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Béatrice Bérard · Olga Kouchnarenko ·
John Mullins · Mathieu Sassolas

Received: date / Accepted: date

Abstract On a partially observed system, a secret ϕ is opaque if an observer
cannot ascertain that its trace belongs to ϕ. We consider specifications given
as Constraint Markov Chains (CMC), which are underspecified Markov chains
where probabilities on edges are required to belong to some set. The nonde-
terminism is resolved by a scheduler, and opacity on this model is defined as
a worst case measure over all implementations obtained by scheduling. This
measures the information obtained by a passive observer when the system is
controlled by the smartest scheduler in coalition with the observer. When re-
stricting to the subclass of Linear CMC, we compute (or approximate) this
measure and prove that refinement of a specification can only improve opacity.

Keywords Opacity · Markov models · Specification · Refinement

Partially supported by a grant from Coopération France-Québec, Service Coopération et
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Sorbonne Université, UPMC Paris 06, LIP6, CNRS UMR 7606, Paris, France
E-mail: beatrice.berard@lip6.fr

Olga Kouchnarenko
Univ. Bourgogne Franche-Comté, FEMTO-ST, CNRS UMR 6174, Besançon, France
E-mail: olga.kouchnarenko@femto-st.fr

John Mullins
Department of Computer & Software Engineering, École Polytechnique de Montréal,
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1 Introduction

Context and motivation. When modeling complex systems, a top-down ap-
proach allows gradually specifying various system requirements, while pre-
serving some behavioral properties, like safety, reachability, and liveness under
some conditions.

Security requirements, which are not behavioral ones [16], may not fare well
under refinement, unless tailored specially to do so, as in [1]. Several known
security properties such as noninference or anonymity can be encoded in the
framework of opacity [19,12,1]. In this context, an external observer tries to
discover whether a predicate (given as an ω-regular set) holds by partially
observing the system through a projection of its actions. A system is opaque
if the attacker fails to discover this information. In the possibilistic setting, a
violation of opacity captures the existence of at least one perfect leak.

In probabilistic models like Discrete Time Markov Chains (DTMCs), nat-
urally random events such as faults or message transmission failure, can be
taken into account. Opacity was extended in this setting [22,8,5] to provide
various measures of what is disclosed by observation. In the present work,
we focus on the particular measure giving the probability of the set of runs
violating opacity (hence violation occurs in a non probabilistic way).

We illustrate this measure on the two systems depicted in Fig. 1(a)-(b),
which are DTMCs with the addition of labels on states (indicated inside).
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Fig. 1 Probabilistic systems A1 or A2 implementing underspecified system S.
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We assume that the occurrence of b must be kept secret and that all labels
except b are observable. In this case, the only runs disclosing the secret are
those observed by adω, since every such run betrays the occurrence of b. The
probability of disclosure is 1/4 in A1 while it is 3/4 in A2, hence A1 is more
secure than A2. Our aim is to establish sufficient conditions on systems like
A1 and A2, that can be compared, for one of them to be more secure than the
other.

In the process of system modeling, it is common practice to use underspec-
ified models as first steps of specification. A first approach is to consider sub-
stochastic models where transition probabilities need not sum up to 1. In this
framework, the notions of satisfaction and simulation were extensively stud-
ied in [3]. The second approach is to introduce non-determinism in the model
to describe environment choices [18,23,14,13,4,5,17]. These models have also
been studied in relation to the refinement process [18], with the particular
case of Interval Markov Chains (IMCs) where the transitions are equipped
with probability bounds in the form of intervals, as done in Fig. 1(c). For ex-
ample, both systems of Fig. 1(a)-(b) could have been derived from the single
underspecified system S of Fig. 1(c), with the same structure but imprecise
probabilities.

Unfortunately, while closure under conjunction is a nice feature for spec-
ification formalisms, IMCs do not have this property. This is shown in [13],
where Constraint Markov Chains (CMCs), first introduced in [18], are con-
sidered for the specification of finite state processes, and proved to provide a
more robust model. In a CMC, the family of intervals associated with a state
is replaced by a given (possibly infinite) set of distributions.

Scheduling is an effective way to obtain implementations of a CMC: at
each step, a scheduler provides a distribution belonging to the given set, thus
producing a (possibly infinite) DTMC on-the-fly. In the case of opacity, a
scheduler represents a strategy of an agent inside the system, trying to disclose
as much information as possible to a passive observer. Several works used
schedulers to evaluate disclosure: [5] in the context of (fully specified) Markov
Decision Processes and [6] for IMCs. A simpler way to define implementations
of CMCs, which corresponds to considering only memoryless schedulers, would
be to choose a priori a distribution for each state. This was done for IMC model
checking in [14,4], where it is called the Uncertain Markov Chain semantics.

Contributions. We extend the work in [6], investigating opacity for CMCs. As
before, disclosure is defined in the worst case scenario, as the supremum of the
disclosure for all scheduled implementations. This measures the information
obtained by a passive observer when the system is controlled by the smartest
scheduler in coalition with the observer.

However, without an explicit description of the given probability sets, al-
gorithmic questions cannot be solved on CMCs. Therefore, we consider here
a subclass called Linear Constraint Markov Chains (LCMCs), where the set
of distributions associated with a state is defined by linear inequalities. This
class is closed under conjunction and contains IMCs.
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We first show how to compute the disclosure for a subclass of LCMCs,
where no transition can be completely blocked by the scheduler. In the general
case, we give an overapproximation for bounded memory schedulers. We then
establish monotonicity of the disclosure for LCMCs: refining an LCMC can
only improve the opacity of all implementations obtained by scheduling.

Organization of the paper. After short preliminaries on probabilistic transition
systems and opacity (Section 2), we recall in Section 3 the background on
Constraint Markov Chains, with the associated refinement relations, and we
define probabilistic disclosure in this contex. We show how to compute this
measure for a restricted case of LCMCs in Section 4, with an approximation
scheme for the general case. Finally, we prove monotonicity of opacity under
refinement in Section 5.

2 Probabilistic transition systems and opacity

The set of natural numbers is denoted by N and the set of rational numbers by
Q. The composition of relations R2 and R1 is defined by R2 ◦ R1 = {(x, z) |
∃y, (x, y) ∈ R1 ∧ (y, z) ∈ R2}. Given a finite alphabet Σ, we denote by Σ∗

(resp. Σω) the set of finite (resp. infinite) words over Σ, with Σ∞ = Σ∗ ∪Σω

and ε the empty word. We denote by |w| the length of word w in N ∪ {+∞}
with the same notation |E| for the cardinality of a set E.

Given a countable set Z, a discrete distribution is a mapping µ : Z → [0, 1]
such that

∑
z∈Z µ(z) = 1. The support of µ is supp(µ) = {z ∈ Z | µ(z) >

0}. The set of all discrete distributions on Z is denoted by Dist(Z). When
dealing with a joint distribution µ on domain Z1 × Z2, we write µ(Y1, Y2) =∑
y1∈Y1,y2∈Y2

µ(y1, y2) for Y1 ⊆ Z1 and Y2 ⊆ Z2, and we use as shorthands
µ(y1, Y2) = µ({y1}, Y2) and µ(Y1, y2) = µ(Y1, {y2}).

2.1 Probabilistic Labeled Transition Systems and their languages

The secret to be protected from disclosure must be a measurable set, and
a general way to describe it is to use an ω-regular set, since such sets are
measurable [25] with robust closure properties. Among the various finite au-
tomata accepting those sets of infinite words, Deterministic Parity Automata
(DPA) [20] are well suited for the combination with probabilistic models: while
deterministic, they can describe any ω-regular language (which is not the case
with Büchi automata for instance) and they can be complemented at no cost,
which is useful in the disclosure computation process.

