
Hierarchical Colored Petri Nets for the
Verification of SysML Designs- Activity-based

Slicing Approach

Messaoud Rahim1,2, Malika Boukala-Ioualalen2, and Ahmed Hammad3

1 Mathematics and computer sciences Department, MEDEA University, ALGERIA.
messaoud.rahim@univ-medea.dz

2 MOVEP Laboratory, USTHB, ALGERIA.
mioualalen@usthb.dz

3 FEMTO-ST Institute, UMR CNRS 6174, Besançon, France.
ahmed.hammad@femto-st.fr

Abstract. Requirements verification at early phases of the design pro-
cess is one of the main challenges when developing critical and com-
plex systems. In this paper, we focus on the verification of SysML func-
tional requirements on activity diagrams. Our contribution consists in
the proposition of a slicing based verification approach guided by the
SysML relationships between requirements, blocks, and activities. The
objective is to provide a verification methodology for complex systems
with many components. Our approach is based on formalizing activ-
ity diagrams using hierarchical coloured Petri nets(HCPNs). The pro-
posed slicing permits to alleviate the verification process. For verifying
a given requirement, the slicing consists in extracting a minimized frag-
ment (slice) of the HCPNs, which is sound and sufficient to realize the
verification. The approach is illustrated by a case study, where we specify
and we verify a fire protection system for data-centers.

Keywords: SysML · Activity Diagram · Requirements · Hierarchical
Colored Petri Nets· Model Slicing · Formal Verification

1 Introduction

SysML (System Modeling Language) [?] is an OMG standard modelling language
supported by leading organizations from the systems engineering industry, in-
cluding the International Council On Systems Engineering(INCOSE). SysML
covers four perspectives on system modeling : structure, behavior, requirement,
and parametric diagrams. The requirement diagram is one of the most impor-
tant models provided in SysML. Thanks to this diagram, SysML offers an explicit
representation of the different kinds of relationships between requirements and
other design artefacts [?]. These relationships are of great importance. They can
be exploited to guide several aspects related to system design, particularly re-
quirements verification.

2 M.Rahim et al.

The activity diagram allows to specify the dynamic aspects of the system. For
describing the full behaviour of complex systems with many components, SysML
activity diagram can be composed of several sub-activities. Furthermore, swim-
lanes can be used to allocate actions to system components (SysML blocks).
Despite the various advantages of SysML, it remains a semi-formal language
without possibilities of formally verifying models described by it. For this rea-
son, using SysML in conjunction with formal methods is suggested to provide a
formal validation for SysML specifications.
Model checking techniques [?] are based on automatic examination of all reach-
able states to check whether a model of a given system satisfies the desired
properties. However, as known, the major flaw of model-checking resides in the
state explosion problem. Slicing the model according to the property to verify is
one of the approaches aiming to alleviate this problem [?].
This paper concentrates on the verification of SysML functional requirements
linked to behavioral models. Other requirements classes such as performance
and availability are not considered. It proposes a methodology based on model-
checking to verify requirements on activity diagrams.
In contrast to other verification approaches which are based on translating ac-
tivity diagrams into Petri nets [?,?], our approach consider the translation of
activity diagrams with swimlanes and sub-activities. This allows to represent
structural and functional decomposition of complex systems as they are cap-
tured by the activity diagrams. In addition, the verification in our approach is
guided by the SysML relationships between requirements, blocks, and activities,
which enables the use of a slicing based verification. For verifying a given re-
quirement, the slicing consists in extracting a minimized fragment (slice) of the
HCPN model translated from the activity diagram which is sound and sufficient
to realize the verification.
The remainder of this paper is organized as follows: Section ?? discusses the
related work. Section ?? presents a background about the related concepts. Sec-
tion ?? introduces our verification methodology. In Section ??, we illustrate our
approach by a case study. Finally, in Section ??, we conclude and we outline
directions for future works.

