
Noname manuscript No.
(will be inserted by the editor)

A Domain Specific Language to Design False Data Injection
Tests for Air Traffic Control Systems

Alexandre Vernotte · Aymeric Cretin · Bruno Legeard · Fabien Peureux

Received: date / Accepted: date

Abstract The ADS-B — Automatic Dependent Surveil-

lance Broadcast — technology requires aircraft to broad-2

cast their position and velocity periodically. As com-

pared to legacy radar technologies, coupled with alarm-4

ing cyber security issues (the ADS-B protocol provides

no encryption nor identification), the reliance on air-6

craft to communicate these surveillance information ex-

pose air transport to new cyber security threats, and8

especially to FDIAs — False Data Injection Attacks —

where an attacker modifies, blocks, or emits fake ADS-B10

messages to dupe controllers and surveillance systems.

This paper is part of an ongoing research initiative12

toward the generation of FDIA test scenarios and fo-

cuses on supporting the test design activity, i.e. sup-14

porting ATC experts to meticulously craft test cases

in order to assess the resilience of surveillance systems16

against FDIAs. To achieve this goal, we propose a com-

plete and powerful Domain Specific Language (DSL),18

close to natural language, that provides a large expres-

siveness to support ATC business experts in creating20

FDIA’s test scenarios. We demonstrate the design capa-

bilities of this approach and its productivity gain with22

respect to manually creating the FDIAs test scenarios.

Keywords Domain Specific Language · Air Traffic24

Control · ADS-B protocol · Cyber Security · False

Data Injection Attacks · Automated Test Generation26

A. Vernotte, A. Cretin, B. Legeard, F. Peureux
FEMTO-ST inst., Univ. Bourgogne Franche-Comté, CNRS
16 Route de Gray, 25030 Besançon, cedex, France
Tel.: +333-81-66-20-87
E-mail: name.lastname@femto-st.fr

B. Legeard, F. Peureux
Smartesting Solutions & Services
Besançon, France
E-mail: name.lastname@smartesting.com

1 Introduction

The world of air transport is facing new challenges as28

the traffic load keeps growing steadily1. With an in-

creasingly congested airspace, Air Traffic Control (ATC)30

needs surveillance technologies that can support the in-

creasing constraints in terms of simultaneously handled32

aircraft as well as positioning accuracy. The Automatic

Dependent Surveillance-Broadcast (ADS-B) protocol is34

currently being rolled out in an effort to reduce costs

and improve aircraft position accuracy [46]. Communi-36

cation via ADS-B consists of participants broadcasting

their current position and other information periodi-38

cally (a.k.a. a beacon) in an unencrypted message [32].

This technology embodies the shift from indepen-40

dent and non-cooperative surveillance technologies, his-

torically used for aircraft surveillance, to dependent and42

cooperative technologies. In this new context, ground

stations need aircraft to cooperate and are dependent44

on aircraft’s Global Navigation Satellite System (GNSS)

capabilities to determine their position. These funda-46

mental technological changes have rendered the ATC

community unable to foresee the new emerging threats48

related to cyber security. The ADS-B protocol was not

designed with security in mind since securing ADS-50

B communication was not a high priority during its

specification. As a consequence, anyone with the right52

equipment can listen and emit freely. For instance, there

is a market for equipping private aircraft with ADS-B54

transponders using a smartphone and a dongle2. The

complete freedom of ADS-B both in emission and re-56

ception makes it vulnerable to spoofing, and more pre-

cisely to a class of attack called FDIA — False Data58

1 http://www.boeing.com/commercial/market/

current-market-outlook-2017/
2 https://www.uavionix.com/products/skybeacon/

2 Alexandre Vernotte et al.

Injection Attack — which purpose is to covertly emit

meticulously-crafted fake surveillance messages in or-2

der to dupe ATC controllers into thinking, for instance,

that some aircraft is dangerously approaching a build-4

ing, while in reality it is flying normally.

Although it is not the only means for Aircraft track-6

ing — other protocols like Controller-Pilot Data Link

Communications (CPDLC) or Aircraft Communication8

Addressing and Reporting System (ACARS) are also

used in conjunction of radar technologies —, ADS-B10

plays a central role in the current shift regarding how

aircraft positions are obtained (initially from radar sys-12

tems now relying on GNSS [9]). So central in fact that

it has become a mandatory brick of air traffic surveil-14

lance, and any observed problem will ground all air-

craft in the area3. Hence there is a strong need to im-16

prove its overall security. Nevertheless, because of the

inherent properties of the protocol, current solutions18

for securing ADS-B communications are only partial or

involve an unbearable cost [48]. ATC should be made20

more secure by strengthening its logic instead, but the

ability to differentiate attacks from real situations still22

remains a challenge that is being tackled by the ATC

community. Indeed, multiple integrity checks or detec-24

tion approaches are under study or being rolled out [17].

Those solutions are new and need to be deeply tested,26

and testing approaches for this purpose are yet to be

created.28

The contribution presented in this paper is part of

an ongoing research initiative about FDIA testing that30

ultimately led to the creation of a testing framework

called FDI-T [13] (False Data Injection Testing frame-32

work). This framework allows ATC experts to define

FDIAs by creating, modifying and deleting recorded34

legitimate ADS-B messages in an fruitful, scalable and

productive manner. The generated test scenarios can be36

executed on ATC systems in order to evaluate their re-

silience against potential security and safety anomalies38

related to FDIAs. The objective of this tooled approach

is thus two-fold: first it aims to assess the current cyber40

security of ATC systems, and second it makes it pos-

sible to periodically measure expected cyber security42

improvements.

The present paper proposes a new FDIA scenario44

design approach, on which the FDI-T framework is ba-

sed, that relies on a Domain Specific Language (DSL).46

The DSL is close to natural language and makes it quite

intuitive for ATC experts to express scenarios without48

programming skills required. Scenarios written using

the DSL are generic, meaning they can be applied to50

any recording. Moreover, the DSL has a large expres-

3 https://hackaday.com/2019/06/09/

gps-and-ads-b-problems-cause-cancelled-flights/

siveness allowing for the design of all types of scenarios,52

easily capturing their complexity and their necessary

precision. All these features are demonstrated in a ded-54

icated section with the purpose of validating this new

FDIA scenario design approach.56

Layout of the paper. Section 2 briefly provides basis for58

common concepts and current practices regarding air

traffic surveillance as well as the key aspects to test60

such systems, especially regarding test scenarios based

on FDIAs. It also introduces the FDI-T testing ap-62

proach to perform FDIAs on ADS-B messages and de-

scribes the automated process supporting the method.64

Section 3 introduces related work and gives the theo-

retical foundation of DSL usage and design. Sections 466

to 8 detail, step by step, the dedicated DSL defined

within the approach to ease the design of FDIA scenar-68

ios. These sections respectively describe the expected

added value, the domain, the design, the implementa-70

tion and the validation of the proposed DSL. Finally,

Sect. 9 recaps the major contributions of the paper and72

suggests directions for future work.

2 Business and Technical Background74

This section presents background on Air Traffic Con-

trol (ATC) and False Data Injection Attacks (FDIA).76

Based on these overall preliminaries, the need to test

ATC systems against FDIA scenarios and the current78

state of the practice are also introduced. Finally, this

background enables to define the business objectives80

and theoretical challenges that are addressed by the

contributions presented in the rest of the paper.82

2.1 Air Traffic Surveillance

Surveillance is a distinctly complex and critical pro-84

cess which goal is to detect, localize and identify all

active aircraft. Surveillance supports Air Traffic Con-86

trol (ATC), which task is to ensure that all aircraft are

safely separated (e.g., 3 Nautical Miles (NM) separation88

when approaching an airport, 50 NM in Oceanic En-

routes without surveillance means). Surveillance sys-90

tems detect aircraft and send detailed information to

ATC systems, hence allowing Air Traffic Controllers92

(ATCo) to safely guide aircraft. While in low density

areas aircraft separation can be fully ensured via man-94

ual position reporting (voice or text-based) between the

pilot and the ATCo, in highly dense areas, which are96

increasing in number, the control of air traffic would

not be feasible if it was not automated by surveillance98

systems.

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 3

On ground On ground
Terminal

Manoeuvring
Area

En-route
Terminal

Manoeuvring
Area

Fig. 1: ATC Surveillance Divisions

ATC can be divided into three divisions depending

roughly on the aircraft’s proximity with the airport of2

departure/landing. As well, there is a division of surveil-

lance into three distinct parts (see Figure 1):4

– On Ground surveillance: aircraft that are moving

on ground at the airport in various areas such as6

taxiways, inactive runways, holding areas, etc. This

division is handled by ATCos in the Control Tower,8

for which airport surface surveillance technologies

provide a precise situation picture of the airport.10

– Terminal Manoeuvring Area (TMA) surveillance:

aircraft that are about to takeoff or land. This divi-12

sion is handled by ATCos in the Terminal/Approach

control centre. TMA surveillance technologies assist14

air traffic controllers in their decisions.

– En-Route surveillance: aircraft that are flying at a16

medium or high altitude, hence relatively far away

from airports. This division is handled by ATCos in18

the area control centre. En-route surveillance aims

controllers to have a precise recognized air picture20

of the airspace sector they are in charge of.

Surveillance systems rely on several technologies,22

historically radar and recently others, in order to track

aircraft in all three surveillance divisions. We discuss24

below the four main technologies.

Primary Surveillance Radar (PSR). This is the first26

generation of radars, developed in the 1940s, still in use

today for Approach and sometimes En-Route surveil-28

lance areas. PSR sensors rely on a signal-based detec-

tion approach: a rotating antenna radiates an electro-30

magnetic pulse on a low GHz band within a large por-

tion of space that is reflected by targets within that32

space, like an echo, thereafter received back by the

radar sensor. Target position and velocity are continu-34

ously determined by measuring the bearing (the direc-

tion the reflection comes from) and round trip time of36

each pulse [45]. PSR is a non-cooperative independent

surveillance technology since distant aircraft do not aid38

to their surveillance (besides existing physically).

Non-cooperative independent surveillance has the40

advantage of detecting all aircraft, a quite interesting

capability in times of war for instance. For this reason,42

this type of surveillance will continue to be required in

many dense areas for obvious reasons of security as well44

as completeness of surveillance information (i.e. ensure

a full surveillance picture). It also yields a high data in-46

tegrity level, as it is quite hard for miscreants to temper

with pulses covertly. That being said, there are multiple48

drawbacks to using this technology. While it will detect

all aircraft regardless of their equipment (i.e. their will50

for cooperation), a PSR sensor will also detect all build-

ings, clouds, mountains, and so on, which hence gener-52

ate a sensitive amount of noise. Received echos must be

easily distinguishable, which involves very high radia-54

tion power. Moreover, PSR does not identify aircraft

nor provide aircraft altitude (only 2D position and ve-56

locity), it has a limited range and a low update rate.

Secondary Surveillance Radar (SSR). This is the sec-58

ond generation of radars, used for Approach and En-

Route surveillance. Contrary to PSR, SSR is a coopera-60

tive technology: in the form of digital messages, ground

stations broadcast interrogations of aircraft transpon-62

ders (on the 1030MHz frequency) and the transpon-

ders reply with the requested information (on the 109064

MHz frequency) [52]. Similarly to PSR, SSR is an in-

dependent surveillance technology as the position and66

velocity of aircraft is determined using the antenna’s

bearing and the digital message round time trip. Histor-68

ically, there were two interrogation modes, called Mode

A and Mode C for identification and altitude, respec-70

tively. These are being substituted with Mode S (for

Selective) that allows for selective interrogations of sin-72

gle aircraft. It thus relieves the saturated 1090 MHz

channel by avoiding multiple “all-call” interrogations74

when there are multiple radars in high traffic areas:

these situations were indeed prone to mutual interfer-76

ence (garbling) [4]. For this, each aircraft was given its

own unique worldwide transponder ID (ICAO 24-bit78

4 Alexandre Vernotte et al.

aircraft address) for selective interrogation, which re-

places the old four digits identification “squawk” codes2

used in Mode A interrogations which were too prone

for identity collision (note that squawk codes are still4

in use today as some aircraft still operates under Mode

A/C. Squawk codes can also be used to communicate6

abnormal situations such as aircraft highjacking (7500)

or global alert (7700)). Mode S also enables more in-8

formation to be exchanged such as aircraft intent (e.g.,

selected altitude) or autopilot modes.10

As compared to PSR, SSR is less sensitive to inter-

ference and covers a larger range. Nonetheless, it still12

has high latency and still has a low update rate (1 mes-

sage every 6 to 12 seconds depending on the antenna’s14

range, i.e. its rotating speed). Its data integrity level is

also not as high as PSR, since it relies on information16

exchange. SSR provides aircraft position accuracy of 1

to 2 NM that, given the previously stated update rate,18

leads to a 3 NM separation between aircraft [55].

ADS-B. Communication via ADS-B consists of aircraft20

using a Global Navigation Satellite System (GNSS) to

determine their position and broadcasting it periodi-22

cally without solicitation (a.k.a beacons or squitters),

along with other information obtained from on-board24

systems such as altitude, ground speed, aircraft iden-

tity, heading, etc. Ground stations pick up on the squit-26

ters, process them and send the information out to

the ATC system. The ADS-B data link is generally28

carried on the 1090MHz Extended Squitter (1090ES),

the same frequency used by Mode S, although there30

is a new data link standard (UAT – Universal Access

Transceiver) dedicated to protocols such as ADS-B, but32

it requires new hardware and is not very common at

the moment. ADS-B is therefore a cooperative (aircraft34

need a transponder) and dependent (on aircraft data)

surveillance technology, which constitutes a fundamen-36

tal change in ATC. It means for instance that not only

ground stations with antennas positioned at the right38

angle and direction can receive position information.

Aircraft can now receive squitters from other aircraft,40

which notably improves cockpit situational awareness

as well as collision avoidance. For instance, the second42

generation of the Traffic Alert and Collision Avoidance

System (TCAS-II) is based on ADS-B data.44

Its introduction also provides controllers with im-

proved situational awareness of aircraft positions in En-46

Route and TMA airspaces, and especially in NRAs (Non

Radar Areas). It theoretically gives the possibility of48

applying much smaller separation minima than what

is presently used with current procedures (Procedural50

Separation) [1]. Indeed, ADS-B offers position accuracy

of 0.05 NM and velocity accuracy of 19.4 NM/h, with52

updates once to twice second. Concretely, ADS-B per-

formance requirements were designed to allow an air-54

craft lateral separation from 90 to 20 NM and longitu-

dinal separation from 80 to 5 NM in NRAs, and 5 to56

3 NM in covered areas [55]. ADS-B has the advantage

of being a much cheaper technology as it has minimal58

infrastructure requirements. For instance, an ADS-B re-

ceiver can easily be bought online for a few hundreds60

euros4. As mentioned in the previous paragraph, ADS-

B has a much greater accuracy and update rate, with a62

smaller latency. The major drawback of the technology

lies in its lack of encryption and authentication, which64

is discussed in Sect. 2.2.

Multilateration (MLAT). MLAT is a cooperative inde-66

pendent surveillance technique used for airport surface

surveillance, approach surveillance, as well as En-Route68

surveillance with the so-called Wide Area Multilater-

ation (WAM). Multilateration is different from other70

technologies in the sense that it is not a separate proto-

col but rather a type of mathematical techniques that72

use signals from other technologies (SSR, ADS-B), re-

ceived by multiple receivers, in order to measure their74

Time Differences of Arrival (also called hyperbolic po-

sitioning [11]), or the Time Sum of Arrival (also called76

elliptic positioning [42]). With enough measurements

from separate sources (at least 4), it is possible to de-78

termine the origin of the signal and consequently the

aircraft’s position [43]. Compared to PSR and SSR, the80

technique has a much higher update rate, reliability,

flexibility, stability and accuracy. It bears a low cost82

when it comes to ground equipment as well as aircraft

equipment. However, it is quite complex to manage as it84

is a distributed system with high synchronization con-

straints, which can become costly if deployed for large86

regions.

Regardless of the technology, the goal of surveil-88

lance sensors is to capture air traffic and send reports

to Air Traffic Services (ATS), typically used by AT-90

Cos, so that they can ensure that aircraft are within

their designated airspace. Before reaching ATSs how-92

ever, surveillance reports are first sent to a Surveillance

Data Processing and Distribution (SDPD) system. The94

primary function of an SDPD system is to analyze the

surveillance reports and fuse them into a system tar-96

get track and serve such tracks to subscribed Users (i.e.