Definition 1 (Deterministic Parity Automaton) A deterministic parity
automaton (DPA) over finite alphabet Σ is a tuple A = (Q, q0, θ, F ), where Q
is a finite set of states, q0 ∈ Q is an initial state, θ : Q×Σ → Q is a transition
function, and F is a mapping from Q to a finite set of colors {1, . . . , k}.
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q0 q1 q2
a b

Σ

Fig. 2 A DPA for ϕb = abΣω with F (q0) = F (q2) = 1 and F (q2) = 2.

An example used in the sequel can be seen in Fig. 2. A run of A on a
word w = a1a2 · · · ∈ Σω is an infinite sequence ρ = q0q1 · · · ∈ Qω such that
for all i ≥ 0, qi+1 = θ(qi, ai+1). For such a run ρ, we define Inf(ρ) as the
set of states appearing infinitely often in the sequence. The run is accepting
if min{F (q) | q ∈ Inf(ρ)} is even. In this case, the corresponding word is
accepted by A and L(A) is the subset of Σω of words accepted by A. A subset
K of Σω is ω-regular if there is an automaton A such that K = L(A).

Implementations are given by Probabilistic Transition Systems (PTSs).
They are classical Discrete Time Markov Chains, with the addition of state
labeling [3], restricting the processes of [18] with a countable set of states.

Definition 2 (Probabilistic Transition Systems) A probabilistic transi-
tion system (PTS) over alphabet Σ is a tuple A = (Q, qinit, ∆, L) where Q is
a countable set of states, with qinit ∈ Q the initial state, ∆ : Q→ Dist(Q) is
a mapping associating with any state q ∈ Q a distribution ∆(q) over Q, with
finite support, and L : Q→ Σ is the labeling function on states.

PTSs can be seen as Discrete Time Markov Chains where the states are
equipped with labels in Σ. While our presentation uses an alphabet Σ of labels
for simplicity, it is always possible as done in [18,13] to consider the case where
Σ = 2A for a set A of atomic propositions.

A (finite or infinite) run of A starting from state q ∈ Q is a sequence of
states ρ = q0q1q2 . . . such that q0 = q and for each i, 0 ≤ i < |ρ|, ∆(qi)(qi+1) >
0. When the run is finite ρ = q0q1 . . . qn, we note qn = lst(ρ). We denote by
Runsq(A) the set of infinite runs starting from q and we set Runs(A) =
Runsqinit(A), and similarly for finite runs FRunsq(A) the set of finite runs
starting from q and FRuns(A) = FRunsqinit(A). The mapping tr associates
with any run ρ its trace tr(ρ) = L(q0)L(q1) . . . ∈ Σ∞ and we define Tr(A) =
{tr(ρ) | ρ ∈ Runs(A)} and FTr(A) = {tr(ρ) | ρ ∈ FRuns(A)} respectively the
set of infinite and finite traces of A.

Recall [10] that a probability measure PA can be defined on Runs(A):
measurable sets are generated by cones, where the cone Cρ associated with a
finite run ρ = q0q1 . . . qn is the subset of infinite runs in Runs(A) having ρ as

prefix. The probability of Cρ is PA(Cρ) =
∏n−1
i=0 ∆(qi)(qi+1). The cone of a

word w ∈ Σ∗ is defined by Cw =
⋃
ρ∈tr−1(w) Cρ.

2.2 Probabilistic Opacity

The original definition of opacity was given in [12] for (non probabilistic)
transition systems, w.r.t. some observation function O and some predicate ϕ
(the secret) on the runs of the system.
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We consider an observation function defined as a morphism O : Σ∞ →
Σ∞o , based on a mapping π : Σ → Σo ∪ {ε} for a finite alphabet Σo. For
instance, if Σ = 2A for a set A of atomic propositions, we can define a subset
Ao of observable propositions. Then, by setting Au = A \Ao, Σo = 2Ao , π can
be defined by π(σ) = ε for σ ∈ 2Au and π(σ) = σ ∩ Ao otherwise. For any
subset L of Σ∞, we say that a run ρ of PTS A satisfies L if its trace belongs
to L and we may use L as a shorthand for tr−1(L).

The secret is given as an ω-regular set ϕ ⊆ Σω. It is opaque with re-
spect to A and O if each time a run satisfies ϕ, another run with the same
observation does not. More precisely, the set of runs violating opacity is de-
fined by V(A,O, ϕ) = (Tr(A) ∩ ϕ) \ (O−1(O(Tr(A) \ ϕ))) and ϕ is opaque if
V(A,O, ϕ) = ∅.

This set is used in [7,22] to extend the boolean property by defining vari-
ous notions of probabilistic opacity. For instance, in [22], one of the measures
corresponds to the particular case where ϕ is the set of traces of runs reach-
ing a fixed set of secret states. We define the probabilistic disclosure as the
probability of this set, which is measurable since ϕ is ω-regular:

Definition 3 (Probabilistic Disclosure) Let A be a PTS, O an observa-
tion function and ϕ an ω-regular predicate. The probabilistic disclosure of ϕ
in A for O is Disc(A,O, ϕ) = PA(V(A,O, ϕ)).

For instance, recall systemsA1 andA2 of Fig. 1. The secret predicate in this
case is the set ϕb = abΣω, accepted by the DPA in Fig. 2, and the observation
function is the projection π onto {a, c, d}ω. This predicate is not opaque since
the run abdω discloses the occurrence of b. This is measured by the disclosure:
Disc(A1, π, ϕb) = PA1(abdω) = 1

4 and Disc(A2, π, ϕb) = PA2(abdω) = 3
4 .

Remark that disclosure only measures probabilities of the observer being
sure that the run is in the secret. For example, one can model anonymity of an
agent α initiating some protocol by defining ϕα as the set of all runs initiated
by α. Anonymity of α is then equivalent to opacity of ϕα. In the case where
anonymity is not guaranteed, disclosure provides a measure of the threat. In
the case where anonymity holds, this measure will be 0 and does not give any
insight on the “strength” of anonymity. Other notions measuring this strength
were proposed in [15,9] and quantitative opacity for partial disclosure of the
secret have also been defined in [8], although they are not linear hence do not
fare well under standard optimization techniques.

For two PTSs A1 and A2 over the same alphabet Σ, predicate ϕ and obser-
vation function O, we say that A1 is more opaque than A2 if Disc(A1,O, ϕ) ≤
Disc(A2,O, ϕ).

3 Constraint Markov Chains, Opacity and Refinement

3.1 Constraint Markov Chains and Opacity

Constraint Markov chains (CMCs) were first introduced in [18] as a specifi-
cation formalism and further studied in [13]. They generalize Interval Markov
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Chains (IMCs), that were also investigated in [14,4,6] and extended with pa-
rameters in [17] with a focus on the consistency problem, i.e., the problem of
existence of an implementation satisfying a given specification.

Definition 4 (Constraint Markov Chains) A Constraint Markov Chain
(CMC) over alphabet Σ is a tuple S = (S, sinit, T, λ) where S is a finite set
of states, with sinit ∈ S the initial state, T : S → 2Dist(S) associates with any
state s ∈ S a set T (s) of distributions over S, and λ : S → 2Σ is the labeling
function.

The class of CMCs is very general and benefits from nice closure properties
as shown in [13]. However, without an explicit description of the sets T (s) for
s ∈ S, algorithmic questions cannot be solved. For our purpose, we consider
the subclass of Linear CMCs, which is interesting for several reasons (detailed
in the sequel): (1) the sets of probabilities T (s), for s ∈ S, can be seen as
convex polytopes, with good algorithmic properties, (2) the class (strictly)
contains IMCs, hence all results will also apply to IMCs, and (3) it is closed
by intersection, which can prove useful in the specification process. The larger
class of polynomial CMCs remains to be studied w.r.t. opacity properties.

In a Linear CMC, each set T (s) for s ∈ S is defined by a conjunction of
linear inequalities, which implies the closure under intersection. Moreover, the
label λ(s) is a singleton. In this case, with a slight abuse of notation, we note
λ(s) = a instead of λ(s) = {a}, as done in Fig. 1(c).

