price

⇡IT (Fig. 11). The IT-Player computes xIT , x̂, and ⇡IT by the procedure

it_sched(), it_place_order() and it_est_price(), respectively.

7.1.2. IT-Player loop

The main loop of IT-Player is showed in algorithm 3. We terminate the loop

when: (i) the distance between xPD and x̂ is equal or less than a threshold ", or

(ii) the maximum number of iterations is reached, i.e. ⌧ >= ITER. We verify

these stopping criteria at line 2 of the algorithm 3. The criterion (i) means

that the power demand is approximately equal to the power supply. When the

criterion (ii) is satisfied, we stop the negotiation without obtaining a compromise

solution. In this case, the power supply from the PD-Player is xPD, and there

is a possibility that the performance of the datacenter is degraded if the power

supply is lower than the power demand.

In the loop, the IT-Player first checks and updates the sacrifice variable ↵.

This check and update are done from line 3 to line 5. We need to increase ↵

when both IT-Player and PD-Player stop following each other. Specifically, ↵ is

increased when the loop is not terminated but it_pre = FLW_IT and pd_pre

= FLW_PD, meaning that IT-Player wants to follow itself and PD-Player also

wants to follow itself. We increase ↵ in order to help the players have more

incentive to follow each other. We use ↵ in the condition at line 16. In that

condition, c(·) is the cost function, indicating the IT-Player payment to the PD-

Player. This condition means that, if the PD incentive price and the aspiration

supply are used, the IT-Player pays lower cost than when the current price and

order are used. With larger ↵, this condition is more likely to hold, then it_pre

is more likely to be set to FLW_PD (line 17).

In the loop, the IT-Player calls the procedure follow_it() or follow_pd()

based on the system mode; and the system mode depends on the values of mod,

it_pre and pd_pre (from line 7 to line 15). We summarize the behaviors of the

loop, depending on the modes, as in table 5.

At the end of the loop (line 20), the IT-Player updates the global variable

40

if then

updated value mod updating behavior

FLW_IT call follow_it()

FLW_PD call follow_pd()

mod cannot be determined; the prob-

lem of selfishness occurs

increase ↵; use sacrifice mechanism

to solve the problem of selfishness

Table 5: Behaviors of the IT-Player Loop, depending on the updated value of mod

mod using algorithm 2. This variable only switches its value when both local

variables it_pre and pd_pre have switched to the same value. In this way, a

player cannot unilaterally change the system mode, which results in conflicting.

The sacrifice mechanism supports the convergence of the algorithm. When

the players stop following each other but the algorithm still has not converged,

the players are required to sacrifice their utility by ↵, then the negotiation has

more possibility to continue. Every time the players stop following each other,

we increase ↵ by an amount of the sacrifice step-size, which is denoted as �

(line 5). The sacrifice mechanism is applied until the algorithm converges or the

maximum number of iterations is reached. The value of � is set via experiment

parameters. We summarize the behaviors of IT-Player Loop in table. 5.

7.1.3. IT-Player formulation

With T is the size of time window, we denote x = {x1, x2, ..., xT } as an

ITDM profile. The price proposed by the PD-Player is ⇡ = {⇡1,⇡2, ...,⇡T }.

Utility function of IT-Player is

u(x,⇡) = r(x)� c(x,⇡) = r(x)�
TX

k=1

⇡kxk, (14)

where

• r(x) is the revenue of the IT-Player, indicating the payment that the users

41

pay to the IT-Player; as mentioned in section 3, r(x) is computed based

on Amazon pricing,

• c(·) is the payment that the IT-Player pays to the PD-Player. Unlike

in SAN where the cost is set c(·) = 0, the cost in GAN is c(x,⇡) =
PT

k=1 ⇡kxk.

7.1.4. IT-Player procedures

Considering a negotiation round with the current aspiration order is xIT

and the current IT incentive price is ⇡IT , we denote the aspiration order and IT

incentive price of the previous negotiation round as ẍIT and ⇡̈IT , respectively.

The three procedures of IT-Player are described as follows.

• it_sched():

– At the first negotiation round, the IT-Player finds xIT by generating

multiple feasible scheduling solutions (called candidates) then selects

the best solution based on their utility. The generation of scheduling

solutions is described in section 3.

– At later rounds, the selection needs to satisfy another condition:

d(x, xPD) < d(ẍIT , xPD). This condition implies that the new as-

piration order must be closer to xPD than the aspiration order of

previous negotiation round.

• it_place_order(): the IT-Player finds x̂ that maximizes its utility as in

equation 14. The computation of x̂ is given as

x̂ = argmax
x

u(x,⇡). (15)

• it_est_price(): the IT-Player proposes a more attractive price to the PD-

Player, while keeping the IT-Player’s total utility non-decreased. The

price is proposed based on the following rationales.

– We have the fact that, from our definition, the aspiration order is

the IT-Player desired order; hence, the revenue associated with this

order is higher than the revenue associated with other orders.

42

– Based on this fact, the IT-Player estimates the revenue that it can

gain if it runs the users’ jobs using the power equal to the aspiration

order, instead of the placed order.

Based on those two rationals, the IT-Player computes an incentive price

that possibly increases the IT-Player cost, but the IT-Player total utility

has to be non-decreased, i.e., u(xIT ,⇡IT) � u(x̂,⇡). This incentive price

implies that the IT-Player is willing to pay this price, if the PD-Player sup-

plies the power equal to the aspiration order. Denoting p = {p1, p2, ..., pT }

as a temporary variable, the pseudo-code for computing ⇡IT is as follows.

p = ⇡IT = ⇡̈IT

while u(xIT , p) � u(x̂,⇡)

⇡IT = p

pi = pi +
pi
R
, i = 1, ..., T,

where ⇡̈IT is the IT incentive price of the previous negotiation round; R

is a positive integer, which is set through experiment parameters.

7.2. PD-Player algorithm

Algorithm 4 Procedures of PD-Player
procedure follow_pd()

Send a message of {pd_pre,mod}, and wake up the IT-Player Loop

procedure follow_it()

xPD pd_sched()

⇡ pd_propose_price()

⇡PD pd_est_price()

Send a message of {xPD,⇡,⇡PD, pd_pre,mod}, and wake up the IT-

Player Loop

We show two procedures follow_pd() and follow_it() of the PD-Player in

algorithm 4; and the PD-Player loop in algorithm 5. The PD-Player loop can

43

Algorithm 5 PD-Player Loop
1: ↵ 0, ⌧ 1

2: while d(xPD, x̂) > " and ⌧  ITER do

3: if pd_mode = FLW_PD then

4: if it_pre = FLW_IT then

5: ↵ ↵+ �

6: else

7: follow_pd()

8: else

9: if it_pre = FLW_IT then

10: follow_it()

11: else

12: if mod = FLW_IT then

13: follow_it()

14: else

15: follow_pd()
16: if r(xIT ,⇡IT) + ↵ > r(x̂,⇡) and d(xPD, x̂) > " then

17: pd_pre FLW_IT

18: else

19: pd_pre FLW_PD

20: mod update_mode(it_pre, pd_pre, mod)

21: ⌧ ++

22: Sleep until received new message from IT-Player

44

be described similarly to the IT-Player loop.

Denoting x = {x1, x2, ..., xT } as a PDM profile, the utility function of the

PD-Player is given as

u(x,⇡, S) = r(x,⇡)� c(x, S) =
TX

i=1

⇡ixi � c(x, S), (16)

where c(x, S) is computed as in equation (8). Unlike in SAN where the revenue

is set r(·) = 1, the revenue in GAN is r(x,⇡) =
PT

i=1 ⇡ixi.