2 Related Work

The idea of translating SysML specifications to get formal semantic models is in-
teresting for verification purposes [?,?]. For activity diagrams, several approaches
based on their translation into Petri net models were proposed, each one was
based on using specific classes of Petri net depending on the proposed goals
to achieve. The work in [?] introduces an approach using SysML for structural
specification and Petri net for expressing the system behavior. In [?], a tech-
nique was proposed to map SysML activities into Time Petri net for validating
the non functional requirements of real-time systems with energy constraints. A
bi-directional transformation of UML 2 activities into Petri nets was proposed
in [?]. In this translation, only the basic activity constructs was considered. To

HCPN for the Verification of SysML Designs- A Slicing Approach 3

consider the semantics of data flows, translating activity diagram into coloured
Petri nets was proposed in [?]. Activity calling and swimlanes were not consid-
ered in these works. Our work considers the semantics of activities with swim-
lanes, call behavior actions and data flows. These previous approaches intended
to verify activity diagrams by model-checking techniques. However, verifying
models for complex systems is very challenging task; namely regarding the state
space explosion problem. One way to alleviate this problem is model slicing [?].
Several works have proposed model slicing approaches, but very few literatures
are reported on slicing of activity diagrams based on requirements and almost
all of them address test case generation. As examples, Ray et al. [?] have used
conditioned slicing for test case design through activity diagram. The work in [?],
proposes a static slicing technique to enhance the comprehension of Use Case
Map models. In contrast to these works, we propose model slicing on the formal
semantic model translated from the activity diagrams for verification purpose.
So, the verification is guided by the SysML specification and the slicing criteria
are taken from the SysML requirement diagram.

3 Background

3.1 SysML requirement and activity diagrams

Requirement diagrams are used for specifying requirements and the exiting re-
lationships between them and the other artifact. Our work exploits the ”sat-
isfy” and the ”Verify” relationships. The ”Satisfy” relationship is a dependency
between a requirement and a SysML block. It means that the requirement is
satisfied by the block. The ”Verify” relationship is a dependency between a re-
quirement and a test case. It means that the test case is used to verify the
requirement. A test case can be a sequence, a state machine or an activity dia-
gram. Our work considers test cases described by activity diagrams.

The activity diagram is a formalism for describing the system behaviors. The
basic constructs of an activity are actions and control nodes. A specific type of ac-
tion is the call behavior action. A call behavior action permits to invoke an activ-
ity when it starts. Activities can be with Swimlanes or activity partitions. Swim-
lanes are used to allocate actions to SysML blocks.Formally, an activity with
swimlanes and call behavior actions is tuple Act = 〈N,E, Part, Alloc, CAct, call〉
where:

– N is a finite set of nodes partitioned into subsets (N = Na ∪ Nc ∪ No),
where Na is the set of action nodes, Nc is the set of control nodes and No

is the set of object nodes which represents input and output pins and input
and output activity parameters. Na is partitioned into a set of simple action
nodes Nsa and a set of call behavior action nodes Nca (∀a ∈ Nca and a call
acti : acti ∈ CAct). Nc is further partitioned into subsets : Nd of decision
nodes, Nm of merge nodes, Nf of fork nodes, Nj of join nodes, Ni of initial
nodes, Nff of flow final nodes and Naf of activity final nodes.

4 M.Rahim et al.

– E is a finite set of edges each connecting either two object nodes with each
other or an object node with an action or a control node, i.e., E ⊂ (N ×N).

– Part = {B1, ...Bn} is a finite set of activity partitions.
– Alloc : N → Part is a function that allocates activity nodes to activity

partitions.
– CAct is the set of the activity invoked by the call behavior actions.
– call : Nca → CAct is a function that associate a called activity to each call

behavior action.

3.2 Hierarchical Coloured Petri Nets

Hierarchical Colored Petri Nets (HCPNs) introduce a facility for building a large
CPN model by using a number of small CPNs. In HCPNs, the notion of substi-
tution transition is provided to allow the user to relate a transition to a more
complex CPN, called subnet. A substitution transition has input and output
places called socket places. More formally, a HCPN is a tuple HCPN = 〈 S, P,
T, A, Σ, St, SA, Ppor, Psoc, PS 〉 where,

– S is the set of pages (subnets), P is the set of places and T is the set of
transitions.

– A ⊆ (P × (T ∪ St)) ∪ ((T ∪ St) × P): is the set of arcs.
– Σ: is the set of non-empty types, called colour sets.
– St: is the set of substitution transitions, SA: St → S is a page assignment

function, Ppor ⊆ P is the set of port places, Psoc ⊆ P is the set of socket
places, and PS : Ppor → Psoc is a port-socket relation function that assigns
a port places to a socket places to relate the subnet to the main net.