More precisely, a linear constraint over S is of the form
∑
s∈S αsxs ./ β,

with all αs and β in Q, ./∈ {<,≤,=,≥, >}, and each xs is a variable for state
s. A linear probability set on S is a subset of Dist(S) where the distributions
µ = (µ(s))s∈S are the solutions of a system of linear constraints over S. Remark
that the conditions for µ to be a distribution are also described by linear
constraints:

∑
s∈S xs = 1 and, for all s, 0 ≤ xs ≤ 1; these constraints are

implicit in the sequel. Thus a linear probability set is a linear set in R|S| in
the usual sense, hence a convex polytope. We denote by L(S) the set of linear
probability sets on S.

Definition 5 (Linear CMC) A Linear CMC (or shortly LCMC) is a CMC
S = (S, sinit, T, λ) where for each s ∈ S, T (s) ∈ L(S) and |λ(s)| = 1.

In an IMC, each set T (s) is defined by a family (I(s, s′))s′∈S of intervals in
[0, 1] and contains all distributions µ such that for each s′ ∈ S, µ(s′) ∈ I(s, s′).
Since this can be expressed as a system of linear inequalities by introducing
the lower and upper bounds of the intervals, an IMC is an LCMC. Note that
any PTS can be seen as an IMC (hence as an LCMC), where each interval
is reduced to a point. For convenience, we keep the interval notation when
applicable.

For example, consider the LCMC S of Fig. 3, representing a simple sys-
tem. For graphical depiction, an edge from s to s′ is labeled by the variable
for xs′ in the system of linear constraints defining T (s); as usual, absence of
edge (s, s′) means xs′ = 0 is a constraint of T (s). The aim of this system is to
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Fig. 3 An LCMC S which is not a conjunction of IMCs.

achieve Success, but there can be errors (which may be recovered) and failures
(which cannot). The probabilities underlying the behavior of the system are
not fixed, although a certain number of constraints are known. For example,
the probability of a recoverable error is at least twice the one of an unrecover-
able one, as expressed by the equation x2 ≥ 2x3, and when trying to recover
from an error, there is a probability of success exceeding the probability of
definite failure by 1

4 .

Note that S is not an IMC. Indeed, assume that the constraints on T (q0)
can be expressed by intervals. Any values for x1, x2, and x3 that satisfy the
linear constraints should be in the intervals. In particular, it would be the case
for the three tuples of values for (x1, x2, x3): (1, 0, 0), ( 1

2 ,
1
2 , 0), and ( 1

2 ,
1
3 ,

1
6 ).

Hence [ 12 , 1] ⊆ I(q0, q1), [0, 12 ] ⊆ I(q0, q2), and [0, 16 ] ⊆ I(q0, q3) and the distri-
bution defined by x1 = 5

6 , x2 = 0, x3 = 1
6 is within the bounds of the intervals,

although it does not satisfy the constraint x2 ≥ 2x3, which is a contradiction.

In addition, S is neither the result of conjunction of several IMCs, as those
only yield constraints where coefficients are positive, hence constraint x2 ≥ 2x3
(which is actually x2 − 2x3 ≥ 0) cannot be expressed.

Several semantics can be given to CMCs with respect to the set of PTSs
they specify. The simplest one corresponds to first choosing for each state s a
distribution belonging to T (s), thus producing a PTS (the implementation),
with the same structure as the CMC (the specification). This was done for
IMCs in [14,4] and called the Uncertain Markov Chain semantics. A richer
semantics consists in introducing a scheduler, choosing the distribution at each
step to obtain an implementation, as in a Markov Decision Process (MDP).
This was also defined in [14] for IMCs, seen as a special case of Interval Markov
Decision Process.

Finally, the most general semantics corresponds to the satisfaction relation
from [18,13], restricted in [13] to finite state processes. This relation can be
obtained from the refinement defined below in Section 3.2.
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We consider here the MDP semantics. A run of S starting from a state s is a

sequence s
µ1−→ s1

µ2−→ . . . where si ∈ S and each µi is a distribution over S such
that ∀s ∈ S, µi ∈ T (si−1). As before, we denote by Runss(S) the set of runs
starting from s, we set Runs(S) = Runssinit(S), FRuns(S) is the set of finite

runs of S starting from sinit, and for a run ρ = s
µ1−→ s1

µ2−→ . . . sn−1
µn−−→ sn

in FRuns(S) we define lst(ρ) = sn.
A scheduler resolves the non determinism by choosing a distribution at

each step. More precisely:

Definition 6 (Scheduler) A scheduler A for a CMC specification S = (S,
sinit, T, λ), is a mapping A : FRuns(S) → Dist(S) such that for each run ρ
with s = lst(ρ), A(ρ) ∈ T (s).

Note that the Uncertain Markov Chains semantics corresponds to the par-
ticular case of memoryless schedulers, where the distribution only depends on
the last state of the run. We denote by Sched(S) the set of schedulers for
S. Like for Markov Decision Processes, scheduling S with A produces a PTS
denoted by S(A), where states are finite runs of S and the labelings must
be consistent: S(A) = 〈Q, qinit, ∆, L〉 with Q ⊆ FRuns(S), the initial state
is qinit = sinit, the run containing only the initial state of S, for ρ ∈ Q,

L(ρ) ∈ λ(lst(ρ)) and ∆(ρ)(ρ′) = A(ρ)(s′) for ρ′ = ρ
A(ρ)−−−→ s′, and 0 otherwise.

We note:
sat(S) = {S(A) | A ∈ Sched(S)}.

We now lift the notion of disclosure to the set of scheduled implementations
of a specification S by:

Disc(S,O, ϕ) = sup
A∈Sched(S)

Disc(S(A),O, ϕ).

3.2 Refinement

The notion of strong refinement between probabilistic specifications was in-
troduced in [18] through simulation. A weaker refinement was also proposed
in [13]. These notions are adapted to our setting in Definitions 7 and 8 below.

Definition 7 (Strong refinement relation) For two CMC specifications
S1 = (S1, s1,init, T1, λ1) and S2 = (S2, s2,init, T2, λ2) over alphabet Σ, S1
strongly refines S2, written S1 �s S2, if there exists a relation R ⊆ S1 × S2

such that s1,initR s2,init and if s1Rs2 then:

(1) λ1(s1) ⊆ λ2(s2),
(2) there exists a function δ : S1 → Dist(S2) such that for all µ ∈ T1(s1)∑

s′1∈S1
µ(s′1) · δ(s′1) ∈ T2(s2),

(3) s′1Rs′2 whenever δ(s′1)(s′2) > 0.

For weak refinement, the mapping δ depends on the chosen distribution µ
(as well as on s1 and s2) instead of being uniform:
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Definition 8 (Weak refinement relation) For two CMC specifications
S1 = (S1, s1,init, T1, λ1) and S2 = (S2, s2,init, T2, λ2) over alphabet Σ, S1
weakly refines S2, written S1 �w S2, if there exists a relation R ⊆ S1 × S2

such that s1,initR s2,init and if s1Rs2 then:

(1) λ1(s1) ⊆ λ2(s2),
(2) for each µ ∈ T1(s1) there exists a function δ : S1 → Dist(S2) such that∑

s′1∈S1
µ(s′1) · δ(s′1) ∈ T2(s2),

(3) s′1Rs′2 whenever δ(s′1)(s′2) > 0.

a

q0

S1 :

b
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q2

[0, 1]

[ 1
3
, 2
3
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[ 1
4
, 1
3

]

[1, 1]

[1, 1]

a

r0

S2 : b

r1

[0, 1]

[0, 1] [1, 1]

1

1

1

Fig. 4 A refinement of S2 by S1.

Fig. 4 illustrates the strong refinement relation R of S2 by S1. For Condi-
tion (2) above, we may uniformly use the function: δ0(qi)(rj) = 1 if (qi, rj) ∈ R
and 0 otherwise, represented with dashed lines in Fig. 4.