ATS). The major and most recent SDPD system is EU-98

ROCONTROL’s ATM Surveillance Tracker and Server

(ARTAS), which is being rolled out at the moment in100

Europe5.

4 https://flywithscout.com
5 https://www.eurocontrol.int/news/

artas-surveillance-tracker-programme-goes-further

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 5

chematic representation of the enhanced ADS B ground system is highlighted within the dashed
e line region in Figure 1 [2]:

Figure 1. Enhanced ADS-B ground system schematic

TE 1: sm = service messages tr = target messages

Surveillance Data
Processing and

DistributionWAM Reports
System Track Data

ASTERIX CAT 62 tr
ASTERIX CAT 63 sm

Radar Data

ADS - B messages –
1090MHz Extended Squitters

ASTERIX CAT 48/01 tr
ASTERIX CAT 34/02 sm

ADS – B
Groundstation(s)

WAM Reports

ADS – B reports
ASTERIX CAT 21 tr
ASTERIX CAT 23 sm

 WAM
Groundstation(s)

ASTERIX CAT 20 tr
ASTERIX CAT 19 sm

PSR/SSR
Groundstation(s)ADS - B messages

Mode A/C/S/S ES messages

Monopulse signals
Mode A/C/S messages

Fig. 2: EUROCONTROL Surveillance Chain Overview

A simplified overview of the EUROCONTROL

surveillance chain is depicted in Figure 2. SDPD sys-2

tem receives surveillance reports from multiple sources

and fuse them to produce system track data that is fed4

to Air Traffic Services. The data exchange between all

the entities of this chain (sensor data reports, SDPD6

system, various ATSs) is made possible thanks to AS-

TERIX (All Purpose Structured EUROCONTROL8

Surveillance Information Exchange), an extensible ap-

plication protocol created by EUROCONTROL with10

the goal of facilitating the exchange of harmonized sur-

veillance information among surveillance and automa-12

tion systems, within and between countries6.

2.2 False Data Injection Attacks14

Extensive research can be found in the literature dis-

cussing the cyber security of surveillance communica-16

tions [44,57,55,48]. The progressive shift from indepen-

dent and non-cooperative technologies (PSR) to depen-18

dent and cooperative technologies (ADS-B) has created

a strong reliance on external entities (aircraft, GNSS) to20

estimate aircraft state. This reliance, along with the in-

troduction of air-to-ground data links via Modes A/C/S22

and the broadcast nature of ADS-B, has brought alarm-

ing cyber security issues.24

None of the aforementioned data link based surveil-

lance technologies (SSR’s Mode A/C/S, ADS-B and26

MLAT) features any kind of encryption or authenti-

cation. Which means anyone with the right equipment28

6 https://www.eurocontrol.int/services/asterix

can emit false data, for instance to create a fake air-

craft. This was not much of an issue with SSR, as the30

highly-directional SSR beam pattern makes it difficult

for the attacker to inject a fake aircraft with an arbi-32

trary bearing or altitude. With ADS-B however, omni-

directional antennas afford attackers flexibility in ori-34

entation and proximity [55]. This is because aircraft

position is determined on-board, i.e. without indepen-36

dent system validation. The introduction of ADS-B has

therefore enabled a class of attack referred to as False38

Data Injection Attacks (FDIAs).

FDIAs were initially introduced in the domain of40

wireless sensor networks [28]. A wireless sensor network

is composed of a set of nodes (i.e. sensors) that send42

data report to one or several ground stations. Ground

stations process the reports to reach a consensus about44

the current state of the monitored system. A typical

scenario consists of an attacker who first penetrates the46

sensor network, usually by compromising one or several

nodes, and thereafter injects false data reports to be48

delivered to the base stations. This can lead to the pro-

duction of false alarms, the waste of valuable network50

resources, or even physical damage. Active research re-

garding FDIAs has been conducted in the power sector,52

mainly against smart grid state estimators [15,27]. It

shows that these attacks may lead to power blackouts54

but can also disrupt electricity markets [56], despite

several integrity checks.56

FDIAs also exist in the domain of air traffic surveil-

lance. There is indeed an analogy between wireless sen-58

sor networks (as in, e.g., smart grids) and surveillance

systems. Because air traffic surveillance relies on the in-60

formation provided by aircraft’s transponders to ground

stations, aircraft transponders are equivalent to nodes62

from a wireless network, and ground stations are equiv-

alent to base stations. A second analogy, albeit at a64

larger scale, can also be made: ground stations as nodes

and SDPD systems as base stations. This paper pro-66

poses an FDIA testing solution covering both contexts.

Performing FDIAs on surveillance communications68

is no simple task: it requires a deep understanding of the

system, its protocol(s) and its logic, to covertly alter (by70

injecting falsified squitters and deleting genuine ones)

the consensus reached by the ground station and SDPD72

system regarding the recognized air picture. These at-

tacks are much more complex to achieve than e.g., jam-74

ming, because the logic of the communication flow must

be preserved and the falsified data must go unnoticed.76

The means of the attacker to conduct FDIAs against

ADS-B communications have already been detailed in78

previous work [47,30]. Considering the attacker has the

necessary equipment, he can perform three malicious80

basic operations:

6 Alexandre Vernotte et al.

(i) Message injection which consists of emitting non-

legitimate but well-formed ADS-B messages.2

(ii) Message deletion which consists of physically delet-

ing targeted legitimate messages using destructive4

or constructive interference. It should be noted that

message deletion may not be mistaken for jamming,6

as jamming blocks all communications whereas mes-

sage deletion drops selected messages only.8

(iii) Message modification which consists of modifying

targeted legitimate messages using overshadowing,10

bit-flipping or combinations of message deletion and

message injection.12

The above three techniques allow for the execution of

several attack scenarios [44] that can be categorized in14

a taxonomy:

– Ghost Aircraft Injection. The goal is to create16

a non-existing aircraft by broadcasting fake ADS-B

messages on the communication channel.18

– Ghost Aircraft Flooding. This attack is similar

to the first one but consists of injecting multiple air-20

craft simultaneously with the goal of saturating the

recognized air picture and thus generates a denial22

of service of the controller’s surveillance system.

– Virtual Trajectory Modification. Using either24

message modification or a combination of message

injection and deletion, the goal of this attack is to26

modify the trajectory of an aircraft.

– False Alarm Attack. Based on the same tech-28

niques as the previous attack, the goal is to modify

the messages of an aircraft in order to indicate a30

fake alarm. A typical example would be modifying

the squawk code to 7500, indicating the aircraft has32

been hijacked.

– Aircraft Disappearance. Deleting all messages34

emitted by an aircraft can lead to the failure of col-

lision avoidance systems and ground sensors confu-36

sion. It could also force the aircraft under attack to

land for safety check.38

– Aircraft Spoofing. This scenario consists of spoof-

ing the ICAO number of an aircraft through mes-40

sage deletion and injection. This could allow an en-

emy aircraft to pass for a friendly one and reduce42

causes for alarm when picked up by PSR. Designing,

implementing and executing test scenarios to assess44

the behaviour of ATC Systems in case of ADS-B

messages alterations is the primary goal of our work.46

It is of the utmost importance that none of the sce-

narios represent a real threat to such a critical infras-48

tructure with human lives on the line. However, because

of the inherent properties of the ADS-B protocol, cur-50

rent solutions for securing ADS-B communications are

only partial or involve an unbearable cost [48].52

In light of these features, ATC authorities such as

EUROCONTROL opted to add a security layer on top54

of ADS-B which was developed as part of project Se-

cAR [17]. It consists of continuous data integrity checks56

of ADS-B squitters, often relying on other sources of

data (SSR/MLAT). The main integrity checks are listed58

and explained below:

– ADS-B message validation via WAM integration: in-60

formation contained within ADS-B messages is com-

pared to the corresponding value in a WAM refer-62

ence report with closest time of applicability. If the

difference is below a certain threshold, test result is64

set to Valid, otherwise it is set to Not Valid.

– Behavioral analysis of targets: aircraft properties66

that are reported in ADS-B messages such as ve-

locity, acceleration, altitude, heading, etc. are com-68

pared with corresponding values calculated from suc-

cessive horizontal position updates. If the difference70

is below a certain threshold, test result is set to Con-

sistent, otherwise it is set to Inconsistent.72

– Time difference of arrival test: a network of ADS-B

ground stations exchanges ADS-B information on74

aircraft detected in the common average volume.

All ground stations received ADS-B messages with76

a Time of Arrival value, and send the obtained value

to the other stations along with the time of arrival.78

Then validation is performed and the aircraft’s posi-

tion is calculated similarly to multilateration. If the80

difference between calculated and reported values

is below a certain threshold, the message is set to82

Valid, otherwise it is set to Not Valid. If the compar-

ison cannot be done (e.g., ground stations are too84

far apart), then the message is set to Not Validated.

– Power measurement versus range correlation: the86

closer a signal is emitted from an antenna, the stronger

it is. Based on this observation, it is possible to es-88

timate the distance between aircraft and antenna

based on how powerful the signal is at reception.90

Therefore, it should be possible to detect FDIAs

where the attacker is close to the receiving antenna.92

– Angle of arrival measurement: it is possible to esti-

mate the angle at which ADS-B messages have been94

received, which gives a rough estimation of the posi-

tion of emitting aircraft. Measuring this angle may96

help detecting FDIAs that put aircraft at a com-

pletely different angle than what measures suggest.98

– Multi sensor data fusion consistency check: ADS-B

messages flagged as Not Validated and Not Valid are100

processed by the SDPD system and can result in the

message being specifically flagged to the ATCo or in102

the dismiss of the message. Each integrity check has

an appropriate weighing dependant on how reliant104

it is.

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 7

2.3 The False Data Injection Testing Framework

It is critical to make sure that SecAR’s integrity checks2

are properly and thoroughly tested. Such a testing cam-

paign needs large sets of test data in the form of air traf-4

fic recordings, where each recording is a test scenario,

i.e. it presents a situation that should trigger one, sev-6

eral, all or none of the integrity checks.

The contribution presented in this paper is part of8

an ongoing research initiative about FDIA testing. This

work ultimately led to the creation of a testing frame-10

work called FDI-T [13] (False Data Injection Testing

framework) which is developed in partnership with two12

companies: Smartesting7 and Kereval8. The framework

allows ATC experts to design FDIA scenarios, with14

the objective of altering existing recordings of air traf-

fic surveillance communications by creating, modifying16

and deleting recorded legitimate ADS-B messages in a

fruitful, scalable and productive manner. The altered18

recordings are then played back (with respect to time

requirements) onto real ATC systems, to simulate an20

attacker tampering with the surveillance communica-

tion flow. The approach allows for the evaluation the22

ATC systems’ resilience against potential security and

safety anomalies, and more precisely to FDIAs. More-24

over, it makes it possible to periodically measure ex-

pected cyber security improvements.26

The architecture of the FDI-T framework, depicted28

in Figure 3, is composed of five modules:

1 Data acquisition. The objective is to collect le-30

gitimate Mode S messages in Beast9 or SBS10 formats,

obtained either from the Internet or a Mode S receiver.32

Data takes the form of a recording, i.e. a sequence of

surveillance messages ordered by reception time.34

2 Scenario Design. The ATC expert defines alter-

ation scenarios to be applied on a recording obtained36

via the data acquisition module. Alteration scenarios

have various parameters, such as a time window, a list38

of targeted aircraft, triggering conditions, an others pa-

rameters related to the alteration’s type. Once designed,40

alteration scenarios are parsed and translated into a set

of alteration directives, which is the output of the mod-42

ule (an alteration directive is a small modification of the

initial recording, usually doable by hand. This scenario44

design module is textual-based. It relies on a Domain

Specific Language, and is precisely the object of the46

article.

7 https://www.smartesting.com
8 https://www.kereval.com/
9 http://wiki.modesbeast.com/Mode-S_Beast:Contents

10 http://woodair.net/sbs/Article/Barebones42_

Socket_Data.htm

3 Radar sensors network Simulator. As an FDIA48

is the compromising of one or several sensors of the

network (see Sect. 2.2), FDI-T allows users to model50

a network of radar sensors to simulate a multi-sensors

attack. A sensor has a location and different param-52

eters related to its type (i.e. SBS, Beast, SSR, PSR,

Mode S and SDPD), such as its range, bearing, alti-54

tude. Each sensor is associated solely with the surveil-

lance messages from the initial recording that were sent56

within its range. Therefore, the simulator outputs a

sub-recording per modelled sensor. Users can apply al-58

teration scenarios to one, several, or all sensors. Only

the sensors onto which an alteration scenario is applied60

have their sub-recording altered, so that some sensors

receive unaltered data while others receive altered data.62

Such simulations are particularly relevant to test the

behaviour of an SDPD as its purpose is to aggregate64

multiple surveillance sources.

4 Alteration Engine. This module takes as input a66

set of original sub-recordings, a set of alteration direc-

tives, and a correspondence matrix that defines which68

alteration scenario should be applied on a given sub-

recording. It then produces altered sub-recordings in70

the ATC system input format. It is possible to out-

put altered recordings in six formats: SBS-3, BEAST,72

ATX20 (ASTERIX WAM reports), ATX21 (ASTERIX

ADS-B reports), ATX48 (ASTERIX PSR/SSR reports),74

and finally ATX63 (ASTERIX System track toward

ATC controllers). This module is described in a precise76

way in [14], toward which we refer interested readers.

5 Execution Engine. The obtained altered air traffic78

sub-recordings are fed to the ATC system as if it was

receiving live surveillance messages.80

FDIA Scenario
Designer

Radar Sensors
Simulator

Data Acquisition

Test Execution

Alteration directives

ATC
System

Per sensor
sub-recordings

Altered recordings

Alteration
Engine

Recording

1

2

3

4

5

Fig. 3: FDI-T Framework Architecture

The present paper focuses on the scenario design

module of the FDI-T framework by proposing a novel82

design approach that relies on a DSL. Note that the de-

tails of the FDI-T framework regarding other activities84

(i.e. data acquisition, radar sensors network simulation,

test execution) are out of the scope of this paper, as86

they have been presented previously [13,14].

8 Alexandre Vernotte et al.

2.4 Research Objective and Questions

The design of alteration scenarios in the ATC domain2

can be very complex. This requires at the same time

altering or creating false data (e.g., creating false air-4

craft) while ensuring the consistency of all data. It is

also necessary to ensure the widest possible coverage6

of the types of FDIA attacks known in the literature

(and presented above). The creation of a DSL adapted8

to this work of designing alteration scenarios thus aims

to considerably increase the feasibility of in-depth tests10

of the resistance of ATC systems against FDIA attacks.

We have defined the following research objective based12

on these observations:

Create a DSL-based alteration scenarios design approach14

that further automates data alteration of genuine ATC

surveillance recordings to test FDIAs on ATC systems.16

We believe that a DSL close to natural language18

would allow experts from the ATC domain to easily

describe alteration scenarios, they might have intuition20

for, without programming skills needed. While being

intuitive, this language shall give the necessary tools to22

design complex and precise scenarios, to reproduce all

the existing scenarios from the literature, as well as ad24

hoc scenarios created on the spot. From the above re-

search objective, we have identified 2 research questions26

that are described below (Sections 8.1 and 8.2 refer to

these questions to evaluate the approach).28

RQ1 To what extent is it possible to design30

alteration scenarios in order to cover the tax-

onomy of attack? Although they are all based on32

the same weakness – i.e. the injection of false data –

each scenario of the taxonomy has its subtleties. For34

instance, it should be possible to easily alter aircraft’s

trajectory while ensuring realism of the modified tra-36

jectory throughout time. In turn, if realism (including

computation of each latitude/longitude coordinates) is38

abstracted from the user in exchange of DSL primitives

(e.g., by defining waypoints and time of passage), then40

realism and the computation of a new trajectory shall

be done algorithmically. The DSL must integrate what42

makes the protocol and its domain of application spe-

cific, in the form of grammar primitives that assist users44

in designing scenarios from the taxonomy.

46

RQ2 To what extent the use of a DSL can

facilitate the creation of FDIA’s test scenarios48

and reduce design effort? The alteration engine of

the FDI-T framework11 is able to process automati-50

11 The source code of the alteration engine is available on
Github: https://github.com/aymeric-cr/sbs-generation

cally a list of alteration directives (in an XML file)

and apply the corresponding changes on a recording52

supplied as input [14]. For simple and straightforward

alteration scenarios, it would be possible to create al-54

teration directives manually. Actually, the current tech-

nique to test and validate machine learning models that56

detect anomalous ADS-B messages is to perform the al-

terations by hand or using ad-hoc scripts [20,2]. But58

for complex scenarios involving multiple targets and

strong attack constraints (e.g., attack only when no60

KLM flights are flying above Strasbourg, and as soon

as targeted aircraft are flying under a certain altitude),62

it is simply not feasible. The DSL comes in handy as it

shall automate the thousands of micro-alterations that64

some attack scenarios require.

