
Preface

Selected and extended papers from FACS

2016

The component-based software development approach has emerged as a promising paradigm to cope

with the complexity of present-day software systems by bringing sound engineering principles into

software engineering. However, many challenging conceptual and technological issues still remain in

this area, theoretically as well as practically. Moreover, the advent of cloud computing, cyber-physical

systems, and of the Internet of Things has brought to the fore new dimensions, such as quality of service,

reconfiguration, and robustness to withstand inevitable faults, which require established concepts to be

revisited and new ones to be developed in order to meet the opportunities offered by those architectures.

The program of FACS 2016 included three invited talks, from Holger Giese, Kung-Kiu Lau, and Franck

Le Gall, and 14 research papers, including one tool paper, and 2 application and experience papers. The

annals of the conference, containing revised versions of the papers, were published in volume 10231 of

LNCS. Then the authors of 8 papers were selected and invited to submit to this special issue. After an

extensive and rigorous reviewing process, in which each paper was reviewed by at least three reviewers,

seven of them were selected to appear in this special issue and are summarized next.

Constrained Synthesis from Component Libraries, by Antonio Iannopollo, Stavros Tripakis, and Alberto

Sangiovanni-Vincentelli, is dedicated to the synthesis problem of a specific component composition

from component libraries, which is undecidable in a general setting. The authors consider a bounded

version of this problem with the goal to synthetize a composition of components satisfying a given

specification, while minimizing a composition cost which is based on individual costs of components.

The counter example-guided induction synthesis paradigm (CEGIS) is used to elaborate the problem

solution. The paper also reports on the developed tool and experimental results for two non-trivial case

studies.

Checking multi-view consistency of discrete systems with respect to periodic sampling abstractions, by

Maria Pittou, Pete Manolios, Jan Reineke, and Stavros Tripakis, presents a method to test consistency

between several models of a system obtained by periodic sampling of the system: each retains

information about every n-th action of the system. The paper provides an algorithm to decide consistency

of models (finite transitions systems or specific Büchi automata) that yields a canonical, i.e., the most

general, model that merges all the initial models if they are consistent. The paper also includes an

interesting discussion over the expressive power of transition systems with or without private variables,

showing that private variables can be necessary when merging models.

pCSSL: a Stochastic Extension to MARTE/CCSL for Modeling Uncertainty in Cyber Physical Systems,

by Dehui Dua, Ping Huang, Kaiqiang Jiang, and Frederic Mallet, explores the modeling, simulation, and

verification of Cyber Physical Systems interacting with an uncertain physical environment. Relying on

the standardized SysML/MARTE, the authors use pCCSL, a stochastic extension of the Clock

Constraints Specification Language CCSL, to model the interaction between the discrete and

deterministic control part of the system with the environment. Statistical model checking is then applied

to explore the system behaviour and drive the refinement process. The approach is illustrated using

energy usage strategies of a smart-building system.

Reasoning about Connectors Using Coq and Z3, by Xiyue Zhang, Weijiang Hong, Yi Li, and Meng

Sun, presents a logical representation of REO connectors, building predicates encoding complex

connectors from axioms defining basic channels and composition operators. The Coq theorem prover is

then used to prove properties of the connectors. When Coq fails, the authors search (bounded) counter-

examples using the SMT engine Z3. The paper includes examples of proofs of equivalence, refinement,

and of behavioural properties using Coq, and of counter-examples generation in Z3, on a number of

non-trivial use-cases.

Checking Business Process Evolution, by Ajay Krishna, Pascal Poizat, and Gwen Salaün, presents a

formal approach for checking the evolution relations of business process models expressed in BPMN

standard. The model evolution expressed by a branching relation between two distinct evolutions of a

same process, is concerned e.g. with refactoring or with feature insertion, at static time.

The objective is to check e.g. if important properties of the original behaviour are preserved by the

evolved process. The proposed approach is based on process algebras (LNT) to formalise the semantics

of BPMN processes. This enables the use of the CADP toolset for the automated verification.

Unifying Modal Interface Theories and Compositional Input/Output Conformance Testing, by Lars

Luthmann, Stephan Mennicke, and Malte Lochau, presents a theory extending the IOLTS formalism,

and the I/O conformance relation, “ioco”, with modal (may/must) capacities and interface automata

specification model. The authors propose a formal foundation for I/O-conformance testing theory based

on a modified version of Modal Interface Automata with Input Refusals (IR-MIA). Then they prove

correctness and compositionality properties of the corresponding modal I/O-conformance relation,

called modal-irioco, w. r. t. a collection of different operators on IR-MIA.

Hierarchical Featured State Machines, by Vanderson Hafemann Fragal, Adenilso Simao, and

Mohammad Reza Mousavi, addresses the design of software product lines (SPLs) by defining a

formalism and a specification language, Hierarchical Featured State Machines (HFSM), motivated by

complex systems’ design and analysis, the size of which makes them hard to build and to maintain. The

article reports on a tool for editing and validating specifications to guarantee their correctness, and on a

case study to illustrate its benefits.

Finally, our most sincere thanks go to all the people who have made this special issue possible. To the

authors, who trusted the FACS conference to discuss and publish their work, agreed to write extended

versions of their papers and later incorporated all the corrections and improvements required by a careful

refereeing process. To the referees, who have donated their time and effort to guarantee the highest

quality for each submission. Our special thanks to Jan Bergstra, Bas van Vlijmen and the editorial staff

at Elsevier, for agreeing to publish this special issue as a volume of the Science of Computer

Programming journal, and for all their help in bringing this special issue to publication.

March 2019

Olga Kouchnarenko, University of Franche-Comté, Besançon, France

Eric Madelaine, Inria, Université Côte d’Azur, Sophia Antipolis, France

AQ1