Note that there is no weak refinement relation of S1 by S2. Indeed, let
µ ∈ T2(r0) defined by µ(r0) = 4

5 and µ(r1) = 1
5 . Given any function δ : S2 →

Dist(S1) as in Definition 8, it must be the case that δ(r0)(q1) = 0 since labels
do not match. However, µ(r1) · δ(r1)(q1) ≤ µ(r1) = 1

5 /∈ [ 13 ,
2
3 ]. So µ(r1) · δ(r1)

is not a distribution in T1(q0), which violates Condition (2).

When a PTS refines a specification, both notions coincide and correspond
to the satisfaction relation, which defines the most general semantics of CMCs
(from [18]): A PTS A = (Q, qinit, ∆, L) implements a CMC S = (S, sinit, T, λ),
written A � S for the associated relation �⊆ Q × P , if A refines S, where A
is seen as a CMC with point distributions. Specification S is said consistent if
it admits at least one implementation.

Refinement also applies to two PTSs, and since each probability set reduces
to a single distribution, Condition (2) becomes (2′):

(2′) For all s′2 ∈ S2,
∑
s′1∈S1

∆1(s1)(s′1) · δ(s′1)(s′2) = ∆2(s2)(s′2).

It is proved in [13] that S1 �s S2 implies S1 �w S2, which in turn implies
that for any PTS A, if A � S1 then A � S2, all implications being strict.
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Finally, it can be seen that scheduling a CMC specification is a particular
case of implementation:

Proposition 1 Let S be a CMC specification. For each scheduler A of S,
S(A) � S.

Proof The relation R ⊆ Q×S is defined by R = {(ρ, s) | lst(ρ) = s}. We prove
that the relation R is a refinement relation by defining δ(ρ,s) : Q → Dist(S)
as follows:

For ρ′ ∈ Q, s′ ∈ S, δ(ρ,s)(ρ′)(s′) =

{
1 if ρ′ = ρ

A(ρ)−−−→ s′,
0 otherwise.

The first condition of refinement results from the definition of the labeling
and the third one is direct from the definition of δ(ρ,s). For Condition (2), the

only distribution µ is ∆(ρ) with ∆(ρ)(ρ′) = A(ρ)(s′) if ρ′ = ρ
A(ρ)−−−→ s′ and

0 otherwise. But then
∑
ρ′∈Q∆(ρ)(ρ′)δ(ρ,s)(ρ

′) is simply equal to A(ρ) and
belongs to T (s) by definition of a scheduler. ut

For any scheduler A, S(A) is a kind of unfolding of S, which restricts
the structure of S(A): at each step, the scheduler chooses a valid distribution
over successor states. Hence not every implementation can be mapped to a
scheduler. Said otherwise, not all implementations can be put in relation with
S through a satisfaction relation where the joint distributions are diagonal.

a

s0

b

s1

b

s2

[ 1
2
, 1]

[ 1
2
, 1]

[1, 1]

[1, 1]

(a) A specification S0

a

s0

b

s1

b

s2

1
2

1
2

1

1

(b) A1, the only
scheduling of S0

a

q0

b

q1

b

q2

b

q3

1
3

1
3

1
3

1

1

1

(c) A2, an implementation (not
a scheduling) of S0

Fig. 5 A specification with an implementation that is not the result of scheduling.

For example, consider the specification S0 of Fig. 5(a). There is a single
possible scheduler for this specification: the one that picks in s0 probability 1

2
to go to either s1 or s2 (A1 in Fig. 5(b)). However, the PTS A2 of Fig. 5(c)
is also an implementation of this specification (A2 |= S0) where q2 is split
between s1 and s2. The mapping δ(q0,s0) can be represented by the following
matrix, giving on column i the distribution of state qi on the states of S0:
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δ(q0,s0) =


q0 q1 q2 q3

s0 1 0 0 0
s1 0 1 1

2 0
s2 0 0 1

2 1



3.3 Motivating example

Consider a simple access control database mechanism to a medical database
(inspired from [11]) as illustrated in Fig. 6(a). In S2, a user is first requested to
input a username (a). If the user name is not on the list of authorized medical
staff (d), the request is rejected (e) and otherwise, the user is requested to
input a password (b). If the password is correct, access to the database records
is provided (c) and is refused (e), otherwise. The transition probabilities take
in account many factors e.g., the number of legitimate users of the database,
the robustness of their respective passwords, or the attacker’s knowledge.

System S1 depicted in Fig. 6(b) refines the password verification process.
If the password is correct, it is accepted. Otherwise, a lookup of a black list of
common password is performed. If the password is in the list, access is refused,
considering it is a malicious attacker and the user is allowed to try again,
otherwise. The refinement removes the modalities by restricting intervals and
splits the state q1 onto r1 and r2 in S1. In order to express security requirements
that any implementation of these specifications should assume, consider the
observation function O defined by O(x) = x for all x 6= b and O(b) = ε. It
reflects the fact that the password input by the user should be kept secret.
This could be realized by mean of some cryptographic infrastructure later on
along the refinement process but it is not useful to specify this any further
here.

a q0S2 :

b

q1

c

q3

d

q2

e

q4

[0.2, 1]

[0.2, 1] [1, 1]

[0, 1]

[0, 1]

[0, 1]

[1, 1]

[1, 1]

(a) S2

a r0S1 : b

r2

b

r1

c

r4

d

r3

e

r5

[0.2, 0.4]

[0.2, 1] [1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[0.1, 1]

[1, 1]

[1, 1]

(b) S1

Fig. 6 An access control mechanism to a medical database S2 and its refinement S1.
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It is well known that this kind of mechanism is not robust enough to
provide an adequate protection against covert channels allowing an attacker
to access any private information from patient medical record whose access
should be strictly limited to medical professionals, the legitimate users of the
database. As an example, imagine an observer who could discriminate between
abcω, the execution where a legitimate user is accepted at the first password
try and any execution in abb+cω where he is only accepted after several tries.
This could serve as a channel between this user and an attacker on behalf of
whom he is acting for in order to leak any private information of any patient
record. Requesting as best opacity as possible of the predicate ϕ = abcω, for
all implementations of the specification, tears down the possibility of such
information flow.

Looking at the opacity of ϕ, we first establish that Disc(S2,O, ϕ) > 0.
Since the interval labeling the loop on q1 contains 0, there is a distribution
µ ∈ T2(q1) such that µ(q1) = 0. This loop may or may not be scheduled by an
attacker. Hence any implementation S2(A) of S2 blocking the loop on q1 but
not edges (q1, q3) and (q1, q4), discloses ϕ. Indeed, in this case,

L2 = Tr(S2(A)) = abcω + abeω + adeω,

L2 \ ϕ = abeω + adeω,

O(ϕ) = acω and

O(L2 \ ϕ) = aeω + adeω

proving that O(ϕ) 6⊆ O(L2 \ ϕ).
This does not happen in S1, because for any scheduler A all edges have

positive probabilities, in particular from r1 there is positive probability to go
to r2 and come back to r1. Hence,

L1 = Tr(S1(A)) = abcω + ab(bb)+cω + a(bb)+eω + adeω

and O(L1 \ ϕ) = acω + aeω + adeω,

proving that ϕ is opaque for the infinitely many implementations S1(A) of S1
that is, Disc(S1,O, ϕ) = 0.

In Section 4 we give an algorithm to compute the exact disclosure of a
specification when edges cannot be blocked (as in S1) and a scheme to ap-
proximate the general case (like for S2). Finally note that Disc(S1,O, ϕ) <
Disc(S2,O, ϕ). In Section 5 we prove that amazingly, despite the fact that, in
general, information flow properties are not preserved under refinement, when
S1 refines S2, it is always the case that Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ), for
any secret ϕ and observation function O.

4 Computing the probabilistic disclosure

4.1 Modal edges

When the probability of an edge can be equal to 0, the corresponding action
can be completely blocked by a scheduler. From a modeling point of view,
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(a) A modal IMC Sm.

a c b
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(b) A non-modal IMC Snm.

a c b
1 1

1

(c) A disclosing implementation of
Sm (but not of Snm).

a c b
1− ε

ε

1

1

(d) A non-disclosing implementation
of Snm (and Sm), ε > 0.