7.2.1. PD-Player procedures

Similar to the IT-Player procedures, we denote the aspiration supply, price

and PD incentive price of the previous negotiation round as ẍPD, ⇡̈ and ⇡̈PD,

respectively. The three procedures of the PD-Player are described as follows.

• pd_propose_price(): each value ⇡i is generated such that it is inversely

proportional to the value xPD
i . We denote Z as the base price of electricity;

in experiment, we set Z = 0.17 Euros/kWh. The computation of ⇡ is given

as follows.

if xPD
i >= P̄i

⇡i = Z

else

⇡i = Z
P̄i

xPD
i

, i = 1, ..., T,

where P̄ = {P̄1, ..., P̄T } is the PD-Player average power supply; these

values are stored and updated regularly by the PD-Player. In this com-

putation, xPD
i , i = 1...T and P̄i, i = 1...T are normalized to (0,1].

• pd_est_price(): similar to the procedure it_est_price(), the PD-Player

proposes an incentive price that is attractive to the IT-Player, while keep-

ing PD-Player’s total utility non-decreased. We have defined that the

aspiration supply is the PD-Player desired supply, hence the cost associ-

ated with this supply is lower than the cost associated with other sup-

plies. Based on this fact, the PD-Player estimates the amount of cost

45

that it can reduce if it provides the IT-Player with the power equal to

aspiration supply, instead of the placed order. Then the PD-Player com-

putes an incentive price such that its total utility is non-decreased, i.e.,

u(xPD,⇡PD) � u(x̂,⇡). This computation implies that the PD-Player is

willing to offer this price, if the IT-Player purchases the power equal to the

aspiration supply. Denoting p = {p1, p2, ..., pT } as a temporary variable,

the pseudo-code for computing ⇡PD is as follows.

p = ⇡PD = ⇡̈PD

while u(xPD, p) � u(x̂,⇡)

⇡PD = p

pi = pi �
pi
R
, i = 1, ..., T,

where ⇡̈PD is the PD incentive price of previous negotiation round; R is

a positive integer as in the IT-Player algorithm.

• pd_sched():

– Similar to the IT-Player, at the first negotiation round, the PD-Player

finds xPD by generating multiple feasible scheduling solutions (called

candidates) then selects the best solution based on their utility. The

generation of the scheduling solutions is based on equation (9) of

section 3.

– At later rounds, this procedure needs to satisfy two other conditions:

(i) xPD must be closer to xIT than the aspiration supply of previ-

ous negotiation round ẍPD, i.e., d(x, xIT) < d(ẍPD, xIT), and (ii)

the new price ⇡ must be closer to ⇡IT than the price of previous

negotiation round ⇡̈, i.e., d(⇡,⇡IT) < d(⇡̈,⇡IT).

In order to provide more explanations on the algorithms, we present a sim-

plified numerical example of the negotiation process in Appendix B.

46

7.3. Properties of the proposed game

7.3.1. General properties

As mentioned in section 5, the proposed game is neither a cooperative game

nor a non-cooperative game. This game can also be categorized as an integra-

tive, win-win or problem solving bargaining game Pruitt (1981), Graham (1986),

Lewicki et al. (2011), Lewicki (1981). In this integrative bargaining game,

the benefits of both players are addressed by a cooperative and information-

exchange oriented negotiation process. This is a well-known method to find a

win-win agreement between suppliers and buyers. Without defining target and

minimal outcomes, the players view the negotiation as a "problem to be solved",

then mutually seek for a win-win agreement through negotiation Lewicki et al.

(2011), Lewicki (1981). As a results, one player’s gain does not necessarily come

at the expense of the other player’s gain.

The proposed game has some similar properties to the centipede game Bin-

more (1987), Osborne and Rubinstein (1994). In brief, centipede game is a

sequential game in which two players play alternatively, choosing their strategy

on a shared resource. The two main similar properties between the proposed

game and centipede game are as follows. First, in our game, both players al-

ternately have the option to stop negotiating Osborne and Rubinstein (1994).

When a player prefers to stop negotiating, if it does stop, its utility is kept

non-decreased. Second, the players have the chance to achieve higher utility if

they continue. A player continues because it expects to obtain higher utility, in

contrast, a player stops because it is afraid that the next move of the opponent

will not be beneficial to it. Although there are two similar properties, the pro-

posed game and the centipede game have a major difference. The players in the

centipede game have the same set of two predefined discrete strategies, whereas

the players in the proposed game have different continuous strategy sets.

7.3.2. Equilibrium

Definition 1: The incentive to unilaterally deviate: a player has incentive

to unilaterally deviate if and only if the condition d(xPD, x̂) > " holds.

47

Definition 2: Equilibrium: the game reaches equilibrium when the condi-

tion d(xPD, x̂) > " does not hold for both players.

We note that, the equilibrium in Definition 2 is Nash equilibrium Osborne

and Rubinstein (1994) because of followings. When the d(xPD, x̂) > " does not

hold for both players, we reach equilibrium (Definition 2), and at the same time,

the two players have no incentive to unilaterally deviate (Definition 1). On the

other hand, the state when each player does not want to unilaterally deviate

(given the current strategies of other players are unchanged) is called Nash

equilibrium Osborne and Rubinstein (1994). This means that the equilibrium

we have reached is the Nash equilibrium.

Proposition 1: Consider algorithm 3 and algorithm 5,

• (i) given that the scheduling relaxation can be arbitrarily varied,

• (ii) if these two algorithms run for a large enough number of iterations,

then the DMs’ scheduling solution is ergodic in [xIT , xPD] given a pre-defined

granularity, and these algorithms converge to equilibrium.

Proof See Appendix A.

8. Experimental results

8.1. Setup

To evaluate GAN, we conduct various experiments using our middleware of

datacenter powered by renewable energies. The middleware system is composed

of a negotiation controller, an IT sub-system, and an electrical sub-system; they

connect with each other through ActiveMQ 3. We implement the ITDM using

DCWorms Kurowski et al. (2013), a tool for simulating distributed computing

systems. More description about this middleware can be found in our previous

article Pierson et al. (2019). When running the negotiation algorithm, at each

negotiation round, two representative profiles from IT-Player and PD-Player are

3www.activemq.apache.org

48

www.activemq.apache.org

logged for evaluation. To have these two profiles, we use the placed order and

the aspiration supply. The time window is set to 72 (hours), corresponding to 3

days. We run the experiments on Taurus cluster of Grid5000 platform 4 and on

a local computer. The local computer is used to run the experiments relating

to execution time. This local computer has one Intel R� processor 2.20GHz

with 4 cores, and 8.27GB memory. Pearson correlation is used as the default

implementation of profile distance. With some abuse of notation, we use M and

N to denote the number of candidates in the scheduling of ITDM and PDM,

respectively. In case there is not specific information provided, the default

number of candidates is M = N = 36, and the default value of � is 50. The

default maximum number of iteration is ITER = 18.

The workload and weather information is trace data. The workload is a

set of jobs, each has the information of arrival time, resource consumption over

time, due date, and service grades. The traces of the workload are generated

from a generator that is introduced in our previous research Caux et al. (2018).