3 Related Work and DSL Approach Foundation66

To the best of our knowledge, there is no direct pre-

viously published work that addresses the topic of as-68

sessing the resistance of ATC systems against FDIA

attacks. That is why, first we report on related work in70

the ATC domain, and second we discuss DSL-based ap-

proaches for test case definition in other domains of ap-72

plication. Finally, we introduce the foundation of DSL

development, which drives the rest of the paper.74

3.1 ATC-related Testing and Simulation Approaches

A framework proposed by Barreto et. al. [6] allows for76

the simulation of an entire air traffic environment (air-

craft, radio relay, network infrastructure, etc.). This is78

achieved by combining two COTS simulation software,

MÄK VR-Forces12 for physical simulation and EXata80

Cyber13 for network communication simulation. Cyber

attacks are performed either by relying on EXata Cy-82

ber’s built-in attack library (but it contains generic at-

tacks such as jamming/DoS), or by implementing a cus-84

tom attack generator. The goal is to evaluate the attack

impact on each component of the simulated environ-86

ment. The approach can provide substantial informa-

tion on how components react to an FDIA. Still, imple-88

menting all network behaviours of a scenario requires

a lot of effort and the approach does not allow for the90

concretization of the simulated attacks on actual ATC

software. In addition, there is no information regard-92

ing the attack generator or how complex FDIA attacks

such as trajectory modification could be performed, as94

the only experimented attacks were denial-of-service.

12 https://www.mak.com/products/simulate/vr-forces
13 https://www.scalable-networks.com/exatacyber

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 9

In a similar fashion, Manesh et. al. study the effects

false message injection on air traffic by developing air-2

craft traffic encounter using Hardware in the Loop test-

ing platform [31]. An aircraft traffic encounter is a sce-4

nario in which minimum separation distance between

aircraft may be violated, therefore requiring interven-6

tion to maintain or regain proper separation. The simu-

lation testbed involved a real autopilot system mounted8

on an unmanned aerial system and a portable ground

controller station. The goal is to observe the behav-10

ior of the pilot’s traffic display when they fake an air-

craft traffic encounter using ADS-B message injection.12

Results show that upon injection, traffic display indi-

cates the intruder in red color, meaning that separation14

is violated and immediate maneuvering is required by

the pilot to regain proper separation. The authors do16

not explain how fake messages are created to make for

good simulation scenarios, nor if the resulting data is18

exploitable for FDIA testing.

Paielli presents a testing method to address air traf-20

fic conflict-resolution software (e.g., TSAFE [38]) that

automatically generates simulated air traffic encoun-22

ters. Conflict-resolution algorithms generate resolution

maneuvers (typically, altitude and heading changes)24

when a loss of separation is predicted to occur within a

certain time frame (e.g., 2 min for TSAFE). Test gener-26

ation relies on a trajectory scripting language that gen-

erate a simulated reference trajectories and conflicts.28

Users specify multiple aircraft and, for each, define a

trajectory composed of a series of segments (straight30

segments, turns, climbs, etc.). It also allows the user

to generate an encounter or conflict by specifying ad-32

ditional parameters such as the path crossing angle

and the minimum separation. The method is able to34

test for a variety of conflict types with expected alti-

tude/heading maneuvers. It is however unable to gen-36

erate ADS-B traffic and therefore cannot be utilized to

evaluate ATC (tracker) systems against FDIA.38

3.2 DSL-based Test Case Definition

There is a long history of DSLs being used to define40

test cases. Cucumber for instance is a testing tool us-

ing a DSL (Gherkin14) to define test cases using Given-42

When-Then rules. Silva et al. proposed the Test Speci-

fication Language (TSL) [29] which produces test cases44

written in Gherkin when interpreted. This process leads

on a transformation from TSL to another DSL (e.g.,46

Gherkin) with a different level of abstraction. Follow-

ing this method, an abstract test specification written48

in TSL is concretized into multiple test cases. Indeed,

14 https://cucumber.io/docs/gherkin/

a test specification features entities containing abstract50

valued parameters and therefore shall be made concrete

before it can be converted into test cases. Concretiza-52

tion consists of converting discrete values and enumer-

ation values from a predefined value set into continuous54

parameter values, when applicable.

A similar approach is presented in the domain of the56

development of Autonomous Driving Systems (ADS),

Menzel et al. define a method to create test cases from58

scenarios with different levels of abstraction [34]. The

highest level of abstraction is close to plain English and60

aims to be used by domain experts to define informal

hazardous scenarios. The second level of abstraction62

formalizes the terms used in the first level such as the

width of road’s lanes, radius of road’s curve, vehicles’64

length, etc. At this level a DSL can be used to write

scenarios. However, similarly to abstract test specifica-66

tions from Silva et. al.’s work, a scenario at this level of

abstraction does not formalizes the terms with discrete68

values but rather with continuous ranges value or set

of values. The third level of abstraction corresponds to70

the concretization of second level scenarios. Third-level

scenarios are usually written in a machine readable for-72

mat, e.g., XML or JSON. Relying on Menzele et al.’s

work, Queiroz et al. propose a DSL, GeoScenario [41],74

based on an existing language from OpenStreetMap,

similar to XML. This DSL allows for the creation of76

formal definitions of Menzel et al. scenarios, the goal of

this DSL is to be processed by many ADS simulators78

in order to generate testing data corresponding to the

specified scenarios.80

In the domain of network performance testing, a

DSL named coNCePTuaL [39] has been developed. This82

DSL allows for the design of network performance test

cases that the author describes as patterns, but match-84

ing with the definition of a scenario. The result of a coN-

CePTuaL program is a set of abstract machines send-86

ing/receiving messages from/to each other. In both ex-

amples, a scenario (or pattern) describes the behaviours88

of domain specific entities, then, these behaviours are

generated at the data level by simulators able to inter-90

pret such patterns.

Several articles use, as a case study, DSLs in the92

ATC domain. These DSLs are able to define scenar-

ios from landing to take-off [22], or scenarios of voice94

communication between pilots and controllers [50].

3.3 Motivating the Use of a DSL for Alteration96

Scenario Design

In a general manner, DSLs are high-level languages98

that provide abstractions, notations and constructs tai-

lored to a particular application domain [54]. They offer100

10 Alexandre Vernotte et al.

substantial gains in expressiveness and usability (with

corresponding gains in productivity and reduced main-2

tenance costs) as opposed to general-purpose, multi-

domain languages (e.g., for programming languages, like4

Java or C, and for modelling languages, like UML) [35].

Another benefit of DSLs is that they enable to connect6

experts of the application domain and programmers

through a unified terminology and semantics. There are8

many instances of successful development of DSLs in a

variety of domains, such as DBMS management with10

SQL, web page formatting with HTML and CSS, soft-

ware build automation with Make, circuit hardware de-12

scription with CHDL, etc.

DSLs also come with several drawbacks, the main14

one is the high development cost (implementation, cre-

ation of training material, language support, mainte-16

nance, etc.), especially for external DSLs, i.e. languages

that have no reliance whatsoever with an existing gen-18

eral purpose language. Moreover, it is rarely obvious

that a DSL is the appropriate solution to a problem,20

nor that this particular syntax and semantics are ad-

equate. To help DSL developers in these crucial deci-22

sions, DSL development has been formalized as a set of

7 sequential activities [37]. These 7 activities of DSL de-24

velopment are decision, domain analysis, design, imple-

mentation, testing, deployment and maintenance. The26

first step, the decision, is about identifying whether the

creation of a DSL constitutes an adequate solution to a28

given problem, and that this solution is worth the cost

of development. During the next step, domain analy-30

sis, the goal is to model the application domain, i.e.

defining the representation vocabulary to represent the32

objects and concepts of the domain, and defining the

body of knowledge related to the vocabulary (the re-34

lationships and dependencies between the various enti-

ties). Based on the application domain model, the de-36

sign activity consists to create the language constructs

and semantics. The implementation activity is about38

choosing the most suitable approach: should DSL con-

structs be interpreted, compiled into machine code, or40

translated into an existing base language? During the

testing phase, the DSL is evaluated, e.g., in terms of42

productivity gains. Finally, the deployment activity de-

fines the actual usage of the DSL, while maintenance is44

about updating the DSL to reflect new requirements.

46

The next sections of the paper respectively detail

decision (Sect. 4), domain analysis (Sect. 5), design ac-48

tivities conducted to create the proposed DSL (Sect. 6),

implementation (Sect. 7) and finally testing activities50

(Sect. 8). It should be noted that the deployment and

maintenance activities are not discussed since they are52

deemed out of the scope of this project.

4 DSL Decision54

It can be quite complex to decide in favor of a new DSL,

since it is hardly evident that a DSL might be fruitful,56

and even if it is, that it would be worth the high devel-

opment and maintenance cost. Decision patterns have58

been identified to aid in the decision process [35], such

as facilitating system configuration, eliminating repet-60

itive tasks, etc. In the subsequent paragraphs, we first

define the problem we are trying to solve, then we rely62

on the decision patterns to motive our choice of going

for a new DSL.64

An FDIA scenario, as viewed within the FDI-T frame-

work, is a test case that consists of:66

– a recording onto which alterations are performed;

– one or more alteration scenarios;68

– one or more radar sensors;

– for each alteration scenario, the targeted sensors.70

A recording is defined as a set of aircraft squitters, each

being timestamped and filled with information about72

aircraft’s position, velocity, status or identity. Record-

ings can be obtained from online providers (e.g., the74

OpenSky Network15), or simply by eavesdropping us-

ing an antenna (e.g., an SBS-3 antenna).76

An alteration scenario consists of the definition of one

or more alteration directives.78

An alteration directive is a low-level simple modification

instruction to be applied on a recording. It is given by:80

– a time window;

– an operation type (creation, deletion, modification);82

– an aircraft identifier (the target);

– a set of key-value pairs related to the operation type84

(e.g., for a modification, a pair is composed of an

aircraft property such as altitude and its new value).86

For simple and straightforward alteration scenarios,

e.g., a false alarm attack that is not triggered by any88

particular event and that has no particular aircraft tar-

geting conditions, creating the corresponding list of al-90

teration directives by hand or using a script would be

acceptable. The alteration engine of the FDI-T frame-92

work is able to process automatically a list of alteration

directives (in an XML file) and apply the corresponding94

changes on a recording supplied as input [14]. However,

most scenarios are not as straightforward, they involve96

potentially applying several types of alterations, each

having complex triggering events, and fine aircraft tar-98

geting which conditions are based on the very nature of

the recording. This can translate into hundreds, thou-100

sands of alteration directives, each meticulously crafted

with specific alteration properties. Moreover, testing102

15 https://opensky-network.org/

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 11

campaigns often involve executing the same test cases

with different test input data to attain a certain cover-2

age criteria (i.e. similarly to traditional software testing

techniques). It is therefore necessary to automatically4

derive alteration directives from an alteration scenario,

and there is a need for an appropriate, user-friendly6

albeit formal way to design alteration scenarios.

ATC experts reason in terms of Recognized Air Pic-8

ture (RAP) statuses and aircraft-related events. They

consider aircraft based on their properties (flight alti-10

tude, ground speed, route, etc), and they envision po-

tential security threats as high-level surveillance data12

alterations. FDIA scenarios are defined informally and

written in natural language.14

Based on the above observation, it appears that a16

DSL would be a great candidate as a design means

for alteration scenarios. The following decision patterns18

further strengthen this idea:

– User-friendly notation: instead of having experts20

describe relevant FDIA scenarios in natural language

for the software development team to translate into22

test cases, a DSL would make it possible to gener-

ate the scenarios automatically. Using a syntax close24

to what experts are used to, natural language. Us-

ing an ATC-related terminology and definition rules26

close to natural language would allow ATC experts,

who usually have little to no programming skills, to28

easily express the scenarios they have intuition for,

and have them automatically applied to a recording.30

– Task automation: manual definition of alteration di-

rectives is repetitive and time consuming, and may32

require an in-depth pre-analysis of the recording in

order to determine which aircraft to alter, and when.34

A DSL would allow for the automated production of

hundreds of alteration directives, without any pre-36

analysis needed, as aircraft selection and alteration

triggering would be part of the DSL.38

– System front-end : a DSL would make a good front-

end for ATC experts who want to translate informal40

FDIA scenarios into machine-readable scenarios.

Let us illustrate what ATC experts would be capa-42

ble of with such a DSL. For instance, to define a false

alarm attack scenario, an expert would be writing the44

DSL-based scenario such as the one shown in Figure 4.

The scenario scen specifies to alter the ADS-B mes-46

sages of aircraft that satisfy filter filt , starting ten sec-

onds after the recording’s first message, and accord-48

ing to alteration trigger trigg . Filter filt targets air-

craft that flew at least once at an altitude higher than50

33000 feet and never descended under 23500 feet. Trig-

ger trigg marks aircraft for alteration when their re-52

ported altitude is at 32500 feet and above. Finally, the

scen
1 alter all planes satisfying ”filt”
2 at 10 seconds triggered by”trigg”
3 with values SQUAWK = 7700

filt
1 F(ALTITUDE > 33000 and G(ALTITUDE > 23500)

trigg
1 eval when (ALTITUDE > 32500)

Fig. 4: DSL Example of False Alarm FDIA Scenario

with Aircraft Filtering and Alteration Triggering

alteration consists of changing aircraft squawk value to54

7700.

Of course, this is a straightforward FDIA scenario.56

The next section reports on the domain analysis that

allowed us to capture in the DSL all the relevant en-58

tities, datatypes, etc., thus providing us strong confi-

dence that we would result in a grammatically correct,60

featureful, fully functional DSL.

5 DSL Domain Analysis62

The goal of Domain Analysis is to properly identify the

application domain and to define its scope, as well as64

gather appropriate domain knowledge, i.e. the various

entities, datatypes, and their relationships, to be inte-66

grated into a coherent domain model. Various sources

of information may be used for that purpose, such as68

consultation of domain experts, customer surveys, tech-

nical documents, etc.70

Many methodologies for domain analysis have been

developed over the last three decades, with various in-72

formation extraction techniques and degrees of formal-

ity. Examples are DARE (Domain Analysis and Reuse74

Environment) [18], DSSA (Domain Specific Software

Architectures) [51], FODA (Feature-Oriented Domain76

Analysis) [23], and FAST (Family-Oriented Abstrac-

tions, Specification, and Translation) [12]. These metho-78

dologies have shown to result in good language design,

but they also have proven to be very complex and time80

consuming to implement. Moreover, clear guidelines on

how to exploit the gathered information for the design82

phase are rarely provided. There are no mature and

up-to-date tools to assist in the process, forcing DSL84

developers to do it manually, largely augmenting the

probability to result in an incomplete and/or erroneous86

analysis due to the complexity of interrelated activities

and work products [26]. As a consequence, the use of88

these methodologies is still very limited, and the do-

main analysis is often performed informally. In fact, for90

the vast majority of the DSLs found in the literature

where the domain analysis is explicitly detailed, this92

12 Alexandre Vernotte et al.

activity is done informally [24]. This has the benefit

of avoiding the high cost of respecting the canvas of2

the aforementioned methodologies, although the prob-

ability for incomplete/erroneous design remains con-4

sequent. Another methodology has gained attraction

recently as a means for the domain analysis activity,6

which is ontology design [50,10].

The most common definition of an ontology is “a8

formal, explicit specification of a shared conceptualiza-

tion” [49]. Formal because it is machine-readable, and10

explicit because the concepts and properties of the do-

main, as well as their relationships, are explicitly de-12

fined. A conceptualization is an overall view of the tar-

get domain, albeit abstract and simplified. It is shared14

because it captures consensual knowledge, understood

and agreed upon by a group of experts of the target16

domain. Ontologies are used in a variety of domains,

such as in artificial intelligence, but their prime usage18

is as a brick of the semantic web [8].