Fig. 7 The influence of modal transitions on disclosure.

modal edges add a lot of flexibility for refinement. This however means that
the range of potential implementations is larger and so it will be harder to
obtain meaningful properties. Therefore such edges are desirable in an early
modeling phase but less so in the latest refinements. As in [18], we call these
edges modal edges, and CMCs that contain such edges are called modal CMCs.

Definition 9 (Modal edge) An edge (s, s′) in CMC S is modal if there

exists a scheduler A such that ∆(ρ)(ρ
A(ρ)−−−→ s′) = 0 for any run ρ of S(A) with

lst(ρ) = s.

In the context of opacity, removing an edge drastically changes the disclo-
sure, since it can remove ambiguities. A first example was seen in the previous
section, where system S2 of Fig. 6 is a modal IMC, with a loop around q1 that
can be blocked by a scheduler.

For another example, consider the modal IMC Sm of Fig. 7(a), where a
and b are observed and the secret is the presence of c. An implementation of
Sm that blocks the direct edge from a to b (Fig. 7(c)) has a disclosure of 1,
since the secret is guaranteed to be part of the only possible run. On the other
hand, in the non-modal version of the IMC (Fig. 7(b)), such implementations
are banned and only implementations that retain a small probability to avoid
c are allowed. In these implementations, the disclosure is 0, since every run is
observed as abω and it is possible that c did not occur.

This example shows how our measure differs from the similar one in [5] for
Markov Decision Processes. In [5], the set of runs of the disclosure is defined
on the (unscheduled) MDP, and its probability is optimized afterwards. Hence
viewing Sm as an MDP with two actions µ1 and µ2, both with probability 1
from the initial state, the disclosure computed in [5] would be 0. The notion
presented here is finer since the scheduling is considered as known by the at-
tacker and the set of runs measured by the disclosure depends on the scheduled
implementation.
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The detection of modal edges is the first step toward computation of the
disclosure.

Proposition 2 The set of modal edges can be computed in time polynomial
in the number of edges.

Proof The procedure for each edge (s, s′) is as follows. Assume T (s) is defined

by the conjunction
∧k
i=1 Ci where each Ci is a linear constraint. The edge

(s, s′) is modal if and only if xs′ = 0∧
∧k
i=1 Ci admits a solution. This can be

checked in polynomial time [21]. ut

Note that it is not always possible to block several modal edges concomi-
tantly. For example, in Sm of Fig. 7(a), blocking both edges from state a would
yield an inconsistent specification. Testing consistency can be done in poly-
nomial time [13], although testing all possible combinations of modal edges
a priori would require to consider them all, which induces an exponential
blowup.

4.2 Computation in non-modal LCMCs

In the case of non-modal LCMCs, the disclosure can be computed:

Theorem 1 Computing the value of disclosure for an LCMC S without modal
edges can be done in EXPTIME.

Proof The proof relies on constructing an (exponentially larger) MDP on
which an optimization problem is solved. In the spirit of [24], the construction
of the MDP relies on basic feasible solutions (BFSs), otherwise called corner
points.

Let B be an arbitrary scheduling of S. The probability information on
the edges of B is of no importance because any scheduling of S has the same
structure B, since S does not have modal edges. In the rest of the proof, we are
interested only in the structure of B, which can be seen an a nondeterministic
automaton.

Starting from a DPA Aϕ for ϕ, a DPA AV for V(B,O, ϕ) can be built,
with size exponential in the size of S and Aϕ (and with a number k of colors
polynomial in the size of B and Aϕ). This construction relies on intersections
and complementations of DPA, with a determinization step that brings the
exponential blowup [20]. Synchronizing the DPA AV with the original LCMC
yields an LCMC SV = AV × S. Finding the optimal scheduler for SV to
accept yields the optimal value of Disc(S(A),O, ϕ) for any scheduler A. This
optimization is done by translating SV into an MDP MV as follows.

For each state s of the S component of SV , we compute the set of BFSs
of the polytope defined by T (s). Then we build the corresponding state in the
MDP MV by adding a transition (i.e., a probability distribution) per BFS.
As a property of BFSs, any distribution in T (s) in SV can be expressed as a
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Fig. 8 Basic Feasible Solutions for state q0.

barycentric combination of BFSs. Hence a scheduler on MV corresponds ex-
actly to a scheduler on SV . As a result maximizing the probability of V(B,O, ϕ)
in MV is exactly the same as computing said optimum in SV . This yields a
memoryless scheduler, which in turn can be translated into a finite memory
scheduler in S.

Note that this construction annihilates the difference between strict and
large inequalities. This is of no consequence on the computation of the value
of the disclosure. Indeed, if the optimal value is reached on a facet of the
polytope defined through a strict inequality, one can build a scheduler, possibly
with infinite memory, reaching the optimal value. In the case where the strict
constraint is of the form xs > 0, i.e., the edge should disappear in the limit, this
actually does not introduce a modal edge in the sense that the set V(B,O, ϕ)
is not changed.

The number of BFSs of a system of rank r in dimension n is bounded by(
n
r

)
(the number of subsets of cardinality r in a set of n elements), hence for

each state there is an exponential number of BFSs to consider. However, the
set of BFSs depends only on the (polynomially many) states of S and not on
the (exponentially many) states of AV . As a result the overall complexity of
the procedure is in EXPTIME. ut

An example of the transformation described in the above proof is illustrated
for state q0 of the LCMC in Fig. 3. The BFSs are depicted in Fig. 8: all possible
distributions are points in the red triangle with corners µ1, µ2, and µ3 being
the three BFSs. Note that these distributions only consider values for x1, x2,
x3, since all other values are null. The transformation of the LCMC (for state
q0) into an MDP is illustrated in Fig. 9.

4.3 Approximation in the general case

When a scheduler is faced with the choice to include or exclude a modal edge, it
can produce several versions of PTSs, say A1 and A2, with Tr(A1) 6= Tr(A2),
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Fig. 9 Transforming an LCMC into an MDP using BFSs.
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Fig. 10 IMC where the choice on modal edge requires history.

hence V(A1,O, ϕ) 6= V(A2,O, ϕ). In addition, these choices may be history
dependent, as in the example of Fig. 10, with ϕ = aΣω and only letters c
and d being observed. Intuitively, a way for the scheduler to always disclose
the presence of an initial a is to always follow an a by the same letter, say
a c. However, this choice must be made after the first letter has been seen.
Moreover, leaving the possibility of a run ad · · · to occur means that run ac · · ·
does not disclose ϕ. As a result, the scheduler should also take into account
ϕ and the observation function before committing to a choice with respect to
modal edges. Note that the simpler model of UMC does not allow the scheduler
to change according to history.

So far, the general case of modal LCMCs remains open and we conjecture
that the computation is not possible in general. However, we now propose an
approximation scheme using finite memory schedulers.

In the case of modal LCMCs, disclosure can be approximated by computing
only what can be disclosed by an adversary with bounded memory. Increas-
ing the allotted memory provides a better approximation of the disclosure,
although there is no guarantee that the disclosure can be achieved with finite
memory. A finite memory adversary can be defined as follows:
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Definition 10 (n-memory scheduler) Let [n] denote the set {1, 2, . . . , n}.
An n-memory scheduler A for an LCMC specification S = (S, sinit, T, λ), is
a tuple A = ([n], iinit, θ, γ) where [n] is the set of modes, iinit is the starting
mode, θ : [n]×S → [n] is a mode transition function and γ : [n]×S → Dist(S),
is the choice function with γ(i, s) ∈ T (s) for all i ∈ [n] and all s ∈ S.

Scheduling S with A produces a PTS S(A) where the set of states is [n]×
S, the initial state is (iinit, sinit), for (i, s) ∈ [n] × S, L(i, s) ∈ λ(s) and
θ(i, s)(i′, s′) = γ(i, s)(s′) for i′ = θ(i, s). We denote by Schedn(S) the set of
n-memory schedulers for S, with satn(S) = {S(A) | A ∈ Schedn(S)} and

Discn(S,O, ϕ) = supA∈Schedn(S)Disc(S(A),O, ϕ).