We use Google based workload generator to generate jobs for 72-hours time

window. This means that the datacenter has to execute these jobs within 72

hours, otherwise, the jobs are expired. However, we use a different workload

set with Caux et al. (2018) (which has only batch jobs); our workload includes

312 jobs, with 156 batch jobs and 156 service jobs. The trace of solar radia-

tion is from the National Solar Radiation Database 5, and the trace of wind is

from the wind prospect database 6, both traces are of Los Angeles in August

2002. The parameters of electrical infrastructure are summarized in table 6.

Our research targets the datacenters that have 1MW peak of power demand,

which were mentioned in our previous article Pierson et al. (2019). This kind

of datacenter is popular in enterprises and public clouds. As a result, the sizing

of the experimented datacenter is 1MW. This sizing is based on our other re-

4www.grid5000.fr
5www.nrel.gov/rredc/solar_data.html
6www.maps.nrel.gov/wind-prospector

49

www.grid5000.fr
www.nrel.gov/rredc/solar_data.html
www.maps.nrel.gov/wind-prospector

Components Parameters Values

wind turbines
number of turbines 2

maximum power per turbine 1800W

photovoltaic panels
number of panels 14

area per panel 7.8m2

fuel cell
maximum power 2740W

minimum power 0W

electrolyzer
maximum power 2740W

minimum power 600W

batteries

number of batteries 2

capacity per battery 2500Wh

maximum charging/discharging power 1486W

Table 6: Setup parameters of electrical infrastructure

search Haddad et al. (2017), which focuses on the sub-topic Infrastructure sizing

inside the DATAZERO project. We also note that the negotiation algorithm

works based on the relative relationship between the power of ITDM and PDM,

instead of absolute values of power. In other words, the absolute values of both

ITDM and PDM power can be scaled up or down together. As a result, with

other sizes of datacenter, as long as the ITDM and PDM are sized relatively

in the proper order of magnitude, the algorithm can work. Other information

about the setup and configurations of PDM and ITDM can be seen in Haddad

et al. (2019), Caux et al. (2018) and Pierson et al. (2019).

We conduct various experiments to verify the convergence (section 8.2) and

stability (section 8.3) of the proposed algorithms, then compare their perfor-

mance with other algorithms (section 8.4). In order to verify the convergence,

50

generally we show the distance between ITDM and PDM profiles over time. To

verify the stability, we perform multiple executions, then estimate the standard

deviation among those executions in term of execution time and generational

distance. Finally, we compare the performance of SAN and GAN with two other

algorithms, namely SAN-IT and GreenSlot Goiri et al. (2011). The algorithm

SAN-IT is a modified version of SAN, in which the scheduling of PDM is not

considered. GreenSlot is an algorithm that schedules workload in time based

on the information of predicted available renewable energy and grid electricity

price.

8.2. Convergence

Fig. 12 depicts the performance of Pearson and MSE in term of distance

between ITDM and PDM profiles, over negotiation rounds, in 3 different values

of the sacrifice step-size �. In the experiments about convergence, we set the

distance threshold " to an extremely low value, in order to prevent the algorithm

from stopping before reaching the maximum number of iteration, i.e., ITER =

18. In general, the curves drop gradually over time, but with different paces. We

can see that the curve � = 100 fluctuates dramatically, while the curve � = 20

drops slowly, and therefore, reaches stable state slowly. The explanation is that

when � is small, ↵ is reduced slowly, then the sacrifice mechanism needs more

time to take effect. When � = 50, the algorithm provides more proper result

than two others.

We define power violation between an ITDM profile and a PDM profile is the

total amount of power that the ITDM profile exceeds the PDM profile. Fig. 13

presents the power violation of two implementations of distance, namely Pearson

and MSE. We show the results of three scenarios: M = N = 4, M = N = 12,

and M = N = 20. We can see that the curves generally drop over time. When

M = N = 12 or M = N = 20, the curve fluctuates more than when M = N = 4,

but reaches stable state faster. With higher number of candidates, we reach the

stable state faster at the cost of running time. We can see that, with proper

settings, the algorithm converges in about 12 negotiation rounds (Fig. 12 and

51

Fig. 13).

In Fig. 12 and Fig. 13, we also see that Pearson has better performance than

MSE in term of convergence. This can be explained by the fact that, as discussed

earlier, the Pearson correlation is able to capture the change in the order of

power levels. Note that, to be comparable, all the curves showed in the figure

are in Pearson measurements, even with the curve of MSE implementation.

Specifically, in the implementation of MSE, we only use MSE measurement

when comparing two profile inside the algorithm; after obtaining the solution

for each round, we apply Pearson measurement on that solution.

Figure 12: Profile distance over negotiation round

Figure 13: Power violation over negotiation round

In Fig. 14, we illustrate the evolution of sacrifice variable ↵ over time. In this

52

Figure 14: The change of ↵ over negotiation round

experiment, we set � = 50, so ↵ is increased by 50 each time. The corresponding

utilities of two players are showed in Fig. 21. We note that, due to the sacrifice

mechanism, the utility is not always increased. When the IT-Player utility

increases, the PD-Player utility tends to be decreased (Fig. 21).

8.3. Stability

Figure 15: Execution time over the number of candidates

Fig. 15 depicts the execution time of each execution, categorized by the

number of candidates. Note that as defined in section 3, a candidate is a profile

corresponding to a feasible scheduling solution. When performing scheduling,

the schedulers generate multiple feasible scheduling solutions, then select the

final solution based on the criteria described in it_sched() and pd_sched(). In

the experiments about execution time, we fix the stopping criteria of the negoti-

ation algorithm by setting the distance threshold " = 1.12. Table 7 summarizes

53

Figure 16: Generational distance over the number of candidates

the mean execution time of GAN in four scenarios of candidate. The table shows

that the execution time of GAN does not grow exponentially with the number

of candidates; instead, the growth is nearly linear.

Fig. 16 depicts the generational distance of the negotiation solution after 18

rounds. Compared to SAN (Fig. 3 and Fig. 6), the approach GAN (Fig. 15

and Fig. 16) achieves more stable execution time and generational distance.

Table 8 summarizes the performance of SAN and GAN in term of standard

deviation on execution time (stand. dev. on exe. time) and standard deviation

on generational distance (stand. dev. on gen. dist) over different number of

candidates (no. of cand.). We generate this table using the data in Fig 3,

Fig. 6, Fig. 15, and Fig. 16. As an example, the SAN’s standard deviation

on execution time of 28 candidates scenario is 3.4225, and the deviation on

generational distance is 0.1453; whereas for GAN, those deviations are 0.1487

and 0.0052, respectively. This means that the deviations of GAN are lower

than SAN by 23.0161 and 27.9423 times. In general, with the scenarios of 28

candidates or higher, the execution time and generational distance of GAN are

lower than SAN more than 20 times. Unlike GAN, the DMs in SAN have less

information about direction to negotiate; hence, in some cases, the negotiation

process may takes long time.

54

Number of

candidates

4 12 20 28 36

Mean

execution time

5.88

mins

9.2

mins

12.3

mins

14.31

mins

16.31

mins

Table 7: Execution time of GAN

Metrics No.

of

cand.

SAN GAN SAN÷GAN

Stand. dev. on exe. time

4 8.0451 0.4609 17,4552

12 4.3564 0.2608 16,704

20 3.7724 0.1741 21,668

28 3.4225 0.1487 23,0161

36 2.5734 0.1284 20,0421

Stand. dev. on gen. dist.