HCPNs are chosen not only due to their expressive power to capture the seman-
tics of activity diagram constructs including data flows, but also because they
allow to represent structural and functional decomposition of complex systems.

4 Methodology

Our methodology for verifying SysML system design aims to verify SysML func-
tional requirements. The requirements of the system are described in a SysML
requirement diagram and the system behavior is described by an activity dia-
gram. This latter will be structured with activity partititions. Each one repre-
sents a SysML block. Also, it can contain call behavior actions that call other
activities for modelling complex behaviors. We verify if the SysML functional
requirements are verified by the activity diagram.
For that, we define, as detailed in the figure Fig.??, a slicing based verification
approach to overcome the state space explosion problem. The first step of the
proposed verification consists in translating the SysML activity diagram into
a HCPN. Then, we extract the blocks and the activities which satisfy (respec-
tively. verify) requirements. This step exploits ”satisfy” and ”verify” relation-
ships. After that, requirements will be translated into temporal logic formulas

HCPN for the Verification of SysML Designs- A Slicing Approach 5

Fig. 1. The verification methodology

and information about blocks and activities will be used to slice the HCPN. To
avoid to perform many translations, the slicing will be applied in the HCPN.
Finally, we check the temporal logic formulas in the sliced HCPN and we return
the verification results.

4.1 Translation of activity diagrams

The translations of basic activity constructs are done as in our previous works [?,?].
So, in this section, we only present the translation of call behavior actions and
activity partitions (swimlanes).
The main idea of our translation is as follow : let AD = 〈setAct〉 be an activity
diagram consisting on a set of activities (main activity and sub-activities), where
each activity AName = 〈N,E, Part, Alloc, CAct, call〉 can be partitioned into
set of activity partitions Part and can contain call behavior actions. The trans-
lation of AD into HCPN = 〈 S, P, T, A, Σ, St, SA, Ppor, Psoc, PS 〉 consists in
translating each activity Act ∈ setAct into a HCPN page Act page ∈ S and each
call behavior action ActionA that call the activity Act into a substitution tran-
sition SubTAction A ∈ st, where SA(SubTAction A) = Act page. If AName is
partitioned, each activity partition B ∈ Part is translated into a substitution
transition TB ∈ St and a HCPN page B page ∈ S, where SA(TB) = B page.
The translation of activity diagrams into HCPNs is fully automated. It is per-
formed based on model-driven approach using the ATL transformation language.

4.2 The slicing step

Let R be a requirement to verify in an activity Act partitioned in activity parti-
tions Part = {B1,Bn} and R is satisfied by a block Bi ∈ Part. The idea of the
proposed slicing consists in determining, for the requirement R, the activity par-
titions which are needed to its verification. Because R has ”satisfy” relationship
with Bi, Bi is one of the needed activity partitions. However, in some cases, the
actions allocated to Bi are not sufficient to verify R. This is due to their connec-
tions with other actions allocated to other activity partitions. Namely, when the

6 M.Rahim et al.

actions allocated to Bi require, in their inputs, outputs from actions allocated to
other activity partitions. For that, we compute the set of activity partitions from
which Bi has a direct or indirect dependency. Let dep(Bi, Act) be the function
used to perform this computation. Each activity partition Bj /∈ dep(Bi, Act) is
not needed for the verification of R. The slicing is done on the HCPN model by
deleting, for each Bj /∈ dep(Bi, Act), its corresponding substitution transition
TBj .
For computing the direct and indirect dependencies between the activity parti-
tions, we propose to construct a Dependency Graph Between Activity Partitions
DGBAP = 〈Part,A〉, where, DGBAP is a directed graph which has the ele-
ments of Part, as vertices and the elements of A ⊂ Part × Part as directed
edges((Bi, Bj) ∈ A if the activity partition Bj has at least one input link from
the activity partition Bi). So, computing dep(Bi, Act) will consists in perform-
ing the function compute dep(Bi, DGBAP) as listed in the Algorithm ??. Given

Algorithm 1 compute dep(Bi, DGBAP)
Inputs : (Bi: activity partition, DGBAP = 〈Part,A〉)
Output: (DL: a list of activity partitions)

1: DL ← {};Stack P ; Push(P , Bi);
2: while (Not empty(P)) do
3: Bj ← Pop(P); DL← DL ∪ {Bj};
4: for all (Bk, Bj) ∈ A) do
5: if (Bk /∈ DL) then
6: Push(P , Bk);
7: end if
8: end for
9: end while

DGBAP and an activity partition Bi, the algorithm allows to compute a list of
activity partitions from which Bi is dependent.