Memoryless schedulers are those in Sched1(S) and the set of finite memory
schedulers is

⋃
n Schedn(S) [2].

The computation of the disclosure of an LCMC S under bounded memory
adversaries relies on:

– the computations of the set of modal edges of S (Proposition 2);
– the value of disclosure for LCMCs without modal edges (Theorem 1);
– the unwinding of S with respect to a memory bound and the removal of

modal edges (described below).

The unwinding construction. Given S = (S, sinit, T, λ) and a finite transi-
tion system An,θ = ([n], iinit, θ), we construct the LCMC An,θ × S = ([n] ×
S, (iinit, sinit), T̂ , λ̂) s.t.

– µ̂ ∈ T̂ (i, s) iff ∃µ ∈ T (s) such that for i′ ∈ [n],

µ̂(i′, s′) =

{
µ(s′) if i′ = θ(i, s)
0 otherwise

– λ̂(i, s) = λ(s)

The unwinding of S by an n-state automaton A produces an LCMC SA formed
with n copies of S (one for each state of A), communicating with each other
according to the mode transition function of A. Memoryless schedulers on SA
then correspond to n-memory schedulers on S. We note SchedAn,θ (S) the set
of schedulers for S of the form A = (An,θ, γ) for γ : [n]× S → Dist(S) where
for s ∈ S and for all i ∈ [n], γ(i, s) ∈ T (s). Hence, any implementation of
satn(S) can be obtained by a memoryless scheduler on some SA. Remark that
there is only a finite number of such automata. This construction entails:

Lemma 1 For any LCMC S,

sat1(An,θ × S) = {S(A) | A = (An,θ, γ) for some γ}.
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The modal edge removing construction. Given S = (S, sinit, T, λ), an LCMC,
let M(S) be the set of modal edges of S. For a subset ξ ⊆ M(S), we define
S \ ξ as the modal edge free LCMC obtained from S by removing edges in ξ
and “unmodalizing” modal edges of S not in ξ: this means that if (s, s′) ∈ ξ,
we add the constraint xs′ = 0 to T (s) and if (s, s′) /∈ ξ, we add the constraint
xs′ > 0 to T (s). Note that removing an arbitrary subset ξ ofM(S) may result
in an inconsistent specification. These will be ignored by our algorithm (recall
that consistency checks are polynomial for LCMCs [13]).

The algorithm. Algorithm 1 enumerates all possible finite transition systems
with n states and unwinds S over them. For each such unwinding, the algo-
rithm explores the set of memoryless schedulers. This exploration is done by
first selecting the set of modal edges to remove and for each set, compute the
maximal disclosure using the procedure of Theorem 1. Since this procedure
may use arbitrary schedulers, the output of the algorithm is an overapproxima-
tion of Discn(S,O, ϕ), the disclosure of S restricted to n-memory schedulers.
On the other hand, it is an underapproximation of the actual disclosure.

ALGORITHM 1: Overapproximating Discn(S,O, ϕ)

Input: n ∈ N,S,O and ϕ
Output: Disc(n,S,O, ϕ) such that Discn(S,O, ϕ) ≤ Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ)

1 Disc(n,S,O, ϕ) = 0;
2 foreach θ : [n]× S → [n] do
3 construct An,θ × S;
4 compute the set M(An,θ × S);

// By the procedure described in the proof of Prop. 2

5 foreach ξ ∈ 2M(An,θ×S) do
6 construct (An,θ × S) \ ξ;
7 if (An,θ × S) \ ξ is consistent then
8 compute Disc((An,θ × S) \ ξ,O, ϕ);

// By the procedure described in the proof of Thm. 1

9 Disc(n,S,O, ϕ) = max{Disc(n,S,O, ϕ), Disc((An,θ × S) \ ξ,O, ϕ)};
10 end

11 end

12 end
13 return Disc(n,S,O, ϕ);

Correctness. The partial correctness of Algorithm 1 relies on Lemma 1 above
as well as the following observation, indicating that the choice of some set of
modal edges to remove exactly corresponds to the scheduler choice:

Lemma 2 For any LCMC S and for any memoryless scheduler A = (A, γ)
of S, there exists a maximal subset ξ of M(S) such that for any (s, s′) ∈
M(S), γ(1, s)(s′) = 0 iff (s, s′) ∈ ξ.

Proof Since the scheduler is memoryless, the choice of scheduling a modal edge
to 0 must be uniformly taken along any run, hence this edge never appears in
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the PTS scheduled by A. This is equivalent to remove this edge from S so the
set ξ is the collection of all such edges. ut

Theorem 2 (Correctness of Algorithm 1) Given an LCMC S, an obser-
vation O and a secret ϕ for S, the disclosure of ϕ in S for O by a polynomial
size adversary (in the size of S) can be over-approximated in EXPTIME.

Proof We prove that the output of Algorithm 1:

Disc(n,S,O, ϕ) = max
θ

max
ξ
Disc(An,θ × S \ ξ,O, ϕ)

satisfies the post-conditionDiscn(S,O, ϕ) ≤ Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ).
For the first inequality, let A = (A, γ) be an n-memory scheduler for S and
let SA be the corresponding unwinding. This unwinding is computed in the
loop of Algorithm 1 at line 3. By Lemma 1 the n-memory schedulers on S
are exactly the memoryless schedulers on SA. Hence the choice function γ is
memoryless on A × S. Therefore Lemma 2 provides a set ξ of modal edges
to be removed, such that SA and SA \ ξ coincide when scheduled by γ. The
removal of this set ξ is performed in the inner loop at line 6. Hence the dis-
closure of S(A) is less than or equal to Disc(SA \ ξ,O, ϕ) computed at line 8
(equality is not ensured since the computation of Theorem 1 does not restrict
memory). This value is itself smaller than the output of the algorithm, hence
Discn(S,O, ϕ) ≤ Disc(n,S,O, ϕ).

The second inequality results from the fact that all values computed by
Algorithm 1 are of the form Disc(SA\ξ,O, ϕ). Since the maximum is obtained
on a subset of schedulers, Disc(n,S,O, ϕ) ≤ Disc(S,O, ϕ) holds.

This algorithm makes 2O(n) calls to the EXPTIME procedure of Theo-
rem 1. Thus the complexity of Algorithm 1 remains in EXPTIME as long as
n is polynomial in the size of S. ut

4.4 Example: the access control system

We illustrate this construction on the access control mechanism S2 of Fig. 6(a)
with n = 1. Recall that the secret is ϕ = abcω and that only letter b is hidden.

The only modal edges are transitions stemming from state q1 which can
be blocked at will (at most two at a time). Note that if edge from q1 to q3
is blocked by a scheduler A, the predicate ϕ = abcω has probability 0 hence
Disc(S2(A),O, ϕ) = 0. In addition, if loop q1 → q1 is not blocked, then runs
abb+cω, which are observed as acω like abcω have non null probability in any
scheduling. Hence ϕ would be opaque and Disc(S2(A),O, ϕ) = 0. Thus there
remains the case of transition q1 → q4.

Whether it is blocked or not, computing the optimal disclosure in those
non-modal LCMCs is done by synchronizing S2 with the DPA accepting dis-
closing runs, i.e. the single run abcω. In this case, the product is equivalent
to having priority 0 to state q3 and 1 to all other states. So the goal of the
scheduler is to maximize the probability to reach q3.
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Computing the optimal scheduler is done by building the MDP with Basic

Feasible Solutions. For example in state q0, the two BFSs are (q0
0.2−−→ q1, q0

0.8−−→
q2) and (q0

0.8−−→ q1, q0
0.2−−→ q2). In the case where q1 → q4 is not blocked, the

two BFSs for state q1 are (q1
1−→ q3, q1

0−→ q4) and (q1
0−→ q3, q1

1−→ q4), even
though the intervals are open on 0: in this case, the solutions can be reached
in the limit by a family of schedulers. Optimization on this MDP shows that

the maximal probability to reach q3 is obtained by choosing BFSs (q0
0.8−−→

q1, q0
0.1−−→ q2) and (q1

1−→ q3, q1
0−→ q4), reaching state q3 with probability 0.8,

hence Disc(S2,O, ϕ) ≥ 0.8.
Note that even though this computation was done by restricting the un-

winding to a single memory state (no actual unwinding), in this example it
provides the actual optimal value, since the only meaningful unwinding can
be done at state q1 but the best way for the scheduler to disclose the secret
is always to block loop q1 → q1 and maximize the probability to reach q3. It
follows that Disc(S2,O, ϕ) = 0.8.