4 0.1597 0.0315 5,0698

12 0.1069 0.0157 6,8089

20 0.0876 0.0062 14,129

28 0.1453 0.0052 27,9423

36 0.1002 0.0047 21,3191

Table 8: Execution time and generational distance of SAN and GAN

55

8.4. Performance

Figure 17: Power violation over number of evaluations

Figure 18: Generational distance over the number of negotiation rounds

When scheduling, the schedulers generate multiple feasible scheduling so-

lutions, called candidates, then assess these candidates to select proper ones.

We define that an evaluation is an assessment of one candidate when selecting

the proper candidate. The number of evaluations is affected by the number of

candidates (i.e., M and N) and the number of negotiation rounds. For instant,

with M = N = 4, the number of evaluation after 18 negotiation round is 72.

Fig. 17 shows the number of evaluations of GAN, with different scenarios of

M and N . This result can help to understand the complexity of the proposed

algorithm, if this algorithm is compared to other algorithms that are also based

on generating multiple solutions, e.g., genetic algorithm. From this figure, we

56

can see that, since the curves "Pearson (M = N = 20)" and "Pearson (M =

N = 12)" in Fig. 13 require higher number of evaluations, they reach stability

sooner than the curve "Pearson (M = N = 4)". Unlike the Pearson curves, the

MSE curve cannot reach stability although it also requires a high number of

evaluation.

We compare our approaches with the "GreenVarPrices" version of the algo-

rithm GreenSlot Goiri et al. (2011), which is implemented into our system with

several simplifications and modifications. These modifications allow GreenSlot

to have the same machine and workload model with ours. The modifications

are: (i) the renewable sources are predicted without error, (ii) the job execution

time is predefined, there is no time tolerance, (iii) if the due date of a job cannot

be guaranteed, we still admit and schedule that job after its due date, and (iv)

a machine may run multiple jobs at a same time, instead of only one job as in

GreenSlot.

We modify SAN to have the new approach SAN with only ITDM, named

SAN-IT. In SAN-IT, the scheduling solution from the ITDM is used as the

final solution, without negotiating with PDM. The NM requests the ITDM

to schedule with minimum relaxation, then the ITDM computes and returns

the final solution. The power constraint l(PD) of the ITDM scheduler is set

to the maximal available energy, meaning that the ITDM is allowed to used

maximal available energy without regarding to the PDM cost. We implement

the approach SAN with only ITDM, instead of SAN with only PDM, in order

to have comparable results with GreenSlot (which focuses on IT scheduling,

while taking into account the prediction of available energy). In Fig. 18, we

compare the generational distance of SAN, SAN-IT, GAN, and GreenSlot. Note

that the result of SAN in Fig. 18 is identical to the curve M = 36 in Fig. 5.

The generational distance of SAN-IT and GreenSlot in Fig. 18 are constant

because they are one-shot algorithms. We can see that SAN-IT provides lower

performance than others because it only considers ITDM scheduling. SAN and

GAN have highest performance, and they both converged before 20 negotiation

rounds.

57

In Fig. 21, Fig. 19, and Fig. 20, we compare the utility, revenue and cost

of four approaches. Each approach has one ITDM curve and one PDM curve,

each curve is named by the the approach name followed by "ITDM" or "PDM";

for example, the ITDM curve of SAN is "SAN - ITDM". With some abuse

of notation, we also name the curves of GAN as "GAN - ITDM" and "GAN

- PDM", instead of "GAN - IT-Player" and "GAN - PD-Player". To make

the performances of four approaches more comparable, we compute the utility,

cost and revenue of GreenSlot, SAN-IT and SAN using the same formulation

with GAN. Unlike in the SAN formulation where the cost of ITDM is set to

zero, and the revenue of PDM is set to 1, in these experiments, we compute

this cost and revenue similar as in GAN. Specifically, GreenSlot, SAN-IT and

SAN call the GAN’s procedures that compute utility, cost and revenue. As

defined in section 3, the utility is the difference between the revenue and the

cost. Note that the ITDM cost in Fig. 20 is identical to the PDM revenue in

Fig. 19, because the ITDM pays to the PDM. The utility, cost and revenue are

all measured in Euro.

The figures show that, in each negotiation round, if the curve "SAN - ITDM"

raised or dropped, the curve "SAN - PDM" unchanged, and vice versa. This is

the effect of turn-based negotiation. However, we cannot see this effect in the

curves of GAN because of following reasons.

• First, for GAN, a negotiation round in the FLW_PD mode is slightly

different with a negotiation round in the FLW_IT mode. In the FLW_PD

mode, a negotiation round is finished after the IT-Player sends a message

to the PD-Player. However, in the FLW_IT mode, a negotiation round

is finished after the PD-Player sends a message to the IT-Player and the

IT-Player finishes recomputing new order x̂.

• Second, unlike SAN where each DM shows its utility, revenue and cost

with respect to its own profile (i.e., the profile with highest utility), the

players in GAN show their utility, revenue and cost with respect to a

common profile (i.e., the order x̂). Specifically, the revenue and cost of

58

IT-Player are from r(x̂) and c(x̂,⇡), respectively; similarly, the revenue

and cost of PD-Player are from r(x̂,⇡) and c(x̂, S), respectively.

In the figures, we can see that, because SAN-IT only considers ITDM schedul-

ing, its ITDM has high revenue and low cost, while, in contrast, its PDM has low

revenue, and high cost. As a result, its PDM utility is low, and even negative.

Compared to SAN-IT, GAN provides a higher fairness between the utilities of

ITDM and PDM. Among all four approaches, GAN, in general, achieves the

highest performance in utility, though its cost is not always lowest. On the

other hand, as showed in Fig. 14, the IT-Player sacrifices more than PD-Player,

so the curves of IT-Player’s revenue and IT-Player’s cost fluctuate more than

PD-Player, making the IT-Player’s utility vary more than PD-Player’s utility.

In Fig. 22, Fig. 23 and Fig. 24, we show the SLA violation of batch jobs,

service jobs and overall violation, respectively. In each figure, we present the

SLA violation of the final negotiation solutions of each approach. With batch

jobs, we define the SLA violation as the rate at which the jobs finish their ex-

ecution after their due dates. With service jobs, the SLA violation is the rate

at which the computing resource received is lower than the computing resource

requested. Denoting the number of violated batch jobs is b, we have the SLA

violation as b
J(s) . Similarly, denoting the number of violated service jobs is s,

we have the SLA violation as s
J(b)

. In this way, the overall SLA violation is
b+s
J , where J = J (b) + J (s). Though SAN-IT has generally low performance

in other metrics, it has higher performance than GreenSlot in SLA violation of

both service and batch jobs, because it only considers ITDM scheduling with-

out regarding to the PDM. However, SAN-IT cannot have higher performance

than GAN and SAN because when it disregards PDM scheduling, there is a

higher possibility that the power supply mismatches the power demand, then

the performance of datacenter is degraded. GAN and SAN have the highest

performance, achieving around 0.23% and 0.96% overall violation, respectively.

We summarize the performances of all approaches in table. 9, with different

scenarios of distance threshold and number of negotiation rounds. We show the

59

Figure 19: Revenue over negotiation round

Figure 20: Cost over negotiation round

metrics of average execution time (avg. exe. time), average profile distance (avg.

prof. dist.), average generational distance (avg. gen. dist.), average utility (avg.

util.), total utility (tot. util.), and average overall SLA violation (avg. over. SLA

violat.). We define the total utility as the sum of ITDM utility and PDM utility.

