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A B S T R A C T   

Whether speech prosody truly and naturally reflects a speaker’s subjective confidence, rather than other di-
mensions such as objective accuracy, is unclear. Here, using a new approach combing psychophysics with 
acoustic analysis and automatic classification of verbal reports, we tease apart the contributions of sensory ev-
idence, accuracy, and subjective confidence to speech prosody. We find that subjective confidence and objective 
accuracy are distinctly reflected in the loudness, duration and intonation of verbal reports. Strikingly, we show 
that a speaker’s accuracy is encoded in speech prosody beyond their own metacognitive awareness, and that it 
can be automatically decoded from this information alone with performances up to 60%. These findings 
demonstrate that confidence and accuracy have separable prosodic signatures that are manifested with different 
timings, and on different acoustic dimensions. Thus, both subjective mental states of confidence, and objective 
states related to competence, can be directly inferred from this natural behavior.   

1. Introduction 

Humans’ subjective sense of confidence typically reflects an appro-
priate estimation of the reliability of their own beliefs and decisions 
(Bang & Fleming, 2018; Barthelmé & Mamassian, 2010), but whether 
and how this information can truly be perceived by social partners re-
mains unclear. This is an important question because the ability to share 
subjective states of confidence is crucial for various aspects of human 
cooperation, ranging from collective decision-making to cultural trans-
mission (Bahrami et al., 2010; Dunstone & Caldwell, 2018; Heyes, 2016; 
Sperber et al., 2010). Past research has documented how speakers 
deliberately and explicitly communicate their levels of certainty, in 
particular through language (Aikhenvald, 2018; de Haan, 2001; Fusaroli 
et al., 2012). However, morphosyntactic markers of epistemicity greatly 
vary from one language to the next (Aikhenvald, 2018; de Haan, 2001; 
Roseano, González, Borràs-Comes, & Prieto, 2016), so such an explicit 
sharing of subjective confidence requires partners to engage in complex 
alignment and calibration processes (Bang et al., 2017; Fusaroli et al., 
2012) and extensive cultural learning (Goupil & Kouider, 2019; Heyes, 
Bang, Shea, Frith, & Fleming, 2020). 

It has been argued that receivers’ ability to communicate and 
monitor senders’ confidence and competence is crucial to enable 

cultures and languages to stabilize in the first place, because mecha-
nisms of epistemic vigilance ensure that misinformation remains 
limited, and that stable conventional forms can spread (Sperber et al., 
2010). If this hypothesis is correct, it is likely that basic mechanisms - 
that do not depend on language and culture - should pre-exist to enable 
humans to detect unreliability from their social partners. This – along 
with findings showing that communicating states of uncertainty is 
highly adaptive (Bahrami et al., 2010; Dunstone & Caldwell, 2018; 
Heyes, 2016) and starts relatively early in life (Goupil, Romand- 
Monnier, & Kouider, 2016) - suggests that lower-level, more implicit 
mechanisms allow social partners to quickly and efficiently share their 
confidence, without the necessary involvement of voluntary control and 
communicative intentions on the side of senders. 

Yet, whether and how observers may be able to detect subjective 
states of confidence directly from their partners’ behaviors remains 
unclear. Typically, human adults are able to assess their own perfor-
mances, which in turn vary with sensory evidence. This means that the 
three constructs of sensory evidence, objective accuracy and subjective 
confidence tightly correlate (Bang & Fleming, 2018; Barthelmé & 
Mamassian, 2010). Thus, whether confidence can truly be perceived 
from behavior, or only indirectly inferred by observing behavioral 
manifestations of underlying constructs such as decision-making or 
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perception, is not immediately clear. 
More fundamentally, there is also considerable debate regarding 