4.5 Uncertain Markov Chain semantics

The problem is simpler in the case of the Uncertain Markov Chain seman-
tics. Since no memory is allowed in this semantics, no unwinding is necessary.
Nonetheless, one must consider all possible sets of modal edges as in Algo-
rithm 1. Once the set of edges is set, the optimal disclosure can be computed
in a similar way as in Theorem 1. However, we add the constraints that all
probabilities coming from the same edge of S must be equal, which is not the
case in the scheduler semantics.

Corollary 1 (UMC semantics) Given an arbitrary LCMC S with UMC
semantics, an observation O and a secret ϕ for S, the disclosure of ϕ in S for
O can be computed in EXPTIME.

5 Monotonicity of disclosure

This section is devoted to the proof of the following result, establishing mono-
tonicity with respect to weak refinement for the disclosure over scheduled
implementations:

Theorem 3 Let S1 and S2 be LCMC specifications such that S1 �w S2. Then
Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ).

Since scheduling is a restrictive way to derive implementations from a spec-
ification, it is not the case in general that sat(S1) ⊆ sat(S2): although any
scheduling S1(A1) of S1 with A1 is an implementation of S2, this implemen-
tation may not be a scheduling.

Instead, the proof builds a scheduler A2 for S2, producing an implementa-
tion S2(A2) that is refined by S1(A1) (Theorem 4, illustrated in Fig. 11). Then,

21



S2S1

S1(A1) S2(A2)

R

sat1 R ◦ sat1

R′

sat2

Fig. 11 Result of Theorem 4. Relation R◦sat1 always exists but might not be a scheduling.

this refinement is shown to ensure that the probabilities of (cones of) finite
words coincide (Propositions 3 and 4). The disclosure set being a measurable
event, coincidence of probabilities on cones ensures coincidence of probabilities
for the disclosure.

Notations. Given two specifications S1 and S2 such that S1 weakly refines
S2 through relation R, we define the relation ∼ on FRuns(S1) × FRuns(S2)
by: ρ1 ∼ ρ2 if |ρ1| = |ρ2| and at any intermediate step i, the corresponding
states satisfy s1,iR s2,i.

For ρ2 ∈ FRuns(S2), we set sim(ρ2) = {ρ1 ∈ FRuns(S1) | ρ1 ∼ ρ2}. We

now define a measure µρ2 over sim(ρ2) by µρ2(ρ1) =
PA1

(ρ1)

PA1
(sim(ρ2))

(where the

probability of finite run ρ is abusively written instead of the probability of its
cone Cρ).

We first show how to build a scheduler A2 for S2 such that S1(A1) refines
S2(A2). Recall from Section 3.2 that for PTSs, weak and strong refinement
coincide and are thus simply called refinement in the remainder of this section.

Theorem 4 Let S1 and S2 be LCMC specifications such that S1 weakly refines
S2. Then for any A1 ∈ Sched(S1) there exists A2 ∈ Sched(S2) such that
S1(A1) refines S2(A2).

Proof Let S1 = (S1, sinit,1, T1, λ1) and S2 = (S2, sinit,2, T2, λ2) be LCMCs
such that S1 refines S2 with R. Let sat1 be the satisfaction relation related to
A1 and A1 = S1(A1) = (Q1, qinit,1, ∆1, L1). Then we show that there exists
A2 ∈ Sched(S2) and a refinement relation R′ such that R ◦ sat1 = sat2 ◦ R′
where sat2 is the satisfaction relation related to A2.

Let ρ2 ∈ FRuns(S2) with lst(ρ2) = s2. Then, for any ρ1 ∈ sim(ρ2),
A1(ρ1) ∈ T1(lst(ρ1)) and lst(ρ1)R s2. Since S1 weakly refines S2, there ex-
ists δρ1 : S1 → Dist(S2) such that

∑
s′1∈S1

A1(ρ1)(s′1)δρ1(s′1) ∈ T2(s2).

We define A2 on FRuns(S2) by:

A2(ρ2) =
∑

ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s′1) · δρ1(s′1).

From the definition of µρ2 and the convexity of T2(s2), we can conclude that
A2(ρ2) also belongs to T2(s2), hence A2 is a scheduler of S2.
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Writing now A2 = S2(A2) = (Q2, qinit,2, ∆2, L2), the relation R′ can be
defined as ∼ (relating runs that are similar “step by step”, as defined above).
To see that the conditions are satisfied, let ρ1 and ρ2 be runs in Q1 and Q2

respectively. Then the mapping δ′ : Q1 → Dist(Q2) is obtained by:

δ′(ρ1)(ρ2) =

{
µρ2(ρ1)δρ1(lst(ρ1))(lst(ρ2)) if ρ1 ∼ ρ2,
0 otherwise.

Since A1 and A2 are PTSs, we just need to show that Equation (3.2) holds.

Writing ρ′2 = ρ2
A2(ρ2)−−−−→ s′2, we have:

∆2(ρ2)(ρ′2) = A2(ρ2)(s′2)

=
∑

ρ1∈sim(ρ2)

µρ2(ρ1)
∑
s′1∈S1

A1(ρ1)(s′1) · δρ1(s′1)(s′2)

=
∑

ρ1∈sim(ρ2)

∑
s′1∈S1

A1(ρ1)(s′1) · δ′(ρ1
A(ρ1)−−−−→ s′1)(ρ′2)

=
∑
ρ′1∈Q1

A1(ρ1)(s′1) · δ′(ρ′1)(ρ′2)

by defining ρ′1 = ρ1
A1(ρ1)−−−−→ s′1 for each ρ1 and remarking that δ′ = 0 if its

arguments are not similar runs. Hence:

∆2(ρ2)(ρ′2) =
∑
ρ′1∈Q1

∆1(ρ1)(ρ′1) · δ′(ρ′1)(ρ′2). ut

Consider for example the (memoryless) scheduler for the refined access
control mechanism S1 of Fig. 6(b) that assigns the following probabilities:

r0
1
3−→ r1 r0

2
3−→ r3 r1

4
5−→ r4 r1

1
5−→ r2 r2

7
8−→ r1 r2

1
8−→ r5

and all other probabilities being 1. The scheduled system is a PTS that is a
refinement of the LCMC S2 (Fig. 6(a)) scheduled by the scheduler with two
memory states > (initial) and ⊥ as follows:

In > or ⊥ : q0
1
3−→ q1, go to > q0

2
3−→ q2, go to >

In > : q1
4
5−→ q3, go to > q1

1
5−→ q1, go to ⊥ q1

0−→ q4

In ⊥ : q1
0−→ q3, q1

7
8−→ q1, go to > q1

1
8−→ q4, go to >

and all other probabilities being 1.

Now we show that refinement between two PTSs is sufficient to compare
their disclosure. Namely, we show that the probabilities of cones of words are
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equal in both systems. Note that although this property is well known to hold
for paths, it needs to be lifted to words in order to compare disclosure.

We start by considering the sets of traces globally; although it is folklore
that refinement implies trace inclusion, we provide a proof for completeness
sake.

Proposition 3 Let A1 and A2 be PTSs such that A1 refines A2.
Then Tr(A1) = Tr(A2).