Note that the average profile distance of GreenSlot and SAN-IT is not showed

in the table because in these approaches, there are not two separate profiles

of ITDM and PDM, so we cannot measure their distance. The table shows

that GAN outperforms other approaches in most metrics, except the average

60

Figure 21: Utility over negotiation round (the higher the better)

Figure 22: SLA violation of batch jobs

execution time. Specifically, compared to other approaches, GAN achieves lower

average profile distance, lower average generational distance, higher total utility,

and lower average overall SLA violation. The GreenSlot and SAN-IT have

small average execution time because they use a one-shot algorithm, instead

of a sequential algorithm. SAN-IT obtains negative PDM utility because it

disregards the electrical management. Within a same approach, with lower

value of distance threshold ", the performance tends to be higher but the average

execution time tends to be larger.

61

Scenario

Avg.

exe.

time

(min)

Avg.

prof.

dist.

Avg.

gen.

dist.

Avg. util.

(ITDM/

IT-Player,

PDM/

PD-Player)

(Euro)

Tot.

util.

(Euro)

Avg.

over.

SLA

vio-

lat.

(%)

GreenSlot 0.43 0.39
(67.67,

46.30)
113.97 2.95

SAN-IT 4.45 0.44
(137.34,

-112.05)
25.29 2.57

SAN " = 1.2,

M = N = 20
6.08 1.20 0.42

(67.77,

40.29)
108.06 1.90

GAN " = 1.2,

M = N = 20
6.80 1.17 0.15

(150.95,

106.67)
257.62 0.88

SAN " = 1.2,

M = N = 36
9.49 1.18 0.31

(103.20,

55.40)
158.6 1.25

GAN " = 1.2,

M = N = 36
10.69 1.17 0.10

(185.88,

125.92)
311.8 0.81

SAN " = 1.12,

M = N = 20
10.13 1.12 0.38

(81.29,

40.01)
121.3 0.98

GAN " = 1.12,

M = N = 20
12.30 1.11 0.12

(178.22,

106.03)
284.25 0.49

SAN " = 1.12,

M = N = 36
15.84 1.11 0.23

(107.99,

55.17)
163.16 0.91

GAN " = 1.12,

M = N = 36
16.31 1.11 0.09

(245.90,

118.77)
364.67 0.23

Table 9: Summarized performance with fixed stopping criteria

62

Figure 23: SLA violation of service jobs

Figure 24: Overall SLA violation

9. CONCLUSIONS

In this paper, we investigate the problem of joint IT and energy management

in datacenters entirely powered by renewable energies. The IT and electrical

sub-systems, named ITDM and PDM, are modeled separately in order to take

advantage of the distributed design, facilitating the developing and maintaining

process. We aim to find an efficient compromise between power demand and

power supply, while respecting the operational requirements of each sub-system.

We propose a black-box and a semi black-box algorithm that allow the ITDM

and PDM to negotiate. In addition, we design a generic model for the DMs,

63

then any scheduler whose implementation follows this generic model can work

with the proposed negotiation algorithms. We found that the semi black-box ap-

proach achieves higher stability and performance than the black-box approach.

Specifically, the black-box approach is prone to unstable performance in term

of execution time and generational distance. This can be explained that, in the

black-box approach, the DMs are not provided with the information about the

direction to negotiate. Therefore, in some cases, this approach takes long time to

converge. On the contrary, the semi black-box approach allows the game play-

ers to exchange information about the direction for negotiating, based on the

framework of a buyer-supplier relationship. The analytical results prove that the

proposed algorithm converges and the game reaches equilibrium. These results

are confirmed by various experiments in a middleware. The experimental results

show that the proposed game-theoretic algorithm provides stable solutions, and

outperforms other approaches in term QoS and utility.

For future works, we plan to design a multi-timescale version of GAN, in

which the algorithm makes prompt short-term decisions to deal with small-

timescale events, while maintaining long-term objectives. This design is impor-

tant because our system involves multiple sub-systems with different operational

timescales. For example, the operational objective of the electrical sub-system

may be in the order of years or quarters; while the environmental events can be

in the order of months or days; and the IT workload events may be in the order

of hours or minutes.

10. Acknowledgment

The work presented in this paper has been funded by the ANR in the context

of the project DATAZERO, ANR-15-CE25-0012. Experiments presented in this

paper were carried out on Grid5000 testbed, supported by a scientific interest

group hosted by Inria, including CNRS, RENATER, several Universities and

organizations (www.grid5000.fr).

64

www.grid5000.fr

Appendix A. Proof of Proposition 1

We have following facts.

• First, due to

– (i),

– (iii) incentive mechanism, and

– (iv) the fact that ↵ in algorithm 3 and algorithm 5 can be increased

freely,

the negotiation can be continued for an arbitrary number of iterations,

therefore the condition (ii) holds;

• Second, the two constraints d(x, xPD) < d(ẍIT , xPD) and d(x, xIT) <

d(ẍPD, xIT) inside the two procedures it_sched() and pd_sched() guar-

antee that xIT approaches xPD.

• Third, xIT approaches xPD, or in other words, d(xPD, xIT) always de-

creases. Moreover, the two algorithms have the same stopping criterion

d(xPD, x̂)  ", hence two negotiation loops terminate at the same time.

Based on the first and second facts, the DM scheduling solution is ergodic in

[xIT , xPD] given a pre-defined granularity.

Based on the third fact and the two definitions, algorithm 3 and algorithm 5

terminate at the point where no player wants to deviate, meaning that the game

reaches equilibrium. ⌅

Appendix B. Example of Negotiation Process

In Fig. B.25, we provide a simplified example of negotiation process. The

information in the Common Space is accessible to both players. The time win-

dow is set to T = 2. In the figure, the first column is the negotiation round,

whereas the second column is the row index. In this example, we suppose that

the aspiration supply is initially lower than the aspiration order. Specifically, we

65

row PD-Player Common Space IT-Player

1

1

2

3

2

4

5

6

3

7

8

9

4

10

11

π={8,6 }

π IT={3,3 } x
IT

x
PD

pd_pre = FLW_IT

it_pre = FLW_PD

r (xIT
,π IT)+α>r (x̂ ,π)

x
PD

c (xPD
,πPD)−α<c(x̂ ,π)

π={7,6 }

πPD={7,6 }

mod = FLW_IT it_pre = FLW_PD

mod = FLW_PDpd_pre = FLW_PD

x
IT

πPD={7,6 }

π IT={3,3 }

π IT={6,5}

πPD={7,6 }

π={7,6 }

it_pre = FLW_ITpd_pre = FLW_PD

d (xPD
, x̂)>ε

stop

d (xPD
, x̂)>ε

20

40

70 70

30
40

40
50

time

power

repeat

35
45

40
50

25

50

x̂

x̂

x̂

→ true

→ falsec (xPD
,πPD)−α<c(x̂ ,π)

→ true

r (xIT
,πIT)+α>r(x̂ ,π) → false

r (xIT
,πIT)+α>r(x̂ ,π) → false c (xPD

,πPD)−α<c(x̂ ,π) → true

false

true

Scheduling solution

New scheduling solution

Job

round

r (xIT
,π IT)+α=0.25

Assume
r (x̂ , π)=0.22

r (xIT
,π IT)+α=0.25

r (x̂ , π)=0.28
Assume

r (xIT
,π IT)+α=0.23

r (x̂ , π)=0.24
Assume

c (xPD
, πPD)−α=0.13

Assume
c (x̂ ,π)=0.15

c (xPD
, πPD)−α=0.16

Assume
c (x̂ ,π)=0.17

c (xPD
, πPD)−α=0.16

Assume
c (x̂ ,π)=0.14

false

true

Figure B.25: An example of negotiation

suppose that xPD = {20, 40} and xIT = {70, 70}. After one reschedule of the

PD-Player and one reschedule of the IT-Player, xPD = {30, 40}, xIT = {40, 50},

and x̂ = {35, 45}. At that time, we assume that the condition d(xPD, x̂)  "

holds, and the negotiation finishes. The details of the example are provided in

the following descriptions.