Previous work has demonstrated that Ontology-Ba-20

sed Domain Analysis (OBDA) is at least as efficient

as more traditional domain analysis techniques [10].22

The main benefit of OBDA is that ontology design is

a well-established practice with standardized languages24

(RDF [25], OWL [33]) and numerous open-source and

commercial tools to aid in the design process (Protégé16,26

Stardog Studio17, Topbraid Composer18). Thanks to

the formal notations and supporting tools, ontology de-28

sign has reasoning capabilities (e.g., with reasoners such

as FaCT++ [53] or HermiT [19]), as well as querying ca-30

pabilities. It is therefore possible to validate ontologies,

which significantly contributes to reduce or prevent er-32

rors in DSL development. Finally, there is existing work

on providing transformation rules to convert Ontology34

axioms into grammar rules [40], as well as tools capable

of automating the transformation.36

Therefore, the domain analysis of this DSL-based

alteration scenario design approach has been captured38

in an ontology designed in OWL, as it is the most com-

monly used ontology language, and aided by Protégé,40

the reference open-source tool for ontology design19.

Practically speaking, the ontology is a hierarchy of classes,42

a set of relationships between classes, and a set of re-

lationship between classes and data types. These are44

described in this paper using Description Logic [5].

16 https://protege.stanford.edu
17 https://www.stardog.com/studio
18 https://www.topquadrant.com/products/

topbraid-composer/
19 The OWL file is available on GitHub at: https:

//github.com/aymeric-cr/dsl-scenario/blob/master/

fdit-dsl-ontology.owl

As mentioned during the decision activity, the DSL46

should be a design means for ATC experts to formally

define alteration scenarios that can be automatically48

transformed into a set of alteration directives. Below

are the requirements for the DSL that were established50

based on experts consultations.

– REQ-1. The DSL should allow for the design of52

scenarios that cover the taxonomy of attacks. This

includes the capability to set new values for aircraft54

properties as well as define trajectories by means

of way-points and time of passage (as in alteration56

directives). Moreover, all alteration capabilities en-

compassed in alteration directives shall be also doable58

via the DSL. This includes the ability to combine

different types of attack, such as aircraft disappear-60

ance and ghost aircraft creation for instance, to al-

low for elaborate alteration scenarios.62

– REQ-2. The DSL should have the ability to define

aircraft filtering criteria, based on aircraft dynamic64

and static properties, in order to precisely target a

subset of aircraft onto which alter the messages.66

– REQ-3. The DSL should have the ability to spec-

ify aircraft property-based events, related to one or68

multiple aircraft, to trigger and stop the alteration

process, for each targeted aircraft individually.70

– REQ-4. The DSL should be generic, in the sense

that scenarios should be applicable to any recording.72

– REQ-5. The DSL should have combinatorial capa-

bilities. It involves the ability to define list of values74

assigned to variables, and to make references to the

variables instead of hard-coded values. It allows to76

obtain one scenario per value in case of a single vari-

able reference, and one scenario per combination of78

value in case of multiple variable references.

The next subsections present the classes that are80

modelled in the ontology, and, for each class, its various

relationships with other classes. In addition, the com-82

plete class inheritance tree is depicted in Appendix A.

Note that these classes are translated later into gram-84

mar production rules, rule alternatives, and terminals.

The domain analysis activity has been conducted with86

the above requirements in mind, i.e. with the objective

of fulfilling them. References to requirements are made88

throughout the subsections to indicate the motivation

for the creation of classes and relationships. An excep-90

tion occurs for REQ-4: there are no specific classes or

relationship that can be tied to fulfill this requirement.92

Instead, it served as a guideline for the domain analysis

process.94

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 13

5.1 Scenario

We define (alteration) Scenario individuals as a compo-2

sition of Declaration individuals (i.e. variables that con-

tain lists and ranges of values) and (alteration) Schema4

individuals through object properties hasDeclaration

and hasSchemas, respectively. Scenarios do not nec-6

essarily include declarations, i.e. hasDeclaration is op-

tional. Conversely, members of class Scenario shall in-8

clude at least one Schema. Moreover, scenarios are re-

lated to exactly one Recording through the hasRecord-10

ing property. This information is expressed in descrip-

tion logic with the following axiom:12

Scenario v ∀ hasSchemas.Schemas (1)

u ∀ hasRecording.Recording

u ∀ hasDeclaration.Declaration

u ∃ hasSchemas.Schemas (2)

u ≥ 1 hasRecording.Recording

u ≤ 1 hasRecording.Recording
Sub-axiom (1) is a closure axiom consisting of a14

universal restriction that acts along the property hasS-

chemas, specifying that it can only be filled by instances16

of the Schema class. The same restrictions are defined

for the hasRecording and hasDeclarations properties.18

These restrictions are necessary in OWL to enforce typ-

ing because of its open-world property: an individual20

is a member of all classes, unless explicitly stated. For-

mally speaking, we specify that the set of all individuals22

from class Scenario is included in the set of individu-

als who have their hasSchemas property either unset or24

solely filled with Schema individuals. The same reason-

ing applies for the hasRecording property.26

Sub-axiom (2) adds cardinality restrictions to the

properties. Formally speaking, the set of all individu-28

als from class Scenario is included in the set of indi-

viduals that have at least one schema and exactly one30

recording, through their respective properties. There-

fore, part (1) restricts the “range” (i.e. type of the32

ownee) of the properties for when their “domain” (i.e.

type of the owner) is a member of class Scenario, and34

part (2) adds cardinality restrictions.

36

Closure axioms are implied for the rest of the do-

main analysis, as they have been added systematically38

to all properties of all classes. The focus will be on car-

dinality restrictions only. Moreover, we consider that all40

classes from the same depth are disjoint, unless specified

otherwise (e.g., class TimeWindow and its subclasses).42

5.2 Schema

Alteration schemas are the backbone of the approach44

as they bridge the gap between high-level alteration

objectives (scenarios) and low-level alteration instruc-46

tions (directives). They differ from alteration directives

as they are multi-targets and offer the ability to pick48

out aircraft based on their properties, can be triggered

by events, and have combinatorial capabilities. We be-50

lieve that schemas make for a well-suited intermediary

entity between scenarios and directives.52

A schema is a specification of one type of alter-

ation (e.g., aircraft creation, deletion, trajectory modi-54

fication, etc.), i.e. based on the taxonomy of attack, and

mapping the different types of alteration directives from56

the alteration generation module [14], and according to

requirement REQ-1. The various types of alteration are58

represented in the OWL model as subclasses of Schema:

– AlterationSchema consists of changing the proper-60

ties of aircraft based on user-supplied values.

– CreationSchema creates a fake track from scratch,62

implying that fake messages are created and inserted

into the target recording.64

– DeletionSchema deletes targeted aircraft messages

for a certain period of time.66

– TrajModSchema modifies the initial trajectory of

targeted aircraft given a time window and a se-68

quence of way-points.

– SaturationSchema generates chaos by duplicating70

aircraft multiple times and making each ghost air-

craft slightly diverge from the original (in terms of72

trajectory), therefore making it appear that the air-

craft is dividing itself into many different tracks.74

– ReplaySchema, given a source, a target recording

and a time window, extracts targeted aircraft from76

the source recording and adds them (i.e. their ADS-

B squitters) into the target recording.78

Because schemas necessarily belong to an alteration

type, we consider the parent class Schema as abstract.80

This can be specified in description logic using a cover-

ing axiom, such as:82

Schema ≡ AlterationSchema t CreationSchema

t DeletionSchema t ReplaySchema

t TrajModSchema

t SaturationSchema

The axiom specifies that the set of all members from84

class Schema is equivalent to the set of all members

from either of Schema’s subclasses, therefore preventing86

any individual from being a member of class Schema

without being a members of one of its subclasses as88

well. In the rest of the paper, it is implied that a axiom

defined to a class also covers its subclasses.90

14 Alexandre Vernotte et al.

5.3 Target

A target indicates whether the schema should be ap-2

plied on a single aircraft or on all aircraft (which meet

selection criteria if any, see next item). Therefore, the4

abstract class Target has been created, which is covered

by its two subclasses, AnyPlaneTarget and AllPlane-6

Target.

Not all types of schemas have a target: aircraft cre-8

ation schemas do not need a target, as their purpose

is only to create a single aircraft. Therefore, we create10

abstract class TargetedSchema, make it a subclass of

class Schema, and make all Schemas subclasses, except12

CreationSchema, subclasses of TargetedSchema:

TargetedSchema v Schema

u ≥ 1 hasTarget.Target

u ≤ 1 hasTarget.Target

14

5.4 Time Window

A time window consists of hard-coded start and/or end16

time values. Its purpose is to start and end alteration

times for all targeted aircraft, based on the record-18

ing duration, as in alteration directives. TimeWindow

members may have one or two positive integer proper-20

ties to represent start and end times.

All types of Schema may have a time window, but22

the relationship is optional. If not present, the speci-

fied alterations are performed throughout the record-24

ing. Nonetheless, Schemas cannot be related to more

than one time window:26

Schema v ¬(> 1 hasTW.T imeWindow)

5.5 Waypoint28

For schemas involving aircraft creation or trajectory

modification, users should provide a trajectory as a se-30

quence of waypoints. A waypoint is composed of coor-

dinates, an altitude value and a time of passage. Hence,32

the following axioms apply to members of class Coor-

dinates:34

Coordinates v ≥ 1 hasLatitude.R
u ≤ 1 hasLatitude.R
u ≥ 1 hasLongitude.R
u ≤ 1 hasLongitude.R

Similarly, the following axioms apply to members of36

class Waypoint :

Waypoint v u ≥ 1 hasCoordinates.Coordinates

u ≤ 1 hasCoordinates.Coordinates

u ≥ 1 hasAltitude.N+

u ≤ 1 hasAltitude.N+

u ≥ 1 hasT ime.N+

u ≤ 1 hasT ime.N+

38

Two types of Schema require users to provide a se-

quence of waypoints: trajectory modification schemas40

and creation schemas. Trajectory modification schemas

require at least one waypoint:42

TrajModSchema v ≥ 1 hasWayPoint.Waypoint

A single waypoint is sufficient to alter an existing44

trajectory considering that a schema has a timewindow.

Therefore the aircraft position at the start and end time46

of the time window constitute two more waypoints, and

a new trajectory can be drawn using the resulting three48

waypoints. For creation schemas, conversely, there is no

existing waypoint, therefore it is mandatory that users50

provide at least 2 waypoints to draw a trajectory:

CreationSchema v > 2 hasWayPoint.Waypoint52

5.6 Assertion

Assertions allow for the assignment of test verdict. They54

define how the ATC system should react to the alter-

ation, e.g., the type of alert or the message’s content56

that the ATC system is supposed to output following

the attack. A class named Assertion has been created58

along with the property hasAssertion which domain is

Schema and range is Assertion.60

There are two types of Assertion, which makes for two

subclasses: StringAssertion and FileAssertion. A string-62

based assertion specifies a string that should be matched

in the response of the ATC system under test in order64

to validate the assertion. A file-based assertion specifies

a path to a file containing executable code (typically,66

groovy files), and the output of the file execution consti-

tutes the test verdict. This allows for more precise and68

complex test verdicts, as well as for the externalization

of the test verdict assignment process.70

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 15

5.7 Aircraft Properties

Aircraft properties, as their name suggest, are the var-2

ious properties belonging to a certain aircraft at a cer-

tain moment in time. Dynamic properties evolve over4

time, such as altitude, ground speed, etc. while static

properties remain unchanged throughout time, such as6

the ICAO, callsign, etc. Aircraft properties are central

to alteration schema design. They appear inside expres-8

sions (see next section), where their value is retrieved to

be part of some calculus. They are also part of property10

evaluations (see Sect. 5.10), to do comparisons between

aircraft property values and expression results. They12

also appear inside schema parameters (see Sect. 5.11)

in order to affect them new values (e.g., increasing the14

aircraft’s altitude by a 1000 feet).

There are three types of scope for aircraft proper-16

ties. It aims to design expressions not only relating to a

single aircraft, but also relating to a group of aircraft.18

This directly addresses requirement REQ-3 by trigger-

ing events based on properties of multiple aircraft. Be-20

low are the three property scopes:

– Aircraft-based : properties of a single (targeted) air-22

craft, e.g., its altitude at a certain time, or its ICAO.

– Global : properties relate to the whole RAP, i.e. mul-24

tiple aircraft. The nature of this scope’s proper-

ties is slightly different from aircraft-based proper-26

ties, since properties should correspond to a single

value. Thus, minimum maximum and mean values28

of aircraft properties can be referred to instead (e.g.,

mean altitude of all aircraft, or minimum ground30

speed, etc.).

– Filter-Based : this context is a refinement of the global32

context since only aircraft satisfying the conditions

expressed by a filter are involved for the computa-34

tion of the property’s value.

Depending on the properties’ usage context (e.g.,36

inside an arithmetic expression, or on the left side of a

schema parameter), the global and filter-based scopes38

are not applicable. Typically, when assigning new values

to aircraft properties, only the aircraft-based scope can40

be used.

Class AircraftProperty is an abstract class, covered42

by its two non-disjoint subclasses, AircraftPropertyType

and AircraftPropertyScope.44

AircraftProperty ’s subclasses are not disjoint because

they represent unrelated aspects of an aircraft prop-46

erty. Therefore, individuals can be members of both

subclasses, therefore representing an aircraft property48

of a certain type and with a certain scope.

Regarding the actual properties, such as the alti-50

tude, longitude, callsign, and so on, it was decided to

represent them as individuals rather than subclasses52

in the ontology. This contributes to make the ontology

lighter as well as more flexible, less “modelled in stone”.54

It also indicates that actual properties are to be kept

out of the resulting grammar.56

5.8 Expressions

Expressions designate common arithmetic operations58

(sum, product, etc.). They are used in property eval-

uations (see Sect. 5.10), as well as in schema parame-60

ters (see Sect. 5.11). In property evaluations, an aircraft

property value is compared to the result of an expres-62

sion. In schema parameters, a property is assigned with

the result of an expression.64

Expressions rely on values that are either directly

supplied by users (e.g., integers, strings, etc.), that are66

references to declarations (see Sect. 5.14) or values that

originate from aircraft properties.68

Expressions are defined by an abstract class in the

ontology, covered by its three subclasses, one that rep-70

resents expressions with an operator and two operands,

one for negated expression, and one for all atomic expes-72

sions, including primitive values (e.g., integers, strings)

but also aircraft property value references.74

5.9 Zone

Oftentimes, a filter or trigger can involve some kind of76

spatial-based conditions, e.g., identify aircraft that stay

in a particular zone or eventually exit another. It would78

be extremely cumbersome to design such conditions

with arithmetic comparisons between aircraft proper-80

ties (latitude, longitude and altitude) and values. To

make it straightforward for users to define spatial-based82

conditions, the concept of zones is introduced into the

DSL. A zone in this context, geometrically speaking, is84

a prism. It is defined as a set of 3+ coordinates and

a mandatory altitude range. A Zone class is therefore86

added to the ontology along with the following axiom:
Zone v u ≥ 2 hasCoordinates.Coordinates

u ≥ 1 haslowerAltitude.N+

u ≤ 1 haslowerAltitude.N+

u ≥ 1 hasupperAltitude.N+

u ≤ 1 hasupperAltitude.N+

88

Similarly to expressions, zones are used in property

evaluations to ultimately be a part of a filter or trigger.90

5.10 Property Evaluation

Property evaluations are used in filters and triggers.92

The objective is to compare an aircraft property value

16 Alexandre Vernotte et al.

(altitude, etc.) with the result of an expression (e.g.,

1200 ∗ 5). In addition, it is possible to pair property2

evaluations with conjunctions and disjunctions, as well

as negate them. Concretely, PropertyEvaluation is an4

abstract class covered by its four subclasses:

– AndOrPropertyEvaluation is for conjunctions and6

disjunctions of property evaluations, and is there-

fore a nesting class. Members of this class must be8

linked to two members of PropertyEvaluation, for

both operands of the conjunction/disjunction.10

– NotPropertyEvaluation is for negating property eval-

uations. Members of this class are linked to exactly12

one member of PropertyEvaluation through object

property hasSubPropEval.14

– InZonePropertyEvaluation is for evaluating whether

aircraft are inside a certain zone. This class has16

a mandatory object property which range is class

Zone.18

– StraightPropertyEvaluation models the actual com-

parison between aircraft properties and expressions.20

It has two object properties, hasProperty which range

is class AircraftProperty, and hasPropExpression22

which range is class Expression.

5.11 Schema Parameters24

Schema parameters specify the objective of schemas, i.e.

aircraft property values (e.g., altitude, longitude and26

latitude, squawk code, etc.) to be changed for new val-

ues in case of an Alteration Schema, the number of fake28

aircraft to create in case of a saturation schema, etc.