whether or not confidence reduces to low-level aspects of the decision- 
making process (Fetsch, Kiani, Newsome, & Shadlen, 2014; Kiani & 
Shadlen, 2009), or rather, results from distinct higher-order, inferential 
processes (Fleming & Daw, 2017; Hampton, 2004; Koriat, 2012; Moulin 
& Souchay, 2015; Proust, 2012). In favor of this second hypothesis, 
dissociations between objective accuracy and subjective confidence 
have been observed at the level of the brain (Bang & Fleming, 2018; 
Cortese, Amano, Koizumi, Kawato, & Lau, 2016). Furthermore, in-
dividuals differ in their metacognitive ability to assess their own beliefs 
and performances (Fleming, Weil, Nagy, Dolan, & Rees, 2010; Navajas 
et al., 2017), and often show over-confidence biases (Moore & Healy, 
2008; Zarnoth & Sniezek, 1997), which means that subjective confi-
dence does not always stricly follow performances. Beyond inter- 
individual variability, specific alterations such as unconscious evi-
dence accumulation (Vlassova, Donkin, & Pearson, 2014), stress (Reyes, 
Silva, Jaramillo, Rehbein, & Sackur, 2015), or targeted pharmalogical 
interventions (Hauser et al., 2017), can also lead to dissociations be-
tween performances and confidence. It is therefore important to un-
derstand whether behavioral manifestations truly reflect subjective 
confidence, over and beyond lower-level processes tightly linked to 
decision-making. 

Candidate natural behaviors that can truly convey subjective confi-
dence, over and beyond objective performances, have so far proved 
surprisingly difficult to identify. Two studies examined observers’ abil-
ity to rely on response times to infer others’ subjective confidence, and 
revealed that such inferences crucially depend on an observer’s own 
experience with a task (Koriat & Ackerman, 2010; Patel, Fleming, & 
Kilner, 2012). This may not be surprising given that the relationship 
between response times, confidence and accuracy is task-dependent, 
varying in particular with the speed - accuracy trade off (Pleskac & 
Busemeyer, 2010). More to the point, these results imply that response 
times are not a direct and stable proxy for inferring subjective confi-
dence, and that they can only be exploited to this end when observers 
have a first-hand experience with observees’ task. Similarly, although 
post-decision persistence times have been argued to constitute a directly 
observable manifestation of confidence in animals (Kepecs, Uchida, 
Zariwala, & Mainen, 2008) and preverbal infants (Goupil & Kouider, 
2016), other researchers contend that this measure directly reflects the 
strength or reliability of first-order representations rather than subjec-
tive confidence per se (Fleming & Daw, 2017; Insabato, Pannunzi, & 
Deco, 2016). Thus, so far, a clear behavioral signature of subjective 
confidence has been lacking, as research focusing on response or 
persistence times struggled to clearly dissociate genuine behavioral 
manifestations of subjective confidence from those directly tied to de-
cision-making. 

Here, we focus on an alternative candidate: speech prosody. It has 
long been suggested that prosody constitutes one of the fundamental 
ways through which speakers communicate their levels of confidence 
(Brennan & Williams, 1995; Scherer, London, & Wolf, 1973; Smith & 
Clark, 1993). Confident utterances are generally spoken with a falling 
intonation and louder volumes as compared to doubtful ones (Brennan 
& Williams, 1995; Jiang & Pell, 2017; Kimble & Seidel, 1991), and lis-
teners are able to decode these prosodic signatures to infer a speakers’ 
level of uncertainty (Brennan & Williams, 1995; Goupil, Ponsot, 
Richardson, Reyes, & Aucouturier, 2021; Jiang & Pell, 2017), that are 
seemingly preserved across languages (Chen & Gussenhoven, 2003; 
Goupil et al., 2021). Yet, the determinants of these prosodic manifes-
tations of confidence in senders (that we hereafter refer to as epistemic 
prosody) remain unclear, for at least two reasons. 