• Round 1: We suppose that, initially, mod = FLW_IT .

– Row 1

⇤ PD-Player: We suppose that, after scheduling, the procedure

pd_sched() obtains the aspiration supply xPD = {20, 40}. On

66

the other hand, the price ⇡ is inversely proportional to its as-

sociated aspiration supply. As a result, the output of the pro-

cedure pd_propose_price() is ⇡ = {8, 6}. The PD-Player also

tries to propose a PD incentive price that is attractive to the

IT-Player. We suppose that the PD-Player is able to propose

⇡PD = {7, 6}, using the procedure pd_est_price(). Finally, the

PD-Player sends ⇡ and ⇡PD to the IT-Player.

⇤ IT-Player: We assume that, after scheduling (as in the chart

Scheduling solution), the procedure it_sched() obtains the as-

piration order xIT = {70, 70}. After receiving ⇡ from the PD-

Player, the IT-Player places order using procedure it_place_order().

We suppose that the output of this procedure is x̂ = {25, 50}.

The IT-Player places this order with the consideration of ⇡ and

xIT . In this scenario, we can expect that the power levels of

x̂ are between xPD and xIT ; also, the power levels of x̂ have

similar curve with xPD. Similar with PD-Player, the IT-Player

tries to propose an attractive price to the PD-Player, using the

procedure it_est_price(). We suppose that the IT-Player is only

able to propose the IT incentive price ⇡IT = {3, 3}. Finally, the

IT-Player sends x̂ and ⇡IT to the PD-Player.

– Row 2: As in line 16 of the algorithm 3 and algorithm 5, both players

verify whether it is beneficial to switch their mode. The PD-Player

verifies the revenue, i.e., r(xIT ,⇡IT)+↵ > r(x̂,⇡), and the IT-Player

verifies the cost, i.e., c(xPD,⇡PD)� ↵ < c(x̂,⇡). In the example, we

assume that r(xIT ,⇡IT) + ↵ = 0.25, r(x̂,⇡) = 0.22, c(xPD,⇡PD) �

↵ = 0.13, and c(x̂,⇡) = 0.15. As a result, both verifying conditions

return true. The intuition behind this verification is as follows. We

can call xIT and ⇡IT as the offers from the IT-Player; similarly, we

can call xPD and ⇡PD as the offers from the PD-Player. The PD-

Player verifies the attractiveness of the IT-Player offer by comparing

67

the revenue r(xIT ,⇡IT) + ↵ with the revenue r(x̂,⇡). Similarly, the

IT-Player compares the cost c(xPD,⇡PD) � ↵ and the cost c(x̂,⇡).

Then, a player will follow the other player if the offers from the other

player are attractive.

– Row 3: We suppose that, both comparisons in row 2 return true,

then pd_pre = FLW_IT and it_pre = FLW_PD. However, the

global mode is unchanged, i.e., mod = FLW_IT , since this mode is

switched to FLW_PD only when both players switched to FLW_PD.

• Round 2:

– Row 4:

⇤ PD-Player: Since the current global mode is FLW_IT, the PD-

Player reschedules, trying to find a new aspiration supply whose

associated price is closer to ⇡IT . We suppose that the PD-Player

finds the aspiration supply xPD = {30, 40}, and the associated

price is ⇡ = {7, 6}. Similar to the row 1, the PD-Player also tries

to find a PD incentive price that is attractive to the IT-Player.

However, the PD-Player is unsuccessful at this time, and the PD

incentive price is equal to ⇡, i.e., ⇡PD = {7, 6}. Finally, the

PD-Player sends ⇡ and ⇡PD to the IT-Player.

⇤ IT-Player: The IT-Player, after estimating its utility, will place

an order x̂ = {40, 50}.

– Row 5: We suppose that the comparison r(xIT ,⇡IT) + ↵ > r(x̂,⇡)

returns false; this means that the PD-Player no longer foresees benefit

in following the IT-Player. Compared to row 2, we see that the term

r(xIT ,⇡IT) + ↵ is unchanged at 0.25, but r(x̂,⇡) has increased to

0.28. This increase can be explained that, compared to row 2, x̂ has

grown significantly, whereas ⇡ has just reduced slightly. At the side of

IT-Player, compared to row 2, we can see that both xPD and x̂ have

increased. As a result, though ⇡ decreases slightly, both IT-Player

68

costs c(xPD,⇡PD) � ↵ and c(x̂,⇡) increase, keeping the condition

c(xPD,⇡PD)� ↵ < c(x̂,⇡) return true again as in row 2.

– Row 6: Because of the results in row 5, the PD-Player switches to

the mode FLW_PD. At this time, both players already switched to

the mode FLW_PD, so the global mode also switches to FLW_PD.

• Round 3:

– Row 7: Since the global mode is FLW_PD, the IT-Player reschedules.

In contrast with the objective of the PD-Player rescheduling, the

objective of the IT-Player rescheduling is to find an aspiration order

that is closer to xPD. We suppose that the IT-Player found the new

scheduling solution as in the chart New scheduling solution, then the

aspiration order is xIT = {40, 50}. With this new aspiration order,

the IT-Player estimates its utility, then places an order x̂ = {35, 45}.

Also, with the new aspiration order, the IT-Player recomputes and

obtains the new IT incentive price ⇡IT = {6, 5}.

– Row 8:

⇤ PD-Player: Compared to row 5, both xIT and x̂ have decreased,

keeping the condition r(xIT ,⇡IT)+↵ > r(x̂,⇡) return false again

as in row 5.

⇤ IT-Player: Unlike row 5, the comparison now returns false. We

can explain this result as follows. Compared to row 5, xPD and

⇡PD are unchanged, but x̂ has decreased, making c(x̂,⇡) decrease

from 0.17 to 0.14. As a result, c(x̂,⇡) is no longer larger than

c(xPD,⇡PD)� ↵.

– Row 9: The variables of mode are updated according to the results

at row 8.

• Round 4:

– Row 10: Assume that we set " = 1.1, now the Pearson distance

between xPD = {30, 40} and x̂ = {35, 45} is d(xPD, x̂) = 1 < ",

69

meaning that the stopping criteria of both players are met. We note

that these criteria are not only verified after round 3, but also after

round 1 and round 2. However, these criteria were not met after

round 1 and round 2.

– Row 11: The negotiation algorithm stops according to the results at

row 10.

After negotiation, the PD-Player will implement the final solution xPD =

{30, 40}, and the IT-Player must accept this solution. In practice, we need

to choose " such that the gap between xPD and xIT is acceptable to IT-Player.