They share similarities with property evaluations in the30

sense that they consist of a property, an expression and

an operator. Nevertheless, since the objective is value32

assignment, there are no conjunctions, disjunctions, and

negations. As well, there are no comparison operators34

but an assignment operator. Each type of schema has

its own set of parameters.36

SchemaParameter is therefore an abstract class cov-

ered by its two subclasses:38

– AlterationParameter enables to change aircraft prop-

erties. This means setting the value of aircraft prop-40

erties (both static and dynamic) with the result of

an expression. It has two object properties, one with42

range AircraftProperty and an another with range

Expression.44

– CreationParameter makes it possible to add a fake

aircraft to the RAP. Besides supplying sequence of46

waypoints, this means setting the value of aircraft

static properties such as ICAO, callsign, etc. Class48

CreationParameter has similar properties than Al-

terationParameter, but the range of its hasAircraft-50

Property is restricted to StaticAircraftProperty.

There are several schema types which parameters52

did not need to be represented by a class. It is the case

for Replay schemas: their main parameter is a source54

recording from which a given aircraft is extracted. This

is represented by a mandatory object property has-56

Recording with domain ReplaySchema and range Record-

ing. Similarly, Saturation schemas involve making a large58

amount of copies of a given aircraft and having the

copies slowly diverge in terms of trajectory. While the60

divergence itself is computed automatically by the gen-

eration module, users must supply the number of air-62

craft copies that should be made. It is represented by a

mandatory datatype property hasNumberOfCopies with64

domain SaturationSchema and range positive integer.

5.12 Filters66

It is very common for an FDIA to only target a subset

of aircraft present in a recording. Schemas thus offer68

the possibility to define selection criteria by means of

filters, as specified by REQ-2. Aircraft filtered out by70

the selection criteria will not be affected by the schema’s

alteration. The filtering may be trivial, e.g., target only72

aircraft from Lufthansa. In other cases, it may be more

complex and precise, e.g., target only aircraft of which74

the altitude has never exceeded 30000ft and has been

flying at a given speed while flying in a given 3D area.76

Filters allow users to express conditions related to

the properties of aircraft, such as altitude, ground speed,78

callsign, etc., and combine conditions with logical con-

junctions and disjunctions. They integrate the concept80

of time and allow for a deterministic evaluation of fil-

ter expressions by introducing two temporal operators82

from the Linear Temporal Logic (LTL) [7]:

– Always: expressions subjected to this operator must84

always be true throughout the recording.

– Eventually: expressions subjected to this opera-86

tor must be true eventually during the recording.

With the introduction of these two temporal operators,88

expressed conditions relate to the entire recording. The

objective of filter is to generate the list of all aircraft90

that satisfy the expressed conditions.

Only subclasses of TargetedSchema may be related92

to Filter individuals, although there is no cardinality

restriction on the relationship.94

Filters are referred to use an identifier. Class Filter-

Expression has been created to represent the expression96

part of the filter, while class Filter acts as the identifier.

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 17

FilterExpression is an abstract class that is covered

by its three subclasses. They are distinct since each one2

represents a specific feature of filters:

– AndOrFilterExpression is an abstract class that mod-4

els conjunctions and disjunctions of filter expres-

sions (each is a subclass). Members of this class6

are linked to two members of class FilterExpres-

sion, representing both operands of the expression.8

This makes it possible to create cascades of disjonc-

tions/conjunctions.10

– NotFilterExpression models negation of a filter ex-

pression. Members of this class are linked to exactly12

one member of class FilterExpression. This also en-

ables to negate conjunctions and disjunctions.14

– TemporalFilterExpression is an abstract class rep-

resenting the two temporal operators, Always and16

Eventually, as well as the absence of temporal

operator, called None. Each one is modelled as a18

subclass because static properties do not fluctuate

and therefore have no temporality. Members of this20

class are linked to a PropertyEvaluation member, to

model that a temporal operator applies on a prop-22

erty evaluation, e.g., the aircraft’s latitude is always

under 9.3476 throughout the recording.24

5.13 Triggers

Aircraft involved in a given schema are selected by26

means of filters. The next (optional) step in designing

a schema is to define when the alterations shall be per-28

formed. As opposed to time windows, triggers express

conditions in which targeted aircraft should be affected,30

reflecting requirement REQ-3. Triggers can be based on

event such as as soon as this event happens and/or un-32

til this event happens (for instance, perform the action

as soon as all AirFrance aircraft are flying above 1000034

feet). In this case it affects all targeted aircraft simi-

larly. Triggers can also be related to aircraft intrinsic36

properties (e.g., perform the action when aircraft’s ve-

locity is under 300 NM/h). In this case it affects each38

targeted aircraft singularly.

Unlike filters, triggers do not include LTL logic op-40

erators. Instead, they have specific operators to express

triggering conditions. Moreover, instead of returning a42

list of aircraft, the goal of a trigger is, for each aircraft,

to determine the time intervals for when a given prop-44

erty evaluation is evaluated positively.

Three trigger operators are introduced into the lan-46

guage to define which action (alter, do not alter) is as-

sociated with a positive property evaluation:48

– When: alterations are only performed when the en-

closed property evaluation is true.50

– As Soon As: alterations are performed as soon as

the enclosed property evaluation is true and until52

the end of the recording. Thus, even if the property

evaluation is false after being true in the first place,54

the alterations will be performed.

– Until: alterations are performed from the start of56

the recording and until expr is true. Thus, even if

the enclosed expression is evaluated to false after58

being evaluated to true in the first place, the alter-

ations will not be performed any longer.60

Triggers are modelled in the ontology in a similar

fashion than filters. There are three subclasses that62

cover class Trigger, one for conjunction and disjunc-

tion, one for negation, and one for trigger operators.64

Only TargetedSchema members may be related to Trig-

ger individuals.66

5.14 Declarations

Declarations allows for the definition of lists and ranges68

of values, referred to by an identifier, i.e. a variable

name. Users first define a declaration (e.g., of list of70

integers), and thereafter make a reference to that dec-

laration in an expression.72

Declaration is an abstract class with an identifier

(hasName property), covered by its two subclasses:74

– ListDeclaration is an abstract class, and has a sub-

class for each primitive type (integers, floats, etc.)76

and for filters and triggers. Each subclass has a

mandatory object of datatype property, without max-78

imum cardinality but with corresponding range (e.g.,

stringListDeclaration is defined by a hasStringVal-80

ues with range String).

– RangeDeclaration is an abstract class as well, with82

two subclasses, one for integers and one for floats.

Both have two datatype properties to represent the84

lowerbound and upperbound of the range declara-

tion.86

A Schema that contains a reference to a declaration

is considered abstract, as there would be multiple values88

for, e.g., a schema parameter. Schema concretization

consists of creating one concrete schema per declara-90

tion value. In case of a schema with several references

to declarations, a concrete schema shall be created per92

combination of declaration values. The rational behind

declarations and their relationship with schemas there-94

fore directly addresses REQ-4.

6 DSL Design96

The design activity consists in creating the language’s

syntax and semantics based on the ontology defined98

18 Alexandre Vernotte et al.

during domain analysis. Depending on the result of do-

main analysis, several design patterns may be employed2

to construct the language’s grammar [36]. A prerequi-

site is to study whether there exist languages and gram-4

mars that already define similar constructs and that

can be reused. To address that issue, a design pattern6

called piggybacking can considerably reduce design and

implementation efforts, and may also be easier for users8

to familiarize with the language. Similar to piggyback-

ing are the specialization and extension patterns. The10

former restricts an existing language (e.g., by remov-

ing production rules or alternatives inside production12

rules), while the latter extends an existing language

with production rules, rule alternatives, or terminals. A14

last design pattern, called invention, can be used when

the DSL bears no relationship to any existing language,16

and its grammar must be created from scratch.

There are several aspects of the proposed DSL that18

are piggybacks/specializations/extensions of existing lan-

guages and constructs, namely:20

– arithmetic expressions with associativity, commuta-

tivity and distributivity;22

– boolean comparisons for property evaluations;

– disjunctions and conjunctions for boolean compari-24

son, filters and triggers;

– LTL logic operators for filters;26

– variable assignments for declarations.

Conversely, the actual definition of schemas is fully in-28

vented.

As mentioned in the previous section, there are ap-30

proaches for automatically transforming OWL ontolo-

gies into context-free grammars [40]. However, for this32

work, the transformation was conducted manually. In-

deed, it appeared clear that a sensible part of the DSL34

could be borrowed from existing notations while the

remaining aspects, i.e. the definition of schemas, were36

straightforward to translate into production rules as it

is sequential and flat. Nonetheless, conducting a for-38

mal domain analysis through ontology design was of

tremendous help to identify piggybackable features, ex-40

tractable standalone sub-languages, and reusable com-

ponents (used across several standalone sub-languages).42

The resulting ontology showed that two classes had44

the potential to be standalone sub-languages, filters

and triggers. One of the DSL’s requirements (REQ-4)46

is about genericity, and having filters and triggers as

standalone sub-languages certainly contributes to the48

fulfillment of this requirement: users can create filters

and triggers separately from schemas, and use them as50

part of multiple schemas. Moreover, it would overcome

potential usability issues and spread out schemas’ de-52

sign effort over several simpler tasks. Therefore, it was

decided to divide the design process into the following54

three stages:

1. Definition of aircraft filters56

2. Definition of alteration triggers

3. Definition of alteration schemas58

The ontology also showed that several entities would

be required in several standalone languages, such as60

classes Expression, AircraftProperty, PropertyEvaluation,

etc. Thus, instead of duplicating their corresponding62

production rules into the various standalone languages’

grammar, a dedicated “abstract” grammar was created64

for expressions (including aircraft properties) and prop-

erty evaluations. These grammars do not translate into66

stand-alone sub-languages but the three standalone lan-

guages integrate and extend the abstract grammars in68

a factorized effort.

The next subsections describe the two abstract gram-70

mars for expressions and property evaluations, as well

as the the design process for the three standalone lan-72

guages dedicated to filters, triggers and schemas.

74

6.1 Base Expression Grammar

The base expression grammar (BEG) is a simple76

language for arithmetic operations, directly originating

from the Expression class and subclasses of the ontol-78

ogy. The BEG is presented in extended Backus-Naur

form (EBNF) in Figure 5. Expressions are only de-80

scribed in the ontology in a listing fashion. It would

be cumbersome to draw grammar rules from the mod-82

elled classes and relationships, especially for including

arithmetic properties such as associativity, commuta-84

tivity and distributivity. Moreover, since arithmetic op-

erations are expressed using a widely known notation,86

the BEG therefore largely piggybacks existing arith-

metic grammars20.88

add ::= mult ((+ | -) mult)*
mult ::= unary ((∗ | / | mod) unary)*

unary ::= -? atomic
atomic ::= (add)

| value
| aircraft prop

aircraft prop ::= (ac scope .)? ac charac
value ::= <integer> | <float> | <string>

ac charac ::= ([A− Z] | ′ ′)+
ac scope ::= RAP | ” <identifier> ”

Fig. 5: EBNF Expression Grammar

20 http://users.monash.edu/~lloyd/tildeProgLang/

Grammar/Arith-Exp/

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 19

The BEG also provides an extension for allowing2

users to include aircraft’s properties inside expressions.

The ontology specifies that aircraft properties have a4

scope and a type. Since only three property scopes have

been identified, and that no additional scope is in the6

foreseeable future, scopes translate into an optional ter-

minal rule in the grammar, either RAP (i.e. Global) or8

an identifier that should point to an existing filter. The

absence of scope implies that the property has the scope10

aircraft.

Conversely, property types are fixed for each property,12

and is not an aspect that users can decide upon. There-

fore, property types are not part of the grammar and14

are not handled at this stage of DSL development. They

are left to the semantic analysis.16

An example of expression using this notation would be:

(RAP.MEAN ALTITUDE − ALTITUDE) / 218

The expression’s context is a targeted aircraft, in order

to replace aircraft-related properties with their corre-20

sponding value. This expression results in half the dif-

ference of the RAP’s mean altitude (the mean altitude22

of all existing aircraft), and the altitude of the targeted

aircraft.24

It should be noted that expressions can only be eval-

uated on a “snapshot” of the RAP, i.e. based on the26

RAP’s state at a given time. Indeed, aircraft dynamic

properties change over time, which means Boolean com-28

parisons would be non-deterministic if applied to a time

window instead of an instant.30

6.2 Property Evaluation Grammar

The property Evaluation Grammar (PEG) is a com-32

mon Boolean comparison grammar and, as such, it pig-

gybacks existing grammars for the comparison aspects.34

For arithmetic expressions, it fully includes the BEG

presented in the previous section. A Boolean expres-36

sion opposes two values with a comparison operator,

the result is True if the comparison is verified and False38

if it is not. The PEG slightly specializes existing gram-

mars to force the presence of an aircraft property on the40

left side of the comparison (so called “property evalua-

tion”). As presented in Sect. 5.10, a property evaluation42

compares an aircraft property (e.g., altitude) with the

result of an expression. The PEG also extends exist-44

ing grammars to enable zone-based evaluations, using

3+ coordinates and an altitude range, as defined in the46

ontology. The PEG is presented in Figure 6.

Below is an example of a conjunction of Boolean48

comparisons involving aircraft properties:

ALTITUDE > 350 and SPI == true50

prop eval ::= negation ((and | or) negation)*
negation ::= not (relation)

| relation
relation ::= bel.ac charac (=|! =|<|>|<=|>=) bel.expr

| in zone
| (prop eval)

zone ::= prism with vertices vertices and
altitude from bel.expr to bel.expr

vertices ::= coords , coords (, coords)+
coords ::= (bel.expr , bel.expr)

Fig. 6: EBNF Property Evaluation Grammar

This expression checks, for a given aircraft, if it is

flying above 350 feet (ALTITUDE > 350) while hav-52

ing its landing gear deployed (SPI == true), a situation

considered as abnormal.54

Another example using zones:

outside prism with vertices (43.02,51.09),56

(42.87,47.26), (40.66,53.11) and altitude from

5600 to 810058

This expression evaluates whether aircraft is out-

side a zone, expressed as a set of three coordinates60

(43.02,51.09), (42.87,47.26), (40.66, 53.11) and an al-

titude range (altitude from 5600 to 8100). As envi-62

sioned in the ontology, zone-based expressions are straig-

htforward to formulate using this construct, while it64

would be extremely cumbersome to craft a classical

query (i.e. with arithmetic relations between aircraft66

properties and values) that yields the same results.

Similarly to the BEG, property evaluations need68

an aircraft as context, and should be evaluated on an

RAP’s snapshot.70

6.3 Filter Language

The filter language, as described in the ontology in72

Sect. 5.12, brings two temporal operators from the Lin-

ear Temporal Logic (LTL) [7]. It makes it possible to se-74

lect aircraft on the basis of their properties throughout

the recording, and temporal operators makes it possi-76

ble to conduct property evaluations on a time window

rather than on a frozen snapshot. The grammar of the78

filter DSL is shown in Figure 7.

The filter language extends the PEG with temporal80

operators Always and Eventually, formally referred

to as G and F, respectively. To do so, an entry rule filter82

was added. It calls PEG’s entry rule prop eval, which

has been overridden to call a new production rule called84

temporal instead of negation. Rule temporal contains

the temporal operators, as well as the negation opera-86

tor. This makes it possible to negate temporal operators

as well as property evaluations. Note that temporal op-88

erators are not applicable to expressions that include

static properties, such as aircraft’s ICAO for example,90

20 Alexandre Vernotte et al.

filter ::= eval prop eval
prop eval ::= temporal ((and|or) temporal)*
temporal ::= G (relation)

| F (relation)

| not (relation)

| relation
relation ::= bel.ac charac (=|! =|<|>|<=|>=) bel.expr

| in zone
| (prop eval)

zone ::=

Fig. 7: PEG grammar extended with Temporal Opera-

tors. Extensions of the BEG appear in bold red.

and therefore temporal operators are made optional.

Since properties’ type is outside the scope of the gram-2

mar, so is the restriction that temporal operators are

solely enclosing dynamic property evaluations.4

Below is an example of a typical filter:6

eval not (G(ALTITUDE > 30000)) and

F(ALTITUDE > 34000 and LONGITUDE < 2.30)8

This expression is composed of two sub-expressions.