4.3 Verification of requirements

In order to allow the verification of SysML requirements, we propose to express
them as temporal properties about the activity diagram elements using the Ac-
TRL language [?,?] and then we translate them into ASK-CTL formulas as
in [?]. Finally, the CPNTools is used as model-checking tool for analysing the
generated ASK-CTL formulas on the HCPN slices.

5 Case study : fire protection System in data-center

We consider a fire protection system in data-center as a case study. A fire protec-
tion system includes an automatic fire detection system, fire alarms, and a fire
suppression system. Automatic fire detection system is designed to detect fire

HCPN for the Verification of SysML Designs- A Slicing Approach 7

in its earliest stages. It is based on heat detectors which detect fire and notify
information to detection central. To confirm a fire, a cross-zoned system can be
adopted. It permits to reduce unwanted and nuisance alarms caused by detec-
tors. In cross-zoned system, a fire is confirmed only if two detectors notify a fire
to the detection central which activates the fire suppression system, the internal
and the external alarms. A detection by a single detector will only be notified to
the system administrator. In data-centers, fire suppression system must be based
on gas extinguishing. When a fire is confirmed, the detection central activates
an auto actuation device to suppress the fire automatically.

5.1 SysML specification

The aim of this step is to produce a SysML specification. The SysML Block
Definition Diagram in figure Fig.?? describes the structure of the system. The

Fig. 2. Block Definition Diagram for the fire protection system

requirements of the fire protection system are specified in a SysML requirement
diagram. So, in this paper, we consider only a sub-set of requirements. As shown
in figure Fig.??, the main requirement of the system is to protect the data-
center from fires. This requirement is composed of three requirements (R0, R3,
R4). The requirement R0 itself is composed of two requirements (R1 and R2).
The requirement R1 deals with the detection of fires. It is satisfied by the ”Fire
Detector” block and verified by the ”Detect Fire” activity. The requirement R2
deals with the confirmation of fire detection. It is satisfied by the ”Detection
System” Block. The requirement R3 is to ensure the sounding of alarms when
the detection of a fire is confirmed. It is satisfied by the ”Alerting System”
block. The requirement R4 deals with the suppression of fires. It is satisfied by
the ”Suppression System” block. The requirement R2, R3 and R4 are to verify
by the ”Protect from fire” activity (see Fig.??).

8 M.Rahim et al.

Fig. 3. A requirement diagram for the fire protection system

We specify the indented behavior of the fire protection system by the activity
diagram presented in the figure Fig.??. We create three activity partitions, the

Fig. 4. Activity diagram for the fire protection system

first represents the detection system block, the second represents the alerting
system block and the third represents the suppression system block. If a fire
occurs, it will be detected by the fire detection system. For this, the ”Detection
System” activity partition contains the ”Detect Fire” call behavior action which
allows to sense the heat by the fire detectors(in Zone 1 and in Zone 2) and
then, determines if a fire is occurred. The activity diagram representing the
”Detect Fire” sub-activity is given in Fig.??. For the actions assigned to the
”Alerting System” activity partition, two cases are modelled : fire detected but

HCPN for the Verification of SysML Designs- A Slicing Approach 9

Fig. 5. Activity diagram for the ”Detect Fire” sub-activity

not confirmed and fire confirmed. In the first case, we only produce an alert
for the system administrator. For the second case, we sound the internal and
the external alarms. Also, the call behavior action ”extinguish fire” assigned to
the ”suppression System” activity partition is activated in the second case. The
models related to the sub-activity called by the ”extinguish fire” call behavior
action are not presented in this paper.