First, past research typically relied on methodologies in which actors 
are asked to deliberately produce utterances with various levels of un-
certainty in social contexts. This is known to provide a distorted picture, 
as requesting participants to produce communicative displays leads 
them to produce highly stereotypical rather than genuine displays 

(Juslin, Laukka, & Bänziger, 2018). At a more fundamental level, 
measuring prosodic displays during social interactions necessarily leads 
to conflating the contribution of natural expressions of confidence (i.e., a 
behavior naturally means X when such behavior is typically associated 
with X) (Grice, 1957; Wharton, 2009), and that of socially induced, 
deliberate self-presentation mechanisms: speakers do not only show 
prosodic displays automatically, they can also shape these displays 
pragmatically, for instance in order to persuade (Van Zant & Berger, 
2019) or to appear more dominant (Cheng, Tracy, Ho, & Henrich, 2016). 
Thus, past research leaves open the question of whether epistemic 
prosody is only displayed when the speaker has a communicative 
intention, or whether it is constitutively (or naturally) associated with 
confidence. A first step towards disentangling these influences, and 
investigating what these prosodic manifestations naturally mean, can be 
to measure the relationships between confidence and prosodic features 
in the absence of an audience, and thus, of self-presentation and socially 
induced mechanisms. One previous study followed this rationale, and 
found that confidence impacts speakers’ loudness and speech rate even 
in the absence of an audience (Kimble & Seidel, 1991). This questions 
the assumption that these prosodic signatures are primarily communi-
cative, and suggests instead that they may reflect confidence constitu-
tively, thereby representing natural signs that the speaker is confident. 
This study only measured loudness and speech rate however, so it re-
mains unknown whether an important component of epistemic prosody, 
intonation, is also automatically impacted by confidence in the absence 
of an audience. 

Second, typical approaches to this question do not allow discrimi-
nating the respective influence of sensory evidence, accuracy and con-
fidence on prosody, because typically the impact of these distinct 
variables are not measured separately (Dijkstra, Krahmer, & Swerts, 
2006; Jiang, Gossack-Keenan, & Pell, 2020; Jiang & Pell, 2016, 2017; 
Kimble & Seidel, 1991; Van Zant & Berger, 2019). Thus, it remains 
unknown what exact psychological variable these prosodic manifesta-
tions reflect: do they reflect competence (how accurate speakers actually 
are), or do they genuinely reveal subjective feelings of confidence (how 
accurate speakers think they are), thus being akin to non-verbal variants 
of linguistic expressions such as “I don’t know”? 

A first possibility is that epistemic prosody truly reflects subjective 
feelings of confidence or doubt. Alternatively, it may be that these 
prosodic signatures actually reflect underlying psychological processes 
such as cognitive effort or fluency, noise in the decision-making process, 
the availability of the information relevant to the current proposition 
being uttered (e.g., sensory evidence), or the truth value of the utterance 
(i.e. the objective accuracy of the speaker). If such was the case, 
epistemic prosody would reflect competence rather than confidence, 
and constitute a rather loose proxy to subjective metacognitive states. 
Finally, a third possibility is that different aspects of prosody (e.g., 
speech rate, intonation, loudness) reflect different underlying percep-
tual, cognitive or metacognitive processes. For instance, it may be that – 
as is the case in neural signals (Fleming & Dolan, 2012) – decision 
making impacts speech prosody earlier in time, with subjective confi-
dence being reflected only later in the utterance. It may also be that 
different acoustic dimensions (e.g., loudness, intonation) reflect distinct 
underlying mental processes. 

In the present study, we thus ask whether epistemic prosody reflects 
a speaker’s metacognition (i.e., subjective confidence), cognition (i.e., 
accuracy/competence) or perception (e.g., the amount of sensory evi-
dence that is available to perform a decision), and whether these distinct 
mental components can be separated from speech prosody alone. 
Because we are interested in which prosodic signatures naturally reflect 
a speaker’s level of confidence or competence, over and beyond social 
influences and self-presentation effects, we test participants in isolation. 
Finally, we also examine whether speakers’ competence (i.e., their 
global level of accuracy) and metacognitive sensitivity (i.e., their global 
ability to monitor their accuracy) modulates how confidence is reflected 
in their voice, thereby testing the assumptions that explicit 
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metacognition is necessary for individuals to optimally share their 
confidence (Shea et al., 2014), and that epistemic prosody constitutes an 
efficient way to filter upcoming social information because it depends on 
an individual’s level of competence (or meta-competence). 