The first one, not (G(ALTITUDE > 30000)), means10

that aircraft should not have an altitude constantly

higher than 30000 feet. It could have been presented12

in the alternative form F(ALTITUDE < 30000). The

second sub-expression F(ALTITUDE > 34000 and14

LONGITUDE < 2.30) means that aircraft must have

flown at least once at an altitude above 34,000 feet while16

being at a longitude inferior to 2.30 (in other terms, air-

craft should have flown south of Paris).18

The example above illustrates how the filter lan-

guage makes it possible to express whether two Boolean20

expressions with the same temporality (F or G) shall be

checked concurrently or independently. In the example,22

both expressions are inside the same temporal opera-

tor, grammatically speaking, which indicates that both24

expressions should be checked concurrently, i.e both ex-

pressions must be true at least once and at the same26

time. In natural language, such an expression can be

written as aircraft has flown at least once above 34,00028

feet in the south of Paris. If each expression had been

enclosed in separate eventually operators, such as:30

F(ALTITUDE > 34000) and F(LONGITUDE <

2.30), this would have indicated that the two expres-32

sions should be checked independently, i.e. each expres-

sion must be true at least once, although not necessar-34

ily at the same time. In natural language, this could

be written as aircraft has flown at least once south of36

Paris, and has flown at least once above 34,000 feet.

This feature greatly increases the expressiveness of fil-38

ters. Note that there are two cases where this subtlety

exists: eventually operators and logical conjunctions,40

and always operators and logical (inclusive) disjunc-

tions.42

6.4 Trigger Language

The objective of triggers is to define when the alter-44

ations will be performed, as mentioned in Sect. 5.13.

Although there are no existing grammar to piggyback,46

the trigger language is invented by copying the filter

language’s grammar. Indeed, both languages are simi-48

lar in essence: they bring operators that enclose prop-

erty evaluations. Its grammar is presented in Figure 8.50

trigger ::= eval trigg eval
trigg eval ::= time window ((and|or) time window)*

time window ::= asap (prop eval)

| when (prop eval)

| not when (prop eval)

| until (prop eval)

| (trigg eval)

prop eval ::= negation ((and | or) negation)*
negation ::= ...

Fig. 8: PEG Grammar extended with Triggers

However one key difference between operators of52

the two languages is that trigger operators cannot be

negated. Therefore, another strategy was employed to54

extend the PEG. While, for the filter language, ex-

tension involved overwriting grammar rules, grammar56

rules are added for the trigger language. Rules trigg eval

and time window specify trigger expressions’ syntax,58

directly referenced by rule trigger, the entry rule of the

grammar. Rule prop eval, PEG’s entry rule, is now en-60

closed in trigger operators.

Instead of returning a Boolean like the filter lan-62

guage, the evaluation of a trigger on an aircraft returns

a time line that indicates when the Boolean expression64

is evaluated positively and when it is evaluated nega-

tively. An example of a trigger time line for four air-66

craft is depicted in Figure 8. Green bars represent time

intervals during which the trigger is true, red dashed68

bars represent time intervals during which the trigger

is false, and striped grey bars indicate that there is no70

surveillance information about an aircraft.

Here is a simple example of a trigger:72

eval when(LONGITUDE > 5.25)

This expression means that aircraft will be altered (de-74

pending on the scenario) only when they are at a lon-

gitude less than 5.25.76

Here is another example, with an RAP scope:

eval as soon as(RAP.ALTITUDE <= 35000)78

This expression means that aircraft will be altered (de-

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 21

0 50 100 150 200 250 300

ACA879

AF622NA

FLJ51

SWR42H

Time in Seconds

Fig. 9: Evaluation Result of a Trigger on 4 Aircraft.

pending on the scenario) as soon as the RAP reaches a

state where there is no aircraft flying above 35000 feet.2

As mentioned earlier, it is possible to combine trig-

gers using logical conjunctions and inclusive disjunc-4

tions. For instance:

eval when(AIRCRAFT.LONGITUDE > 5.25)6

and as soon as(RAP.ALTITUDE <= 35000)

This expression means that affected aircraft are altered8

only when they are at a longitude less than 5.25, but

not before the RAP reaches a state where there is no10

aircraft flying above 35000 feet. The way conjunctions

and disjunctions are evaluated is depicted in Figures 10.12

For a conjunction to be true at time = t, both expres-

sions should be positively evaluated at that time. For14

a disjunction to be positively evaluated at time = t, at

least one trigger should be true at that time.16

6.5 Schema Language

All the languages previously presented are extensions18

or specializations of existing ones, well established no-

tations. The schema language, conversely, is pure lan-20

guage invention and is an almost direct transposition

of the ontology: a subset of classes are converted into22

production rules, while others (oftentimes subclasses

of abstract classes, see rules schema, target, timeWin-24

dow) are converted into rule alternatives. Object and

datatype properties are converted into non-terminals26

and potentially with an operator, depending on the

properties’ cardinality. In addition, the schema language28

fully integrates the expression language. Conversely, it

does not integrate the filter and trigger languages, for30

usability issues, but rather allows users to reference trig-

gers and filters by their identifier. The resulting gram-32

mar of the schema language is shown in Figure 11.

Let us illustrate the schema language with two ex-34

amples. The language is further illustrated in Sect. 8.1,

where we demonstrate the language’s ability to cover36

the taxonomy of attacks.

First, a very basic alteration is defined below:38

alter all planes at 126 seconds

with values GROUNDSPEED = 229.640

The schema applies on all aircraft (no filter), start-

ing 126 seconds after the first message of the recording42

(no trigger), and changes aircraft’ ground speed to a

constant 229.9 K throughout the recording.44

Another example, slightly more advanced:

create plane from 12 seconds until 251 seconds46

with values ICAO = ”39AC47 ” and with waypoints

[48

(24.85,53.23) with altitude 4000 at 12 seconds ,

(24.62,53.94) with altitude 4250 at 251 seconds50

]

This schema creates a fake aircraft between seconds52

12 and 251 of the recording. The aircraft has the ICAO

39AC47, and a flight trajectory defined by two way-54

points.

To generate multiple test cases (i.e. multiple altered56

recording variants) from a single scenario, it is possible

to define list and ranges of values. For instance:58

let $varname = [1,5]

This is a very standard variable definition, using60

the keyword let as in many functional programming

languages. It defines a variable called varname, which62

is set to a value range from 1 to 5. This declaration is

equivalent to the one below:64

let $varname = {1,2,3,4,5}
The variable varname here is set to a list of 5 in-66

tegers ranging from 1 to 5. Besides integers, lists can

contain string values, e.g., a list of ICAO 24 bits ad-68

dresses.

The advantage of using lists and ranges of values is70

to increase the coverage of test cases and the expres-

siveness of the DSL through the use of combinatorial72

between the variables with many values. This principle

is further explained in Sect. 7.4.74

7 DSL Implementation

A java-based prototype of the presented design approach76

was created, available on Github21. All languages were

developed with Xtext, a framework proposed by Eclipse78

for the development of DSLs22, while their correspond-

ing graphical editors as well as a common graphical user80

interface were developed with JavaFX23.

The filter and the trigger languages are interpreted.82

In opposition to compiled languages, it means the re-

sult of the program execution is not a lower level lan-84

guage, but data structures that are detailed later in

this section. The scenario language can be considered86

as an hybrid between an interpreted and a compiled

21 https://github.com/aymeric-cr/dsl-scenario
22 https://www.eclipse.org/Xtext/
23 https://openjfx.io/

22 Alexandre Vernotte et al.

0 50 100 150 200

result

asap(expr2)

when(expr)

=

and

Time in Seconds

(a) An conjunction of a when and an as soon as trigger

0 50 100 150 200 250

result

notwhen(expr2)

until(expr)

=

or

Time in Seconds

(b) A disjunction of a not when and an until trigger

Fig. 10: Conjunction and Disjunction of Triggers. Plain green (resp. red dashed) sections represent positive (resp.

negative) intervals.

scenario ::= decl* schema+
decl ::= let var = (list | range)

schema ::= (hide | saturate) target filter
t scope trigger assertion?

| create t scope trigger params
waypoints? assertion?

| alter target filter t scope trigger
(params|waypoints) assertion?

target ::= any plane | all planes
filter ::= satisfying <string>

trigger ::= within <string>
t scope ::= at time

| from time until time
time ::= (number) seconds

params ::= with values param (and param)*
param ::= param type = value

waypoints ::= with waypoints [waypoint (, waypoint)*]

waypoint ::= coord with altitude number at time
coords ::= (value , value)

assertion ::= assert <string>
list ::= (value (, value)*)

range ::= <integer> .. <integer>
value ::= <string> | number | var

number ::= <integer> | <float>

Fig. 11: Syntax of the Alteration Schema Language

language because its execution produces an XML file

corresponding to a lower level language, however the2

approach is similar to the approach used to interpret

the trigger and the filter languages, following a fetch-4

decode-execute cycle [36].

Before it can be interpreted, each language must be6

analyzed by a semantic analyzer to determine its se-

mantic correctness. This analysis checks the validity of8

the values associated to aircraft properties (e.g., an al-

titude cannot be associated to a string), the validity of10

specified values regarding to the associated recording

(e.g., a time window cannot exceed the duration of a12

recording), or the validity of the properties’ scope de-

pending on the context (e.g., a global property cannot14

be assigned a new value as part of a schema parameter).

This section first details how the surveillance Data16

are represented to enable the DSLs’ interpretation. Two

subsections are dedicated respectively to the implemen-18

tation of the filter and trigger languages through pre-

sentations of their interpretation algorithms. Then a20

last subsection details the process from the alteration

scenario to multiple sets of alteration directives to ap-22

ply to a certain recording.

7.1 On Representing Air Surveillance Data24

An ADS-B recording is a collection of ADS-B squitters,

each containing some information (position, velocity, or26

identity) about an aircraft’s state at the time of send-

ing. The ADS-B protocol is designed for the transmis-28

sion of a maximum average of five messages per seconds,

i.e. two for position, two for velocity and one for status.30

ADS-B does not provide any guarantee that the mes-

sages stream will be uninterrupted. Data dropouts can32

occur because of terrain variability or electromagnetic

disturbances, for example. These dropouts can repre-34

sent up to tens of seconds of missing data between two

valid messages.36

We propose to consider a recording as a set of air-

craft rather than a set of surveillance messages during38

the scenario design phase. In that sense, the ATC ex-

pert designs a scenario that targets aircraft with cer-40

tain properties at a certain time, instead of targeting

messages holding certain values. It proves to be more42

natural from a conception point of view. However, the

discontinuity in surveillance data is an issue when de-44

signing aircraft-based scenarios, especially with aircraft

dynamic properties involved (ground speed, altitude,46

etc.). It is only possible to have the value of a property

at the moment of its last transmission, and therefore it48

is necessary to find a means to obtain property values

at any given time, which would allow for a much more50

precise (and correct) filtering and triggering system.

Dynamic properties of aircraft should be formalized52

as continuous functions of property values related to

time, which mimic real-life aircraft physical behaviour54

as closely as possible. A good candidate for this is inter-

polation because, as opposed to regression that takes56

a set of value and calculates a form of relationship

between the values, interpolation only “fills the gap”58

between each pair of consecutive values, therefore en-

suring data preservation. Interpolation is a form of60

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 23

approximation and as such there is a certain share of

uncertainty in the calculated property values (interpo-2

lated between two squitters), i.e. interpolation diver-

gence. While this level of uncertainty would not be ac-4

ceptable for critical applications such as aircraft tra-

jectory prediction to help issue tracks to ATCos, it is6

certainly acceptable in a research context.

We opted for the Akima interpolation [3] as inter-8

polation technique. It is local interpretation technique

i.e., it only uses the neighbouring points for its cal-10

culation, as opposed to global interpolation techniques

that use all known points to compute an approxima-12

tion. Global interpolation is subjected to Runge’s phe-

nomenon i.e. a problem of oscillation at the edges of an14

interval that occurs over a set of equally spaced inter-

polation points [16], which would typically make it im-16

possible to correctly model aircraft flying in a straight

line. Moreover, using just the neighbouring points for18

approximating values naturally leads to faster compu-

tation, and since recordings can be substantial in vol-20

ume (a 30min recording from one sensor may contain

around 150000 squitters), a fast interpolation method22

certainly contributes to the approach’s scalability.

The proposed approach relies on interpolation func-24

tions for the completion of several tasks. First, they are

used as part of the interpretation of filters and triggers.26

Second, they are also used for the generation of aircraft

trajectory (in case of a creation schema), as well as tra-28

jectory modification. Indeed, given a set of way-points

fed to an interpolation function, it can approximate the30

aircraft’s state at all time between the supplied way-

points. Again, in an industrial context, this approach32

would fall short when it comes to realism.

7.2 Aircraft Filtering34

An interpretation algorithm has been created to eval-

uate aircraft filtering expressions. It takes advantage36

of the aircraft interpolation functions, as detailed in

Sect. 7.1, to evaluate expressions throughout the record-38

ing. The algorithm, of O(n) complexity, behaves as most

language interpretation algorithms using the visitor or40

interpreter pattern[21]: it navigates the Abstract Syn-

tax Tree (AST) generated by the language’s parser that42

corresponds to the written filter, and perform one or

more operation when entering and exiting nodes.44

Once an atomic relation node (i.e. a relation oper-

ator, an aircraft property type and a compared value)46

is reached, the node’s content is sent to an evaluation

method, as presented in Algorithm 1, along with the48

identifier of the aircraft under evaluation, a time inter-

val, the temporal operator that contains the relation,50

and the dates of first and last squitters of the aircraft.

Algorithm 1: Filter Expression Evaluation

Algorithm

Input: a id \ aircraft identifier
rel \ Boolean relation operator
prop \ aircraft property type
c val\ compared value
temp \ temporal operator
itvl \ time interval
t start \ date of first squitter
t end \ date of last squitter

Result: true/false
1 t count← t start
2 while t count ≤ t end do
3 prop val← interpolateProp(a id, prop, t count)
4 result← evaluateRelation(prop val, rel, c val)
5 if (temp = F) ∧ result then
6 return true
7 else if (temp = G) ∧ ¬result then
8 return false
9 else

10 t count← t count + itvl
11 if t count > t end ∧ t count < (t end + itvl)

then
12 t count← t end
13 end

14 end

15 end
16 return temp = G

The objective is to use the aircraft’s interpolation func-52

tions to obtain the aircraft’s property values over time,

given a certain time interval. Starting from the air-54

craft’s first squitter’s date, the first step is to obtain the

interpolated value (line 3), then the relation is evalu-56

ated using the interpolated value (line 4). There are two

cases where the evaluation method can return a result58

immediately: either the enclosing temporal operator is

F, in which case the relation only needs to be evalu-60

ated once negatively in order to return true (lines 5-6),

either the enclosing temporal operator is G, in which62

case the method will returns false as soon as the rela-

tion is evaluated positively (line 7-8). If neither of these64

conditions are met, then the timer is advanced (line 10)

depending on the chosen time interval, and the relation66

is reevaluated. if the timer was advanced too much that

it points to a date later than the last squitter’s date,68

then it is reset to the last squitter’s date (lines 11-13).

This ensures that the very last aircraft’s state is taken70

into account in the evaluation. Lastly, if the algorithm

iterated until reaching the last squitter’s date (line 16),72

it shall return false if the enclosing temporal is F (the

relation was never evaluated positively), and it shall re-74

turn true if the enclosing temporal is G (the relation

was always evaluated positively).76

A slight modification of the algorithm is necessary to

correctly evaluates conjunctions enclosed in a F opera-78

24 Alexandre Vernotte et al.

tor and disjunctions enclosed in a G operator. Instead of

returning a Boolean, the algorithm stores dates where2

the relation is evaluated positively. The obtained dates

list is then compared to the dates list of the other rela-4

tion from the conjunction/disjunction. For a conjunc-

tion in an F operator, relations should have identical6

dates list to guarantee that both relation are true at the

same time. For a disjunction in a G operator, the union8

of the dates list should cover the entire time between

the first and last squitter’s date, given the chosen time10

interval.

Choosing the right value for itvl really depends on12

the nature of the filter, the length of the recording, the

degree of precision required, and the computation time14

available. The bigger the time interval, the lower the

precision but the faster the computation.16

7.3 Triggering Events

As for the filter language, an interpretation algorithm of18

O(n2) complexity has been created to evaluate trigger

expressions, which functions in a similar fashion: once20

an atomic node is reached it is sent to an evaluation

method. Algorithm 2 presents how Boolean relations22

are evaluated when the affiliated context is either the

whole RAP or a group of aircraft obtained from evalu-24

ating a filter. The evaluation of a Boolean relation with

this type of context affects all aircraft of the recording.26

Indeed, this method is uncorrelated from individual air-

craft trigger calculation, it is therefore executed only28

once per Boolean relation, prior trigger calculation of

the first aircraft.30

It is considered that the context has already been

parsed and evaluated, resulting in the list of aircraft32

named targets. The objective of this algorithm is, for

each time interval throughout the recording, to evalu-34

ate whether selected aircraft all satisfy a given Boolean

relation (line 2). For a given time interval t count, the36

method iterates the aircraft list as long as the Boolean

relation holds (line 5), i.e. that it is being positively38

evaluated after each iteration. In an iteration, it is first

necessary to check that the aircraft is present in the40

recording at the current time interval (line 7). If that’s

the case, then its property value is interpolated (line42

8), and the Boolean relation is evaluated (line 8). Af-

ter the aircraft iteration ends, the content of the vari-44

able holds (which contains true if all aircraft have been

iterating, or contains falls if the Boolean relation has46

stopped holding) is added to the timeline list (line 11).