5.2 Translation into HCPN

We show in the figure Fig.?? the prime page of the HCPN model derived from
the activity ”Protect from fire”. As explained in Sect.??, the HCPN model in
its prime page contains three substitution transitions.

Hz2

INT53

Hz1

INT

54

CTL_ES

BOOL

CTL_AS

BOOL

FD

BOOL

End_act

BOOL

TAlertingSystem

AlarmSystemAlarmSystem

TSupressionSystem

SupressionSystemSupressionSystem

TDtectionSystem

Dtectionsystem Dtectionsystem

Fig. 6. The HCPN model derived from the ”Protect from fire” activity

As example, in the figure Fig.??, we show the HCPN sub-page assigned to the
”TDetectionSystem” substitution transition. It contains the translation of the
fork node, the decision node and the ”Detect Fire” call behavior action allocated
to ”Detection System” activity partition (see Fig.??). The ”Detect Fire” call

10 M.Rahim et al.

Hz2

In
INT

53

In

Hz1

In
INT

55

In
FS

INT

FC

BOOL

CTL_AS

Out
BOOL

Out

CTL_ES

Out
BOOL

Out

FD

Out
BOOL

Out

DecisionFC Fork1

DecisionFDSubT_Detect_fire

Detect_fireDetect_fire
2

true

true true

true

1 true

Fig. 7. The HCPN ”Detection system” sub-page

behavior action is translated into a substitution transition (”Detect fire”). The
HCPN sub-page assigned to this latter is shown in figure Fig.??, it is obtained
from the translation of the activity ”Detect Fire” (see Fig.??) called by the
”Detect Fire” call behavior action (see Fig.??). In the ”Detect Fire” activity, we

FS

Out
INT

Out

Hz2

In
INT

53

In

Hz1

In
INT

55

In

FD1

BOOL

FD2

BOOL

TFiredetectorZ1

Detector1

TFiredetectorZ2

Detector2Detector2

TDetectionCentral

DetectionCentralDetectionCentral

x

x

Detector1

Fig. 8. The HCPN model derived from the ”Detect fire” activity

have three activity partitions. They are translated into substitution transitions.

5.3 Slicing examples and verification of requirements

After the translation step, we can begin the verification of requirements using
our slicing technique. This section presents and explains some slicing examples
when verifying the requirements of the fire protection system. From the require-
ment diagram, the requirements R2, R3 and R4 are to verify by the activity
”Protect from Fire”. First, we construct the DGBAP related to this activity
(see Sect.?? and Fig.??).

As the requirement R2 is satisfied by the block ”Detection System”, accord-
ing to the constructed DGBAP, its verification is independent from the other
activity partitions. So, the slicing consists in conserving only the substitution
transition related to the ”Detection System” activity partition.
The requirement R3 is satisfied by the block ”Alerting System”, according to the
constructed DGBAP, its verification is dependent from the ”Detection System”

HCPN for the Verification of SysML Designs- A Slicing Approach 11

Fig. 9. The DGBAP for the activity ”Protect from fire”

and ”Alerting System” activity partitions. The slicing consists in deleting the
substitution transition related to the ”Suppression System” activity partition.
The requirement R4 is satisfied by the block ”Suppression System”, according
to the constructed DGBAP, its verification is dependent from the ”Detection
System” and ”Suppression System” activity partitions. The slicing consists in
deleting the substitution transition related the ”Alerting System” activity par-
tition.

6 Conclusion

In this paper, we presented a slicing based approach for the verification of SysML
requirements on activity diagrams. The verification is based on translating ac-
tivity diagrams into HCPNs. The proposed slicing approach is guided by the
relationships between requirements, activities and blocks. The slicing can be ap-
plied, for a given requirement, to verify on an activity diagram with activity
partitions. The slicing is done for such requirements on the HCPN translated
from the activity diagram. The effectiveness of the proposed technique depends
on the activity partitions dependencies and differs from a requirement to an-
other. The approach was illustrated by a case study, where a SysML activity
diagram with activity partitions and call behavior actions was translated into
HCPN. The HCPN was then sliced to verify SysML requirements.
As future work, it is important to consider the improvement of the proposed
slicing technique which can be achieved through the application of our approach
on more complicated case studies.