We address these questions by combining a psychophysical para-
digm, signal detection theory, automatic classification analysis, and 
acoustic analysis of verbal reports produced in a non-social context. 
Isolated participants’ verbal responses were recorded during a visual 
detection task allowing to finely manipulate - and measure - sensory 
evidence, accuracy and confidence (see Fig. 1). By analyzing the pitch, 
intonation, loudness, and duration of these verbal responses as a func-
tion of sensory evidence, accuracy and confidence, we find that these 
psychological processes have distinct prosodic signatures. We then 
confirm this result by showing that an automatic classifier is able to 
decode confidence and accuracy orthogonally from speech prosody 
alone. Finally, we examine individual factors that modulate the auto-
matic expression of prosodic signatures of confidence and competence. 

2. Materials and methods 

2.1. Participants 

We tested 40 participants (21 females, mean age 22.8 +/− 3.42 SD) 
who had no major hearing or visual impairments. This sample size was 
chosen a priori based on previous studies in our group (Goupil & 
Aucouturier, 2020; Ponsot, Burred, Belin, & Aucouturier, 2018), and 
given constraints associated with other experiments that were run on the 
same group of participants (see below). Participants signed informed 
consents before the study, and received a financial compensation. Out of 
the 40 participants, 32 were students, 4 were employees and 4 were 
unemployed. They were from relatively healthy economic background, 
with 8 out of 40 participants reporting a household income below the 
national median; participant’s family income was distributed as follows: 
less than 500 euros (N = 1), between 500 and 2000 euros (7), between 
2000 and 5000 (N = 23), above 5000 (N = 6), not reported (N = 3). 

2.2. Procedure 

Participants ran three experiments during the same session. In the 
first and third experiments, participants had to memorize spoken 
pseudo-words, and to judge whether artificially manipulated voices 
were more or less reliable respectively. The results from these two ex-
periments address a different set of questions related to speakers’ reli-
ability and perception, and they have been reported in a separate article 
(Goupil et al., 2021). The second experiment is the focus of the current 
paper. In this visual detection task, participants first saw a target bi- 
syllabic pseudo-word (bazin, bizan, bivan, bavin, bodou, budou, dejon, 
dojen, dobue, duboe, vagio, vogia, vevon, voven, vizou or vuzoi) that 
appeared for 16 ms while they were fixating a cross in the middle of the 
computer screen (see Fig. 1). The target could appear at the top or the 
bottom of the screen, with equiprobable likelihoods. Targets were fol-
lowed by a surrounding mask after a variable stimulus onset asynchrony 
(SOA: 16, 50, 83 or 116 ms) in order to induce various level of visibility, 
and thus, confidence in their verbal response. The mask was presented 
for 200 ms. Following the mask, the target word (e.g., bazin) and an 
alternative “foil” pseudo-word (e.g., bazin, bizan) were presented to the 
left or right side of the central fixation. Participants were asked to 
recognize the target word, and to pronounce their verbal response out 
loud so that it could be recorded. They then reported how well they saw 
the target on a perceptual awareness (PAS) scale (Ramsøy & Overgaard, 
2004), and finally, their confidence in their verbal response on a scale 
from 1 to 4. The experiment was coded in python with the PsychoPy 
toolbox (Peirce, 2007). The target word (16 possibilities), SOA (4 pos-
sibilities), position of the response (2 possibilities: left or right) and 
position of the target word (2 possibilities: top or bottom) were coun-
terbalanced within participants with a Latin square, resulting in 256 
trials per participants. At the end of the session participants were asked 
to provide information regarding their socio-economic status: they were 
asked about their level of education, income and occupation, and given 
the fact that a majority of them were students, we also asked them to 
provide the same information concerning their parents. These data were 
aggregated to obtain a composite score of socio-economic status (SES). 
Participants also filled in a questionnaire assessing their level of 