Finally, once the whole recording has been evaluated,48

the algorithm returns timeline, a list of Boolean values.

The real time line can be obtained by multiplying each50

Algorithm 2: Trigger Expression Evaluation

Algorithm for Multiple Aircraft

Input: rel \ Boolean relation operator
prop \ aircraft property type
c val\ compared value
targets \ list of aircraft
itvl \ time interval
t start \ start date of recording
t end \ end date of recording

Result: true/false
1 timeline← list()
2 for t count = t start to t end by itvl do
3 holds← true
4 a count← 0
5 while (holds ∧ a count ≤ size(targets)) do
6 ac← targets(a count)
7 if exists(ac, t count) then
8 prop val←

interpolateProp(a id, prop, t count)
9 holds←

evaluateRelation(prop val, rel, c val)

10 end
11 a count + +

12 end
13 addToList(timeline, holds)
14 if t count > t end ∧ t count < (t end + itvl)

then
15 t count← t end
16 end

17 end
18 return timeline

Boolean value’s position in the list with the time inter-

val itvl, and adding the result to the starting date of52

the recording.

7.4 Generation of Alteration Directives from Schemas54

This section details the process of generating alteration

directives from an abstract alteration schema with fil-56

ters, triggers and combinatorial properties.

The computation of alteration directives can be split58

into three activities:

1. Concretization of alteration schema. As shown60

in Sect. 6.5 it is possible to define lists or ranges of

values as variables in a alteration schema. The ratio-62

nale is as follows: if a schema contains one or more

references to a variable that contains a list or range64

of value, that schema has an abstract nature. A form

of concretization is therefore necessary, which con-66

sists of creating concrete instances of this schema,

where each concrete schema is valued with an entity68

from the abstract schema’s list or range. If two or

more lists/ranges are defined in an abstract schema,70

this implies the creation of a concrete schema for

each unique combination of lists values. Therefore,72

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 25

alter all_planes satisfying ‘’filter_altitude’’
from 20 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7600

ICAO#1

ICAO#1: 0 to 1s

ICAO#1: 2 to 4s

ICAO#2

ICAO#2: 0 to 4s

ICAO#3

ICAO#3: 1 to 2s

ICAO#3: 3 to 4s

1

2

3

4

0

1

2

3

4

Time (s)

Concrete alteration
schema

Filter
evaluation

Trigger
evaluation

Alteration
directives

Fig. 12: Obtaining Alteration Directives from a Con-

crete Alteration Schema

if three lists, one of size 2, one of size 4 and one of

size 5, are referenced in an abstract schema, then2

2 ∗ 4 ∗ 5 = 40 instances of the alteration are created.

An example of combination of parameters is shown4

in Figure 13. The concretization activity thus allows

for the potential generation of large sets of concrete6

alteration schemas, translating into a large set of

test cases.8

2. Target Selection. As depicted in Figure 12, tar-

get selection (i.e. aircraft targeted by the scenario)10

is performed for each concrete schema 1 . A list of

aircraft identifiers 2 is obtained by the interpreta-12

tion of filters presented in Sect. 6.3. The resulting

list is used next for the computation of time inter-14

vals for each targeted aircraft.

3. Computation of time intervals. As explained in16

Sect. 2.3, in addition of a targeted aircraft, an alter-

ation directive requires a time window during when18

the alteration shall be performed. This is done by

evaluating alteration triggers, if any, the process of20

which is described in Sect. 6.4. The result is, for each

targeted aircraft, a list of time windows 3 . A time22

window, once associated with its targeted aircraft

(and parameters to modify if relevant), corresponds24

to an alteration directive 4 .

To summarize, variables and triggers make it possi-26

ble to define complex alteration scenarios with ease. On

the one hand, variables factorize the definition of alter-28

ation while, on the other hand, triggers automatically

define high numbers of alteration time windows based30

on constraints. Both these design accelerators shall be

processed in order to convert the alteration scenario32

given as input into a list of alteration directives.

8 DSL Testing34

ATC constitutes one of the most critical infrastructures

on the planet and, as such, it is not possible to demon-36

strate the use of FDI-T in real situation by feeding fal-

sified data to a real ATC system and reporting results38

in a publicly available journal. This could highlight the

fact that some systems, even if thought to be depre-40

cated and not in use anymore, are vulnerable to FDIAs

and it is unclear what such type of information could42

say about current systems. Therefore, we opted instead

for a demonstration of design capabilities, i.e. the abil-44

ity to design scenarios according to the taxonomy, and

a demonstration of productivity, i.e. how cumbersome46

it would be to modify recordings by hand or using ad-

hoc scripts and regular expressions. The goal is thus48

to answer the two research questions that were defined

in Sect. 2.4. We first demonstrate the design capabili-50

ties of the DSL as pointed out in RQ1, and thereafter

its potential of productivity compared to manual and52

script-based alterations, as pointed out in RQ2.

8.1 Demonstration of Design Capabilities54

We propose to validate the expression power of the sce-

nario DSL by demonstrating its ability to generate test56

scenarios according to the taxonomy stated in Sect. 2.2,

and well acknowledged in the literature, in an effort to58

answer RQ1.

An example of Aircraft Flooding Attack is depicted60

in Figure 14. The instruction saturate (line 1) consti-

tutes the Alteration part which, in this example, is a62

multiple message creation.

A saturation is defined by two parameters:64

– AIRCRAFT NUMBER: This parameter deter-

mine the number of ghost aircraft generated for each66

targeted aircraft.

– ICAO: This parameter determine the ICAOs of68

generated ghost aircraft. It can be a simple value, a

list or randomly generated.70

A saturation results in a certain number of ghost

aircraft generated around each (real) targeted aircraft,72

the number of generated aircraft is defined by the pa-

rameter AIRCRAFT NUMBER. The properties of74

ghost aircraft are the same than the real targeted air-

craft, except the latitude and longitude that are auto-76

matically generated in a way to spread ghost aircraft

around the real aircraft, and their ICAO is defined by78

the user according to the parameter ICAO.

Both the Selection and Trigger parts (line 1) are del-80

egated to a filter named ”filter” and a trigger named

26 Alexandre Vernotte et al.

let $start_times = { 10, 20 },
let $squawks = { 7600, 7700 },
let $filters = { ‘’filter_altitude’’, ‘’filter_icao’’ },

alter all_planes satisfying $filters
from $start_times until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = $squawks

alter all_planes satisfaying ‘’filter_altitude’’
from 10 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7600

alter all_planes satisfying ‘’filter_icao’’
from 10 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7600

alter all_planes satisfying ‘’filter_altitude’’
from 20 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7600

alter all_planes satisfying ‘’filter_icao’’
from 20 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7600

alter all_planes satisfying ‘’filter_altitude’’
from 10 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7700

alter all_planes satisfying ‘’filter_icao’’
from 10 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7700

alter all_planes satisfying ‘’filter_altitude’’
from 20 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7700

alter all_planes satisfying ‘’filter_icao’’
from 20 seconds until 45 seconds
triggered_by ‘’trigger_groundspeed’’
with_values SQUAWK = 7700

Fig. 13: From an Abstract Schema to Concrete Schemas

1 saturate all planes satisfying ”filter”
2 triggered by ”trigger”
3 from 20 seconds until 25 seconds
4 with values random ICAO and
5 AIRCRAFT NUMBER = 20
6 assert ”Multiple Fake tracks detected”

Fig. 14: Example of Aircraft Flooding

”trigger”. Saturation should take place from 20 sec-

onds to 25 seconds according to the start of the input2

recording. The parameters part (line 4), specifies that

fake aircraft should have a randomly generated ICAO.4

Finally, the Assertion part verifies whether the ATC

system return a message that multiple fake aircraft have6

been detected.

1 alter all planes satisfying ”filt1”
2 from 120 seconds until 140 seconds
3 with values SQUAWK = 7700
4 assert ”False Alarm detected”

Fig. 15: Example of False Alarm

Figure 15 illustrates how to create a False Alarm8

scenario using FDI-T. It relies on an alter alteration

that solely targets aircraft selected with the filter ”filt1 ”10

(line 1), which occurs between 120 and 140 seconds af-

ter the start of the recording. During that time inter-12

val, the SQUAWK of targeted aircraft is set to 7700,

meaning that these aircraft are in emergency mode. A14

built-in function of the alteration engine consists of set-

ting the ALERT bit to one in the first altered message16

of each aircraft, as this notifies the ground station that

the aircraft’s SQUAWK code has just been changed.18

1 hide all planes triggered by ”trigg”
2 from 45 seconds until 60 seconds
3 assert ”Suspicious aircraft disappearance:”

Fig. 16: Example of Aircraft Disappearance

An aircraft disappearance attack can be achieved

with scenarios as the one presented in Figure 16. In this20

example, all aircraft will be hidden during time window

45 to 60 seconds and according to trigger trigg. The22

ATC System should conclude of a suspicious aircraft

disappearance and look for another source of surveil-24

lance data while alerting the ATCo that ADS-B data

is being tempered with.26

Figure 17 shows an example of a Ghost Aircraft In-

jection scenario. The instruction create (line 1) con-28

stitutes the Alteration part which, in this example, is

a message creation. The Time Window part (line 1)30

is hard-coded: a plane should be created from 20 sec-

onds to 320 seconds according to the start of the input32

recording. The parameters part contains six parameters

to set (lines 2-7), namely ICAO, ground speed, call sign,34

latitude, longitude and altitude. The next part (lines 8-

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 27

1 create plane from 20 seconds until 320 seconds
2 with values ICAO = ”39AC47” and
3 CALLSIGN = ”AFR3984” and
4 GROUNDSPEED = 102.2 and
5 LATITUDE = 2.57684 and
6 LONGITUDE = 47.49875 and
7 ALTITUDE = 26598
8 with waypoints [
9 (2.476,47.69) with altitude 29843 at 72 seconds ,

10 (2.39,47.93) with altitude 33879 at 215 seconds ,
11 (2.319,48.01) with altitude 38743 at 320 seconds]
12 assert ”Fake aircraft detected”

Fig. 17: Example of a Ghost Aircraft Injection

11) concerns the trajectory that the fake aircraft should

adopt, with the specification of three waypoints, giving2

coordinates and altitudes at 72, 215, and 320 seconds.

Finally, the Assertion part is string based. It means4

that, for the test case to pass, the ATC system should

return a message claiming it detected a fake aircraft.6

1 alter plane satisfying ”filt2”
2 from 100 seconds until 200 seconds
3 with waypoints [
4 (29.11,14.21) with altitude 33902 at 110 seconds ,
5 (29.235,14.3) with altitude 33979 at 130 seconds ,
6 (29.29,14.35) with altitude 33954 at 150 seconds,
7 (29.29,14.35) with altitude 33954 at 170 seconds]
8 assert ”Abnormal trajectory detected”

Fig. 18: Example of a Trajectory Modification

An example of a Trajectory Modification scenario is

illustrated in Figure 18. It relies on an alter alteration8

that targets one aircraft selected with the filter ”filt1 ”

(line 1), which occurs between 100 and 200 seconds af-10

ter the start of the recording (line 2). The modified

trajectory consists of four waypoints (lines 3-7) provid-12

ing coordinates and altitudes at 110, 130, 150, and 170

seconds. In this case, starting at second 100, the new14

trajectory will diverge from the initial one in order to

rally the first waypoint by second 110. Similarly, be-16

tween seconds 170 and 200, the generated trajectory

will attempt to rally the initial trajectory in order to18

put back the aircraft in its normal state by second 200.

Finally, the Assertion part is string based. It means20

that, for the test case to pass, the ATC system should

return a message claiming it detected an abnormal air-22

craft trajectory.

As a reminder, the first research question that we24

initially defined in Sect. 2.4 is as follows:

RQ1 To what extent is it possible to design26

alteration scenarios in order to cover the taxon-

omy of attack scenarios?28

Based of the above demonstration, it is possible to

confidently answer positively to RQ1. All the scenarios30

from the taxonomy can be effectively designed using

the DSL, making it a suitable approach for evaluating32

the resilience of ATC systems against FDIAs. What

remains to be demonstrated is whether the DSL accel-34

erates the design of alteration scenarios.

8.2 Facilitating FDIA Scenarios Creation and36

Reducing Test Design Effort - Evaluation

In order to provide a meaningful answer to RQ2, this38

section shows how cumbersome it can be to modify

recordings without the use of the proposed DSL, i.e.40

directly crafting an XML file with alteration directives

to be fed to the generation module.42

In other words, the goal of this experimentation is to

demonstrate how filters, triggers, and the combinatorial44

capabilities of the DSL translate in terms of alteration

directives.46

The objective is to demonstrate the DSL’s capabil-

ities:48

1. to generate directives based on aircraft properties;

2. to generate large amounts of directives automati-50

cally;

3. to generate a whole test suite in one go by taking52

advantage of list of values in alteration schemas.

We detail below the FDIA Scenario components that54

demonstrates the productivity capabilities of the DSL.

56

Initial Recording

The demonstration relies on a 17 minutes and 45 sec-58

onds recording of April 19, 2019, between 15:30 and

15:47, which was received by a powerful radar sensor in60

Luxembourg and obtained through the OpenSky Net-

work. The recording contains 76353 squitters and fea-62

tures 218 aircraft.

Filters64

There are three filters for this scenario:

filt lowalt : eval F(GROUNDSPEED > 350) and66

G(ALTITUDE < 34000)

This filter specifies that aircraft should have a ground68

speed superior to 350 nautical miles at least once, while

their altitude should always be lower than 34000 feet.70

64 aircraft satisfy this filter.

filt lat : eval G(LATITUDE < 49.5)72

This filter helps identify aircraft always flying at a

latitude that is under 49.5. 85 aircraft satisfy this filter.74

filt prism: eval F(inside prism with vertices (48,

7.7), (50.31,6.35), (49.18,4.22) and altitude from76

1000 to 35000)

This filter specifies that aircraft should fly at least78

once inside a triangle above Luxembourg while being

at an altitude between 1000 and 35000 feet. 30 aircraft80

28 Alexandre Vernotte et al.

satisfy this filter.

2

Triggers

There are also three triggers needed for this scenario:4

trig vertrate: eval when(AIRCRAFT.VERT RATE

>= 0.15)6

This trigger marks aircraft to be altered when their

vertical rate is equal or higher to 0.15. It results in8

820 time intervals in total, with some aircraft without

any time interval (their vertical rate is never within10

the specified range), and for instance aircraft SWR97X

with 26 time intervals throughout its existence.12

trig altgs: eval when(RAP.ALTITUDE < 41001)

and until(AIRCRAFT.GROUNDSPEED > 350)14

This trigger marks aircraft to be altered when the

whole RAP is flying under 41001 feet and until their16

ground speed increases over 350 nautical miles. It re-

sults in 254 intervals in total, although all aircraft have18

almost identical intervals.

trig prism: eval as soon as(inside prism with vertices20

(48,7.7), (50.31,6.35), (49.18,4.22) and altitude

from 1000 to 35000)22

This trigger marks aircraft to be altered as soon as

they enter the same triangle as defined in filter filt prism.24

It results in 30 intervals, with 0 or 1 interval per aircraft.

26

Schemas

There are two alteration schemas.28

1 let $start = {30,200,254,1065}
2 let $squawks = {7500,7600,7700}
3 alter all planes satisfying ”filt lat”
4 at $start seconds triggered by”trig vertrate”
5 with values SQUAWK = $squawks
6 assert ”False alarm detected”

Fig. 19: First Schema: False Alarm Attack

The first schema, as presented in Figure 19, repre-

sents a False Alarm attack. It has two variables, a four30

integers list for time windows and a three integers list

for squawk codes. This makes for twelve combinations32

of values and therefore twelve concretized schemas will

be created.34

1 let $filters = {”filt lowalt”,”filt prism”}
2 let $triggers = {”trig altgs”,”trig prism”}
3 hide all planes satisfying $filters
4 at 0 seconds triggered by $triggers
5 assert ”Aircraft Disappearance detected”

Fig. 20: Second Schema: Aircraft Disappearance Attack

The second schema simulates an aircraft disappear-

ance attack (the goal is to hide certain aircraft at cer-36

tain time), as show in Figure 20. It has two variables, a

list of two filters and a list of two triggers, making for38

four concretized schemas.