We can summarize the effect of the negotiation process as follows. At row 1,

through the price ⇡IT = {3, 3}, the IT-Player gives the PD-Player the infor-

mation about the direction for negotiating, which is to increase the power level

of the first time step or to decrease the power level of the second time step in

xPD, in order to comply with the aspiration order xIT = {70, 70} which has

two equal power levels. However, according to the conditions in the procedure

pd_sched(), the power level of the second time step cannot be decreased. As a

result, the PD-Player reschedules and increases the power level of the first time

step from 20 to 30. Similarly, through the price ⇡PD = {7, 6}, the IT-Player

knows it should reschedule to reduce the power level of the first time step in

xIT , because the energy price of the first time step is high. And in fact, the

IT-Player has reduced the power level of the first time step from 70 to 40.

References

W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, P. De-

meester, Trends in worldwide ICT electricity consumption from 2007 to

2012, Computer Communications 50 (2014) 64–76.

S. S. Gill, R. Buyya, A taxonomy and future directions for sustainable cloud

computing: 360 degree view, ACM Computing Surveys (CSUR) 51 (5)

(2018) 104.

70

A. Andrae, T. Edler, On global electricity usage of communication technology:

trends to 2030, Challenges 6 (1) (2015) 117–157.

A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet,

N. Horner, I. Azevedo, W. Lintner, United states data center energy usage

report, Research Report LBNL-1005775, Lawrence Berkeley National Lab-

oratory, Berkeley, California, available online at https://escholarship.

org/uc/item/84p772fc, 2016.

C. Li, R. Wang, T. Li, D. Qian, J. Yuan, Managing Green Datacenters Pow-

ered by Hybrid Renewable Energy Systems, in: The 11th International

Conference on Autonomic Computing, USENIX, 261–272, 2014.

E. Sheme, P. Stolf, G. Da Costa, J.-M. Pierson, N. Frashëri, Efficient Energy

Sources Scheduling in Green Powered Datacenters: A Cloudsim Implemen-

tation, NESUS workshop .

L. Liu, C. Li, H. Sun, Y. Hu, J. Gu, T. Li, J. Xin, N. Zheng, HEB: deploying

and managing hybrid energy buffers for improving datacenter efficiency and

economy, in: ACM SIGARCH Computer Architecture News, vol. 43, ACM,

463–475, 2015.

I. Goiri, M. E. Haque, K. Le, R. Beauchea, T. D. Nguyen, J. Guitart,

J. Torres, R. Bianchini, Matching renewable energy supply and de-

mand in green datacenters, Ad Hoc Networks 25 (2015) 520 – 534,

doi:https://doi.org/10.1016/j.adhoc.2014.11.012.

H. Lei, T. Zhang, Y. Liu, Y. Zha, X. Zhu, SGEESS: Smart green

energy-efficient scheduling strategy with dynamic electricity price for

data center, Journal of Systems and Software 108 (2015) 23 – 38,

doi:https://doi.org/10.1016/j.jss.2015.06.026.

A. Kassab, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo, Assessing the Use of Ge-

netic Algorithms to Schedule Independent Tasks Under Power Constraints,

71

https://escholarship.org/uc/item/84p772fc
https://escholarship.org/uc/item/84p772fc
http://dx.doi.org/https://doi.org/10.1016/j.adhoc.2014.11.012
http://dx.doi.org/https://doi.org/10.1016/j.jss.2015.06.026

in: 2018 International Conference on High Performance Computing & Sim-

ulation (HPCS), IEEE, 252–259, 2018.

X. Wang, Z. Du, Y. Chen, M. Yang, A green-aware virtual machine migration

strategy for sustainable datacenter powered by renewable energy, Simula-

tion Modelling Practice and Theory 58 (2015) 3–14.

T. Cioara, I. Anghel, M. Antal, S. Crisan, I. Salomie, Data center optimiza-

tion methodology to maximize the usage of locally produced renewable

energy, in: Sustainable Internet and ICT for Sustainability (SustainIT),

2015, IEEE, 1–8, 2015.

D. Paul, W.-D. Zhong, S. K. Bose, Demand response in data centers through

energy-efficient scheduling and simple incentivization, IEEE Systems Jour-

nal 11 (2) (2017) 613–624.

G. Chonglin, L. Chunyan, Z. Jiangtao, H. Hejiao, X. Jia, Green scheduling for

cloud data centers using renewable resources, in: Proc. IEEE INFOCOM

2015 Workshop on MCV, 2015.

C. Gu, C. Liu, J. Zhang, H. Huang, X. Jia, Green scheduling for cloud

data centers using renewable resources, in: 2015 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), 354–359,

doi:10.1109/INFCOMW.2015.7179410, 2015.

C.-M. Wu, R.-S. Chang, H.-Y. Chan, A green energy-efficient scheduling

algorithm using the DVFS technique for cloud datacenters, Future

Generation Computer Systems 37 (2014) 141 – 147, ISSN 0167-

739X, doi:http://dx.doi.org/10.1016/j.future.2013.06.009, URL http:

//www.sciencedirect.com/science/article/pii/S0167739X13001234,

special Section: Innovative Methods and Algorithms for Advanced Data-

Intensive Computing Special Section: Semantics, Intelligent processing

and services for big data Special Section: Advances in Data-Intensive

Modelling and Simulation Special Section: Hybrid Intelligence for Growing

Internet and its Applications.

72

http://dx.doi.org/10.1109/INFCOMW.2015.7179410
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.06.009
http://www.sciencedirect.com/science/article/pii/S0167739X13001234
http://www.sciencedirect.com/science/article/pii/S0167739X13001234

S. Iturriaga, S. Nesmachnow, Scheduling energy efficient data centers using re-

newable energy, Electronics 5 (4) (2016) 71.

N. Beldiceanu, B. D. Feris, P. Gravey, S. Hasan, C. Jard, T. Ledoux, Y. Li,

D. Lime, G. Madi-Wamba, J.-M. Menaud, P. Morel, M. Morvan, M.-L.

Moulinard, A.-C. Orgerie, J.-L. Pazat, O. Roux, A. Sharaiha, Towards

energy-proportional clouds partially powered by renewable energy, Com-

puting 99 (1) (2017) 3–22, ISSN 1436-5057, doi:10.1007/s00607-016-0503-z,

URL http://dx.doi.org/10.1007/s00607-016-0503-z.

Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, R. Bianchini, Parasol and greenswitch:

Managing datacenters powered by renewable energy, ACM SIGARCH Com-

puter Architecture News 41 (1) (2013) 51–64.

I. Goiri, W. Katsak, K. Le, T. D. Nguyen, R. Bianchini, Designing and

Managing Data centers Powered by Renewable Energy, IEEE Micro

34 (3) (2014) 8–16, ISSN 0272-1732, doi:10.1109/MM.2014.6, URL doi.

ieeecomputersociety.org/10.1109/MM.2014.6.

I. D. Courchelle, T. Guérout, G. D. Costa, T. Monteil, Y. Labit, Green Energy

efficient scheduling management, Simulation Modelling Practice and The-

ory ISSN 1569-190X, doi:https://doi.org/10.1016/j.simpat.2018.09.011,

URL http://www.sciencedirect.com/science/article/pii/

S1569190X18301382.

Y. Li, A. C. Orgerie, J. M. Menaud, Balancing the Use of Batteries and Oppor-

tunistic Scheduling Policies for Maximizing Renewable Energy Consump-

tion in a Cloud Data Center, in: 2017 25th Euromicro International Confer-

ence on Parallel, Distributed and Network-based Processing (PDP), 408–

415, doi:10.1109/PDP.2017.24, 2017.