Fig. 1. Design of the verbal production task. Participants were asked to fixate the center of the screen while a word was flashed above or below the fixation cross for 
16 ms. A masked followed the presentation of the word after a variable SOA. Participants were then asked to recognize the flashed word in between two options, 
before reporting upon the visibility of the flashed word on the PAS scale, and reporting how sure they were that they pronounced the correct word on a scale from 1 
to 4. 
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empathy, which allows computing a general score over three dimensions 
measuring cognitive empathy, emotional disconnection and emotional 
contagion (French version of the BESA, Carré, Stefaniak, D’Ambrosio, 
Bensalah, & Besche-Richard, 2013). 

2.3. Behavioral analysis 

Unless stated otherwise, analyses were performed, and graphs ob-
tained with python. Verbal responses were identified by a coder naive to 
the experimental conditions. Out of the 10,240 trials (256*40 partici-
pants), 1207 (~11.8%) were excluded because the verbal response 
couldn’t be reliably identified by the coder (e.g., because of a problem of 
pronunciation, or because the verbal response was masked by back-
ground noise), resulting in a total of 9033 verbal responses. The accu-
racy of participants’ verbal responses were classified as hits, misses, 
correct rejections or false alarms in order to compute sensitivity, i.e., a d’ 
(Green & Swets, 1966). Metacognitive sensitivity (meta-d’) was 
computed through a hierarchical Bayesian analysis with the Hmeta 

toolbox in Matlab (Fleming, 2017). For each participant, a global level of 
competence was also estimated by averaging their d’ over the whole 
experiment. Confidence bias was estimated for each participant as the 
average of their confidence rescaled from zero to one, to which we 
subtracted their average accuracy in order to specifically estimate bias 
(but similar results were obtained with a simple average of confidence 
used in previous studies running similar regression analysis, e.g., 
Rollwage, Dolan, & Fleming, 2018). 

2.4. Acoustic analysis 

Recordings were segmented to extract isolated spoken pseudo- 
words. The fundamental frequency (pitch for short hereafter, in Hz) of 
each verbal response was then extracted in 20 successive temporal 
windows using Praat, equally dividing the duration of the recording to 
allow comparisons across trials and participants. Root-Mean-Square 
(RMS) amplitude was also computed in 20 windows, as well as word 
durations. Pitch and RMS profiles were then normalized for each 

Fig. 2. Acoustic analysis of verbal responses. Pitch, loudness (RMS) and duration values for high minus low confidence trials (1–2 versus 3–4; top – red), correct 
minus incorrect trials (middle – blue) and long (85–116) minus short (16-50 ms) SOAs (bottom – green). Pitch: for the contrast between high and low confidence, the 
permutation test revealed two significant clusters: the first one ranging from the 5rd to the 11th segment (p = 0.008), and the second ranging from the 16th to the 
20th segment p = 0.036). For the contrast between correct and incorrect responses, the permutation test revealed one significant cluster (p = 0.002) from the 5th to 
the 13th segment. For the contrast between high and low SOAs, the permutation test revealed one significant cluster (p = 0.017) from the 6th to the 10th segment. 
RMS: the permutation test revealed no significant clusters with the threshold of p < 0.05. Circles represents the significant clusters obtained with the permutation test 
(small circles significance threshold of p < 0.05, bigger circles: p < 0.01). Shaded areas and error bars show 95% confidence intervals. * represents the significant 
difference between the average acoustic features of high versus low confidence responses (paired t-test, threshold of p < 0.05). Heatmaps show the t-values of the 
hierarchical regression computed separately in each of the twenty temporal windows and including all three (SOA, accuracy and confidence) factors. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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participant, word and segment, and duration was normalized for each 
participant and word (z-scored). To construct the profiles shown in 
Fig. 2, these measures were then averaged separately for each partici-
pant, each target word and each level of confidence (high: 3 and 4 
confidence judgments / low: 1 and 2), and the measures for confident 
responses were subtracted from the measures for doubtful responses. A 
similar analysis contrasted correct versus incorrect responses, and short 
(16 and 50 ms) versus long (83 and 116 ms) SOAs. 