40

Scenario

The scenario is a combination between the both pre-42

vious schemas for the generation of test suites. The

false alarm schema leads to twelve concretized schemas,44

while the aircraft disappearance schema leads to four

concretized schemas, therefore the resulting test suite46

will be composed of 12 ∗ 4 = 48 test cases.

48

Results

Generating one test case meant applying between 9 to50

346 alteration directives to the recording, for an aver-

age of 233.25 alteration directives per test case, 211.7552

of which are modifications and 54.75 are deletions. Di-

rectives had a time window of alteration that ranged54

from 160 milliseconds to 17 minutes. All in all, the gen-

eration of the whole test suite involved the performing56

of 11196 alteration directives, including 9720 modifica-

tions and 1476 deletions. This is clearly not feasible if58

one had to manually specify each alteration directive.

The goal of this subsection is to answer the following60

research question:

RQ2 To what extent the use of a DSL can fa-62

cilitate the creation of FDIA’s test scenarios and

reduce the effort to create such test scenarios?64

Given the number of alteration directives one would

have to design in order to create the above test scenario,66

it is safe to say that it would not be possible without the

proposed DSL. Therefore, we can also answer positively68

to RQ2, as not only test productivity is noticeably aug-

mented using the DSL, but this approach is the only70

alternative for certain types of scenarios.

9 Conclusion and Future Work72

In the context of improving cyber security in air surveil-

lance communications, and especially with regards to74

the ADS-B protocol, this paper describes a novel test

design approach to be part of an existing FDIA testing76

framework dedicated to ATC systems, called FDI-T.

More precisely, the main contribution concerns the test78

design activity, in the form of a DSL of which the gram-

mar, specificities and capabilities are extensively pre-80

sented in this paper. The two objectives of the proposed

approach are, first, to cover the taxonomy of attacks as82

described in the literature on multiple occasions, and

second, to sensitively improve test design productivity84

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 29

as compared to hand-made alterations. We show how

both objectives have been reached by successfully de-2

signing all classes of scenarios from the taxonomy using

the DSL and by relying on a running example to demon-4

strates productivity gains when compared to manual

and script-aided alterations.6

The most imminent future work is to study the

genericity potential that brings a DSL to the FDI-T8

framework, with the objective of porting it to other do-

mains of application. A logical first portage would be10

toward the Maritime domain. The AIS protocol is ex-

tremely similar to the ADS-B protocol in many aspects12

(lack of security included), vessel surveillance resembles

air traffic surveillance, and extending the approach to14

the Maritime domain makes sense.

Another future work concerns the ability to automate16

the design of meaningful and relevant alteration sce-

narios. This could be achieved using machine learning18

techniques, of which the best candidate to date based

on preliminary research is Generative Adversarial Net-20

work (GAN). A discriminator network would be trained

to detect FDIAs generated by a generative network,22

which itself would be trained to generate FDIAs that

are stealthy enough to not be spotted by the discrim-24

inant model. Efforts have been concentrated so far on

representing the surveillance data into features, while26

the first round of experimentation shall start in the near

future.28

Acknowledgements This work is part of an ongoing re-
search initiative toward the generation of FDIA test scenarios30

partially supported by the GeLeaD ANR ASTRID project
& the EIPHI Graduate school (contract “ANR-17-EURE-32

0002”).

References34

1. 51, E.W.G.: Safety, performance and interoper-
ability requirements document for ADS-B/NRA36

application. Tech. rep., The European Organisa-
tion for Civil Aviation Equipment (2005). URL38

http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.129.6059&rep=rep1&type=pdf40

2. Akerman, S., Habler, E., Shabtai, A.: VizADS-B: Analyz-
ing sequences of ADS-B images using explainable convo-42

lutional LSTM encoder-decoder to detect cyber attacks.
arXiv preprint arXiv:1906.07921 (2019)44

3. Akima, H.: A new method of interpolation and smooth
curve fitting based on local procedures 17, 589–60246

(1970). DOI 10.1145/321607.321609
4. Asia, I.C.A.O., (ICAO), P.O.: Guidance material48

on issues to be considered in atc multi-sensor fu-
sion processing including the integration of ADS-B50

data. Tech. rep., APANPIRG/19 (2008). URL
https://www.icao.int/APAC/Documents/edocs/cns/52

grpt_atcmulti_adsbdata.pdf
5. Baader, F., Horrocks, I., Sattler, U.: Description logics.54

In: Handbook on ontologies, pp. 3–28. Springer (2004)

6. Barreto, A.B., Hieb, M., Yano, E.: Developing a complex56

simulation environment for evaluating cyber attacks. In:
Interservice/Industry Training, Simulation, and Educa-58

tion Conference (I/ITSEC), vol. 12248, pp. 1–9 (2012)
7. Belta, C., Yordanov, B., Aydin Gol, E.: Temporal Logics60

and Automata, pp. 27–38. Springer International Pub-
lishing, Cham (2017)62

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic
web. Scientific american 284(5), 34–43 (2001)64

9. Brooker, P.: Sesar and nextgen: investing in new
paradigms. The Journal of Navigation 61(2), 195–20866

(2008)
10. Ceh, I., Crepinšek, M., Kosar, T., Mernik, M.: Ontology68

driven development of domain-specific languages. Com-
puter Science and Information Systems 8(2), 317–34270

(2011)
11. Chan, Y.T., Ho, K.: A simple and efficient estimator for72

hyperbolic location. IEEE Transactions on signal pro-
cessing 42(8), 1905–1915 (1994)74

12. Coplien, J., Hoffman, D., Weiss, D.: Commonality and
variability in software engineering. IEEE Software 15(6),76

37–45 (1998)
13. Cretin, A., Legeard, B., Peureux, F., Vernotte, A.: In-78

creasing the resilience of ATC systems against false data
injection attacks using DSL-based testing. In: Proceed-80

ings of the 8th International Conference on Research in
Air Transportation (ICRAT’18), Doctoral Symposium,82

pp. 1–4. Barcelona, Spain (2018)
14. Cretin, A., Vernotte, A., Chevrot, A., Peureux, F., Leg-84

eard, B.: Test data generation for false data injection at-
tack testing in air traffic surveillance. In: 4th Interna-86

tional Workshop on Testing Extra-Functional Properties
and Quality Characteristics of Software Systems (ITEQS88

2020). Porto, Portugal (2020)
15. Dan, G., Sandberg, H.: Stealth attacks and protection90

schemes for state estimators in power systems. In:
Smart Grid Communications (SmartGridComm), 201092

First IEEE International Conference on, pp. 214–219.
IEEE (2010)94

16. Epperson, J.F.: On the runge example. The American
Mathematical Monthly 94(4), 329–341 (1987)96

17. EUROCONTROL: D23 - security assessment for ADS-B
ground system - 3rd iteration 00.01.02. Tech. rep., Sesar98

Joint Undertaking (SJU) (2014)
18. Frakes, W., Prieto, R., Fox, C., et al.: Dare: Domain anal-100

ysis and reuse environment. Annals of software engineer-
ing 5(1), 125–141 (1998)102

19. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang,
Z.: Hermit: an owl 2 reasoner. Journal of Automated104

Reasoning 53(3), 245–269 (2014)
20. Habler, E., Shabtai, A.: Using lstm encoder-decoder al-106

gorithm for detecting anomalous ADS-B messages. Com-
puters & Security 78, 155–173 (2018)108

21. Hills, M., Klint, P., van der Storm, T., Vinju, J.: A case of
visitor versus interpreter pattern. In: J. Bishop, A. Valle-110

cillo (eds.) Objects, Models, Components, Patterns, pp.
228–243. Springer Berlin Heidelberg, Berlin, Heidelberg112

(2011)
22. Jafer, S., Chhaya, B., Durak, U.: Owl ontology to ecore114

metamodel transformation for designing a domain spe-
cific language to develop aviation scenarios. In: Proceed-116

ings of the symposium on model-driven approaches for
simulation engineering, pp. 1–11 (2017)118

23. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peter-
son, A.S.: Feature-oriented domain analysis (foda) feasi-120

bility study. Tech. rep., Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst (1990)122

30 Alexandre Vernotte et al.

24. Kosar, T., Bohra, S., Mernik, M.: Domain-specific
languages: A systematic mapping study. Infor-2

mation and Software Technology 71, 77 – 91
(2016). DOI https://doi.org/10.1016/j.infsof.2015.11.4

001. URL http://www.sciencedirect.com/science/

article/pii/S09505849150018586

25. Lassila, O., Swick, R.R., et al.: Resource description
framework (rdf) model and syntax specification (1998)8

26. Lisboa, L.B., Garcia, V.C., Lucrédio, D., de Almeida,
E.S., de Lemos Meira, S.R., de Mattos Fortes, R.P.: A10

systematic review of domain analysis tools. Information
and Software Technology 52(1), 1–13 (2010)12

27. Liu, Y., Ning, P., Reiter, M.K.: False data injection at-
tacks against state estimation in electric power grids.14

ACM Transactions on Information and System Security
(TISSEC) 14(1), 13 (2011)16

28. Ma, M.: Resilience against false data injection attack in
wireless sensor networks. In: Handbook of Research on18

Wireless Security, pp. 628–635. IGI Global (2008)
29. Maciel, D., Paiva, A.C., da Silva, A.R.: From require-20

ments to automated acceptance tests of interactive apps:
An integrated model-based testing approach. In: Pro-22

ceedings of the 14th International Conference on Evalu-
ation of Novel Approaches to Software Engineering, pp.24

265–272. SCITEPRESS-Science and Technology Publi-
cations, Lda (2019)26

30. Manesh, M.R., Kaabouch, N.: Analysis of vulnerabilities,
attacks, countermeasures and overall risk of the auto-28

matic dependent surveillance-broadcast (ADS-B) system.
International Journal of Critical Infrastructure Protec-30

tion 19, 16 – 31 (2017). DOI https://doi.org/10.1016/j.
ijcip.2017.10.002. URL http://www.sciencedirect.com/32

science/article/pii/S1874548217300446
31. Manesh, M.R., Mullins, M., Foerster, K., Kaabouch, N.:34

A preliminary effort toward investigating the impacts
of ADS-B message injection attack. In: 2018 IEEE36

Aerospace Conference, pp. 1–6. IEEE (2018)
32. Martinovic, I., Strohmeier, M.: Security of ADS-B: State38

of the art and beyond. DCS (2013)
33. McGuinness, D.L., Van Harmelen, F., et al.: Owl web on-40

tology language overview. W3C recommendation 10(10),
2004 (2004)42

34. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for de-
velopment, test and validation of automated vehicles.44

In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
1821–1827. IEEE (2018)46

35. Mernik, M., Heering, J., Sloane, A.M.: When and how to
develop domain-specific languages. ACM Comput. Surv.48

37(4), 316–344 (2005). DOI 10.1145/1118890.1118892.
URL https://doi.org/10.1145/1118890.111889250

36. Mernik, M., Heering, J., Sloane, A.M.: When and how
to develop domain-specific languages. ACM computing52

surveys (CSUR) 37(4), 316–344 (2005)
37. Mernik, M., Hrnčič, D., Bryant, B.R., Javed, F.: Ap-54

plications of Grammatical Inference in Software Engi-
neering: Domain Specific Language Development, vol. 2,56

pp. 421–457. Imperial College Press (2010). DOI
10.1142/9781848165458 000858

38. Paielli, R.A.: Automated generation of air traffic encoun-
ters for testing conflict-resolution software. Journal of60

Aerospace Information Systems 10(5), 209–217 (2013)
39. Pakin, S.: The design and implementation of a domain-62

specific language for network performance testing. IEEE
Transactions on Parallel and Distributed Systems 18(10),64

1436–1449 (2007)
40. Pereira, M.J.a.V., Fonseca, J.a., Henriques, P.R.: Onto-66

logical approach for dsl development. Comput. Lang.

Syst. Struct. 45(C), 35–52 (2016). DOI 10.1016/j.cl.2015.68

12.004. URL https://doi.org/10.1016/j.cl.2015.12.

00470

41. Queiroz, R., Berger, T., Czarnecki, K.: Geoscenario: An
open dsl for autonomous driving scenario representation.72

In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp.
287–294. IEEE (2019)74

42. Rui, L., Ho, K.: Elliptic localization: Performance study
and optimum receiver placement. IEEE Transactions on76

Signal Processing 62(18), 4673–4688 (2014)
43. Savvides, A., Park, H., Srivastava, M.B.: The bits and78

flops of the n-hop multilateration primitive for node lo-
calization problems. In: Proceedings of the 1st ACM in-80

ternational workshop on Wireless sensor networks and
applications, pp. 112–121. ACM (2002)82

44. Schäfer, M., Lenders, V., Martinovic, I.: Experimental
analysis of attacks on next generation air traffic commu-84

nication. In: International Conference on Applied Cryp-
tography and Network Security, pp. 253–271. Springer86

(2013)
45. Skolnik, M.I.: Radar handbook, 3rd edition (2008)88

46. Smith, A., Cassell, R., Breen, T., Hulstrom, R., Evers,
C.: Methods to provide system-wide ADS-B back-up, val-90

idation and security. In: 25th Digital Avionics Systems
Conference, pp. 1–7. IEEE (2006)92

47. Strohmeier, M.: Security in next generation air traffic
communication networks. Ph.D. thesis, Oxford Univer-94

sity (2016)
48. Strohmeier, M., Schäfer, M., Pinheiro, R., Lenders, V.,96

Martinovic, I.: On perception and reality in wireless
air traffic communications security. IEEE Transactions98

on Intelligent Transportation Systems 18(6), 1338–1357
(2017). DOI 10.1109/TITS.2016.2612584100

49. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge en-
gineering: principles and methods. Data & knowledge102

engineering 25(1-2), 161–197 (1998)
50. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the104

domain analysis of domain-specific languages. In: Inter-
national Conference on Model Driven Engineering Lan-106

guages and Systems, pp. 332–342. Springer (2008)
51. Taylor, R.N., Tracz, W., Coglianese, L.: Software de-108

velopment using domain-specific software architectures:
Cdrl a011—a curriculum module in the sei style. ACM110

SIGSOFT Software Engineering Notes 20(5), 27–38
(1995)112

52. Trim, R.: Mode s: an introduction and overview (sec-
ondary surveillance radar). Electronics & Communica-114

tion Engineering Journal 2(2), 53–59 (1990)
53. Tsarkov, D., Horrocks, I.: Fact++ description logic rea-116

soner: System description. In: International joint con-
ference on automated reasoning, pp. 292–297. Springer118

(2006)
54. Van Deursen, A., Klint, P.: Domain-specific language de-120

sign requires feature descriptions. Journal of Computing
and Information Technology 10(1), 1–17 (2002)122

55. Wesson, K.D., Humphreys, T.E., Evans, B.L.: Can cryp-
tography secure next generation air traffic surveillance?124

IEEE Security and Privacy Magazine (2014)
56. Xie, L., Mo, Y., Sinopoli, B.: False data injection attacks126

in electricity markets. In: Smart Grid Communications
(SmartGridComm), First International Conference on,128

pp. 226–231. IEEE (2010)
57. Zhang, R., Liu, G., Liu, J., Nees, J.P.: Analysis of mes-130

sage attacks in aviation datalink communication. IEEE
Access (2017)132

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 31

A - Ontology Inheritance Tree

All the entities that were identified and modelled into the2

DSL’s ontology during the domain analysis activity (see Sec-
tion 5) are depicted in Figures 21, 22 and 23. More impor-4

tantly, the figures show the inheritance relationships between
entities. Note that, as there is a unique Thing entity from6

which all other entities directly or indirectly inherit from
(similarly to the Object class in Java), the tree was originally8

depicted in a single figure. But for obvious space reasons, that
figure was eventually split into three.10

Fig. 21: Ontology Inheritance Tree 1/3

32 Alexandre Vernotte et al.

Fig. 22: Ontology Inheritance Tree 2/3

A Domain Specific Language to Design False Data Injection Tests for Air Traffic Control Systems 33

Fig. 23: Ontology Inheritance Tree 3/3