R. Roche, S. Caux, J. Lecuivre, J.-M. Pierson, D. Hissel, J.-M. Nicod,

DATAZERO: Designing and Operating Datacenters Powered by Renewable

Energy-Based Stand-Alone Microgrids, in: Journée Scientifique Nationale

Micro-Réseaux, GDR SEEDS, 2017.

73

http://dx.doi.org/10.1007/s00607-016-0503-z
http://dx.doi.org/10.1007/s00607-016-0503-z
http://dx.doi.org/10.1109/MM.2014.6
doi.ieeecomputersociety.org/10.1109/MM.2014.6
doi.ieeecomputersociety.org/10.1109/MM.2014.6
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2018.09.011
http://www.sciencedirect.com/science/article/pii/S1569190X18301382
http://www.sciencedirect.com/science/article/pii/S1569190X18301382
http://dx.doi.org/10.1109/PDP.2017.24

S. Caux, P. Renaud-Goud, G. Rostirolla, P. Stolf, IT Optimization for Dat-

acenters Under Renewable Power Constraint, in: Euro-Par 2018: Par-

allel Processing - 24th International Conference on Parallel and Dis-

tributed Computing, Turin, Italy, August 27-31, 2018, Proceedings,

339–351, doi:10.1007/978-3-319-96983-1_24, URL https://doi.org/10.

1007/978-3-319-96983-1_24, 2018.

M. Haddad, M.-C. Pera, C. Varnier, Stand-Alone Renewable Power Sys-

tem Scheduling for a Green Data-Center using Integer Linear Program-

ming Version 1, Research Report, FEMTO-ST, URL https://hal.

archives-ouvertes.fr/hal-02081951, 2019.

I. n. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Gui-

tart, J. Torres, R. Bianchini, GreenSlot: Scheduling Energy Consump-

tion in Green Datacenters, in: Proceedings of 2011 International Confer-

ence for High Performance Computing, Networking, Storage and Analy-

sis, SC ’11, ACM, New York, NY, USA, ISBN 978-1-4503-0771-0, 20:1–

20:11, doi:10.1145/2063384.2063411, URL http://doi.acm.org/10.1145/

2063384.2063411, 2011.

B. Aksanli, J. Venkatesh, L. Zhang, T. Rosing, Utilizing Green Energy Pre-

diction to Schedule Mixed Batch and Service Jobs in Data Centers, in:

Proceedings of the 4th Workshop on Power-Aware Computing and Sys-

tems, HotPower ’11, ACM, New York, NY, USA, ISBN 978-1-4503-0981-

3, 5:1–5:5, doi:10.1145/2039252.2039257, URL http://doi.acm.org/10.

1145/2039252.2039257, 2011.

L. Grange, G. Da Costa, P. Stolf, Green IT scheduling for data center powered

with renewable energy, Future Generation Computer Systems 86 (2018)

99–120.

A. Sayah, D. Hissel, P. Stolf, S. Caux, J.-M. Pierson, G. DaCosta, B. Celik,

J. Nicod, Interactions between system modules and messages format, de-

74

http://dx.doi.org/10.1007/978-3-319-96983-1_24
https://doi.org/10.1007/978-3-319-96983-1_24
https://doi.org/10.1007/978-3-319-96983-1_24
https://hal.archives-ouvertes.fr/hal-02081951
https://hal.archives-ouvertes.fr/hal-02081951
http://dx.doi.org/10.1145/2063384.2063411
http://doi.acm.org/10.1145/2063384.2063411
http://doi.acm.org/10.1145/2063384.2063411
http://dx.doi.org/10.1145/2039252.2039257
http://doi.acm.org/10.1145/2039252.2039257
http://doi.acm.org/10.1145/2039252.2039257

liverable D3.1 Available from https://www.irit.fr/datazero/images_

specific/Deliverables/M27-D3.1.pdf [accessed 1 Mar 2019], 2017.

D. A. Van Veldhuizen, G. B. Lamont, Evolutionary computation and conver-

gence to a pareto front, in: Late breaking papers at the genetic program-

ming 1998 conference, 221–228, 1998.

D. R. Krause, R. Terpend, K. J. Petersen, Bargaining stances and outcomes in

buyer–seller negotiations: experimental results, Journal of Supply Chain

Management 42 (3) (2006) 4–15.

R. Terpend, D. R. Krause, Competition or cooperation? Promoting supplier

performance with incentives under varying conditions of dependence, Jour-

nal of Supply Chain Management 51 (4) (2015) 29–53.

L. C. Giunipero, Motivating and monitoring JIT supplier performance, Journal

of Purchasing & Materials Management 26 (3) (1990) 19–25.

S. B. Modi, V. A. Mabert, Supplier development: Improving supplier per-

formance through knowledge transfer, Journal of operations management

25 (1) (2007) 42–64.

D. G. Pruitt, Bargaining behavior, New York: Ac .

J. L. Graham, The problem-solving approach to negotiations in industrial mar-

keting, Journal of Business Research 14 (6) (1986) 549–566.

R. J. Lewicki, D. M. Saunders, J. W. Minton, J. Roy, N. Lewicki, Essentials of

negotiation, McGraw-Hill/Irwin Boston, MA, 2011.

R. J. Lewicki, Bargaining and negotiation, Exchange: The Organizational Be-

havior Teaching Journal 6 (2) (1981) 33–42.

K. Binmore, Modeling Rational Players: Part I: Ken Binmore, Economics and

Philosophy .

M. J. Osborne, A. Rubinstein, A course in game theory, MIT press, 1994.

75

https://www.irit.fr/datazero/images_specific/Deliverables/M27-D3.1.pdf
https://www.irit.fr/datazero/images_specific/Deliverables/M27-D3.1.pdf

K. Kurowski, A. Oleksiak, W. Piatek, T. Piontek, A. Przybyszewski, J. Weglarz,

DCworms – A tool for simulation of energy efficiency in distributed com-

puting infrastructures, Simulation Modelling Practice and Theory 39 (2013)

135–151.

J.-M. Pierson, G. Baudic, S. Caux, B. Celik, G. Da Costa, L. Grange, M. Had-

dad, J. Lecuivre, J.-M. Nicod, L. Philippe, et al., DATAZERO: DATAcenter

with Zero Emission and RObust management using renewable energy, IEEE

Access .

M. Haddad, J.-M. Nicod, M.-C. Pera, Hydrogen infrastructure: data-center

supply-refueling station synergy, in: 2017 IEEE Vehicle Power and Propul-

sion Conference (VPPC), IEEE, 1–6, 2017.

76

	Introduction
	Related works
	Datacenter model
	Generic model
	ITDM utility
	PDM utility
	Difference between two profiles

	A specific implementation of DMs

	Black-box approach
	Details of algorithm
	Stage 1 - Checking for matched pair
	Stage 2 - Negotiating

	Stability of black-box approach

	Semi black-box approach
	Overview of GAN algorithm
	Terms definitions
	Sacrifice mechanism
	Two modes of negotiation
	Mode controlling

	Details of GAN algorithm
	IT-Player algorithm
	Overview of IT-Player algorithm
	IT-Player loop
	IT-Player formulation
	IT-Player procedures

	PD-Player algorithm
	PD-Player procedures

	Properties of the proposed game
	General properties
	Equilibrium

	Experimental results
	Setup
	Convergence
	Stability
	Performance

	Conclusions
	Acknowledgment
	Proof of Proposition 1
	Example of Negotiation Process