2.5. Statistics 

Hierarchical linear models were run with pitch, RMS or duration as a 
dependent variable, and with participant and response word as random 
intercepts. Fixed factors included SOA, accuracy and confidence for 
duration, and SOA, accuracy, confidence and segment for pitch and 
loudness, in order to account for dynamic aspects. Factors were entered 
into the model in a hierarchical order from the lowest level (i.e., sensory, 
SOA) to the highest level (i.e., subjective confidence). We report beta 
estimates, standard errors, t-values, and p-values estimated through hi-
erarchical model comparisons with the lme4 and lmerTest packages in R 
(Kuznetsova, Brockhoff, & Christensen, 2014). To better describe the 
dynamic effect of confidence on intonation, we relied on the MNE 
package in python to identify significant clusters with a permutation test 
providing p-values corrected for multiple comparisons (Gramfort et al., 
2014). The permutation test identified 3 clusters: segments 0 to 1 (p =
0.2), segments 5 to 11 (p = 0.012) and segments 16 to 20 (p = 0.042). 
Pitch was then averaged in the two significant clusters and we examined 
which variables (SOA, confidence, accuracy) predicted pitch in these 
two windows separately by running hierarchical linear regressions and 
mediation analysis with the mediation package in R (Tingley, Yamamoto, 
Hirose, Keele, & Imai, 2014). 

For the regression analysis presented in Fig. 5, we ran three (one for 
each acoustic dimension) linear regressions according to the following 
formula: Dependent Variable (Euclidean Distance, Loudness or Duration 
difference score) ~ (Gender + Age + BESA + SES (composite) +
Competence + Confidence Bias + Metacognitive Sensitivity) * Measure 
(Accuracy or Confidence). We report Bonferroni corrected p-values to 
account for the fact that there were three comparisons (i.e., three 
acoustic dimensions). Note that similar conclusions were reached with a 
regression analysis involving as Dependent Variables z-scored Pitch, 
Duration and RMS values and testing the interaction between all factors 
and Confidence/Accuracy signaling, although this analysis is less sen-
sible than the one we present here (which relies on Euclidean distance to 
also consider temporal aspects of intonation). 

2.6. Machine classification 

We used two types of classification algorithms: k-nearest neighbors 
(kNN, Fig. 4), which were run using a custom-made script, and as a 
confirmatory method, support-vector machines (SVM, Fig. S4) with a 
radial basis function (RBF) kernel, which were run with the scikit-learn 
toolbox for python (Pedregosa et al., 2011). Both types of classifiers have 
been used extensively in previous research to classify vocalizations in 
both humans and animals (e.g., see Dezecache, Zuberbühler, Davila- 
Ross, & Dahl, 2019; Laukka, Neiberg, & Elfenbein, 2014; Piazza, Ior-
dan, & Lew-Williams, 2017…). The classifiers aimed to decode the 
confidence or the accuracy of the participants from the acoustics prop-
erties of their verbal reports, based on distances computed between their 
pitch, loudness and duration. For each classification method, we con-
ducted two separate classifications for the task of estimating accuracy, 
and estimating confidence. 