Proof We prove the proposition by induction on a strengthened statement.
Namely, we claim that for every finite run in A1 there exists a similar run
in A2. Since an infinite run is the limit of the sequence of its finite prefixes,
this claim is sufficient to prove the proposition. Assume by induction that the
proposition holds for every word of length n. Let w ∈ FTr(A1) of length n+1.
We write w = w0a for some a ∈ Σ. Consider a run of A1 that produces w.
It is of the form ρ0s

′
1 where λ(s′1) = a; let s1 = lst(ρ0). Let ρ′0 be a run in

A2, similar to ρ0, and s2 = lst(ρ′0). By definition of refinement, there exists a
function δ such that for any state s′2 of A2,

∆2(s2)(s′2) =
∑
σ1∈S1

∆1(s1)(σ1) · δ(σ1)(s′2).

Moreover, whenever δ(σ1)(s′2) > 0, λ(s′1) = λ(s′2). Since δ(s′1) is a distribution
over S2, δ(s′1)(s′2) > 0 for at least one state s′2. Hence ρ′0s

′
2 is similar to ρ,

which shows in particular that w ∈ FTr(A2). ut

We additionally show that probabilities coincide:

Proposition 4 Let A1 and A2 be PTSs such that A1 refines A2. Then for
all w ∈ Σ∗, PA1(Cw) = PA2(Cw).

Since a given word may be produced by several paths, their probabilities should
be considered altogether. Hence the proof of the above proposition is not
immediate; it is quite technical and can be found in Appendix A.

Existing properties about refinement for PTSs can be retrieved as conse-
quences of the above result. They were for example obtained as a particular
case of sub-stochastic refinement in [3]. Although not necessary to prove the
main theorem, these results illustrate how constraining refinement between
PTSs is.

Recall that a probabilistic bisimulation [18] is a bisimulation that preserves
transition probabilities, i.e., a bisimulation relation R on states such that for
any equivalence class R of R, and any two related states sRs′, ∆(s)(R) =
∆(s′)(R).

Corollary 2 ([3]) Let A1 and A2 be PTSs such that A1 refines A2. Then
there exists a probabilistic bisimulation over the union of both PTSs.

Corollary 3 ([3]) Let A1 and A2 be PTSs such that A1 refines A2. Then A2

also refines A1.
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We are now ready to prove Theorem 3:

Proof Let A1 ∈ sat(S1). By Theorem 4 there exists A2 ∈ sat(S2) that is
refined by A1. By Proposition 4, PA1(Cw) = PA2(Cw) for every word w ∈
FTr(A1). Hence, for any ω-regular (hence measurable) language L, one has
PA1

(L) = PA2
(L). It is in particular the case for V(A1,O, ϕ) = V(A2,O, ϕ).

Therefore,Disc(A1,O, ϕ) = Disc(A2,O, ϕ). Consequently, the theorem holds.
ut

The result above can now be combined with compositional results on re-
finement obtained in [13]. In particular, since the conjunction of two CMC
specifications is the greatest lower bound with respect to weak refinement,
and LCMCs are closed under conjunction, we have:

Proposition 5 Let S1 and S2 be LCMC specifications. Then Disc(S1∧S2) ≤
min(Disc(S1), Disc(S2)).

6 Conclusion

This work investigates how refinement between probabilistic models impacts
the security, modeled as opacity, showing that disclosure is monotonic with
respect to refinement when implementations are produced by an adversary
through scheduling. We provide EXPTIME procedures to compute (1) the
worst-case disclosure for a subclass of LCMCs and (2) lower bounds on disclo-
sure for all LCMCs when restricted to polynomial size memory schedulers (in
the size of the LCMC).

Unfortunately, we conjecture that the disclosure cannot be computed in
general for LCMCs with modal edges.

While we considered here only the worst case scenario, it would be inter-
esting to handle also the best case, thus providing bounds on the disclosure
of all possible implementations. We also plan to extend our results to larger
sub-classes of CMCs or Parametric IMCs from [13,17]. In particular, a ques-
tion that was left aside is the parallel composition of LCMC, which generates
polynomial and possibly non-convex constraints on distributions. Studying the
effect of disclosure with respect to this operation would be an interesting (but
difficult) task.
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A Proof of Proposition 4

Assume by induction that the proposition holds for every word of length n. Let w ∈
FTr(A1) = FTr(A2) (recall Proposition 3) of length n+ 1 with w = w0a for some a ∈ Σ. A
run ρ′ of A2 that produces w can be assumed to be of the form ρ′ = ρ′0s

′
2 with tr(ρ′0) = w0

and λ(s′2) = a. Then PA2 (Cρ′ ) = PA2 (Cρ′0
)∆2(s2)(s′2) where s2 = lst(ρ′0) and hence

PA2
(Cw) =

∑
ρ′∈FRuns(A2)

tr(ρ′)=w

PA2
(Cρ′ )

=
∑

s2,s
′
2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2 (Cρ′0
) ·∆2(s2)(s′2)

Now let A1 s.t. A2 simulates A1 then, as∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0) =

∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0) = 1

we get

PA2 (Cw) =
∑

s2,s
′
2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2 (Cρ′0
) ·∆2(s2)(s′2) ·

∑
s1∈S1

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)

=
∑
s1∈S1
s2,s
′
2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2 (Cρ′0
) ·∆2(s2)(s′2)

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)

As the terms are null if it is not the case that s1Rs2, we have:

=
∑
s1∈S1
s2,s
′
2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2
(Cρ′0

) ·


∑
s′1∈S1

∆1(s1)(s′1) · δs1,s2 (s′1)(s′2)
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)


And as the terms are null if λ(s′1) 6= λ(s′2) = λ(lst(ρ)), we have:

=
∑
s1∈S1
s2,s
′
2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2
(Cρ′0

)
∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1) ·

δs1,s2 (s′1)(s′2)
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)
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PA2
(Cw) =

∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2
s′2∈S2

δs1,s2 (s′1)(s′2) ·


∑

ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2,lst(ρ
′)=s′2

PA2
(Cρ′0

)∆1(s1)(s′1) ·
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)


And since

∑
s′2∈S2

δs1,s2 (s′1)(s′2) = 1:

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
s2∈S2

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0,

lst(ρ′0)=s2

PA2
(Cρ′0

) ·∆1(s1)(s′1)
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2
(Cρ′0

) ·∆1(s1)(s′)
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

µρ′0
(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1) ·
∑

ρ′0∈FRuns(A2)

tr(ρ′0)=w0

∑
ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

PA2 (Cρ′0
)µρ′0

(ρ0)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1)
∑

ρ′0∈FRuns(A2)

tr(ρ′0)=w0

·
∑

ρ0∈FRuns(A1)

ρ0∼ρ′0
lst(ρ0)=s1

PA2 (Cρ′0
)

PA1
(Cρ0 )

PA1 (sim(ρ′0))

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1)
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0
lst(ρ0)=s1

PA1 (Cρ0 )

PA1 (sim(ρ′0))

∑
ρ′0∈FRuns(A2)

tr(ρ′0)=w0

PA2
(Cρ′0

)

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1) ·
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0
lst(ρ0)=s1

PA1 (Cρ0 )

PA1 (sim(ρ′0))
·PA2

(Cw0 )

and by induction hypothesis, PA2 (Cw0 ) = PA1 (Cw0 ), hence:

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1) ·
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0
lst(ρ0)=s1

PA1
(Cρ0 )

PA1
(sim(ρ′0))

·PA1 (Cw0 )

and since PA1
(sim(ρ′0)) = PA1

(Cw0 ):

=
∑
s1∈S1

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1) ·
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0
lst(ρ0)=s1

PA1 (Cρ0 )

=
∑
s1∈S1

∑
ρ0∈FRuns(A1)

tr(ρ0)=w0
lst(ρ0)=s1

PA1
(Cρ0 ) ·

∑
s′1∈S1

λ(s1)=λ(lst(ρ))

∆1(s1)(s′1)

=
∑

ρ0∈FRuns(A1)
tr(ρ0)=w0

PA1
(Cρ0 )∆1(lst(ρ0))(lst(ρ)) = PA1

(Cw)
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