For the method based on k-nearest neighbors, training and testing 
datasets for each of the two classifications (i.e., decoding accuracy or 
confidence) were constructed as follows: a balanced subset of 200 verbal 
responses was selected pseudo-randomly from the full dataset for each 
level of the other class: if accuracy was being decoded, a subset was 

selected for each level of confidence; if confidence was being decoded, a 
subset was selected for each level of accuracy. The dataset was then 
randomly divided in 5 folds of 40 items. This set size was chosen so as to 
allow crossing all combinations of accuracy, SOA and confidence to 
create balanced datasets (e.g., using training and testing datasets 
composed of 1/32 of each combinations of accuracy, confidence levels 
and SOAs). This led to choosing a set size of 100, as the smallest com-
bination of all SOAs/confidence/accuracy comprised 29 items. Each fold 
was thus balanced to contain 50% (i.e., 20 items) of one class level (e.g., 
correct or high confidence) trials, and 50% of the other class level (e.g., 
incorrect or low confidence), as well as the same numbers of items for 
each level of SOA. This equiprobable combinations of conditions 
ensured that the classifier had to decode the class blindly with respect to 
the other conditions. Performances were then computed in a 5-fold 
cross-validation procedure, where one of the folds iteratively served as 
a “test set”, and the four other folds served as “training test” (Anguita, 
Ghio, Ridella, & Sterpi, 2009). For each items of the test set, the 
Euclidean distance between pitch and loudness profiles for this item, and 
each of the items of the training test, was computed. For duration, a 
simple difference was computed. For each of the three acoustic di-
mensions, the 5 smallest distances were then identified, and a prediction 
of the accuracy or confidence of the test item was made as the most 
frequent class amongst the nearest neighbors (five for each acoustic 
dimension). Classifier performance was quantified with the F-value, 
which is the harmonic mean of the recall and precision of the classifier. 
In order to allow sufficient resampling of the original dataset, the whole 
process was repeated and averaged over 20 iterations for each classifi-
cation. Significance was then assessed with a permutation procedure. 
For confidence decoding, confidence values were randomly reshuffled 
for each accuracy level and repetition (i.e., for each fold); for accuracy 
decoding, accuracy values were randomly reshuffled for each confi-
dence level. Chance-level was then estimated by computing classifica-
tion performance for these permuted data in the same way as in the real 
dataset, by computing an F-value. Real and permuted data F-values were 
then compared by running a rmANOVA with dataset (permuted, ran-
domized) and condition (confidence or accuracy) as independent vari-
ables, and repetitions as a repeated measure. Finally, post-hoc 
differences between permuted and real data were assessed with Tukey 
post-hoc HSD with false-discovery rate correction for each level of 
confidence (or accuracy). In order to see if the results would generalize 
with another classification method, the same analysis was then repli-
cated with SVMs (Fig. S4). 

All data and codes are available on the Open Science Framework 
(Goupil & Aucouturier, 2020). 

3. Results 

3.1. Relationship between sensory evidence, accuracy and confidence 

First, we checked that our experimental paradigm was efficient in 
inducing various levels of confidence in our participants. A hierarchical 
linear regression revealed that confidence (four levels) was predicted 
both by SOA (beta = 0.007 +/− 0.0006 se, t = 10, p < 0.001) and ac-
curacy (beta = 0.85 +/− 0.06 se, t = 13, p < 0.001), and that there was 
no interaction between these two factors (p > 0.2; see Fig. S1.B. and 
supplementary materials for further details). The fact that confidence 
increased with SOA over and beyond accuracy is consistent with pre-
vious reports suggesting that confidence is also directly impacted by the 
visibility of the stimulus (Rausch, Hellmann, & Zehetleitner, 2018). We 
also computed an index of metacognitive sensitivity reflecting the extent 
to which participants’ confidence ratings tracked the reliability of their 
decisions (Fleming, 2017). Meta-d’ was better than chance for every 
SOA (all p-values <0.001, see Fig. S1.D), and increased with SOA (F 
(1,39) = 74, p < 0.001, ηp2 = 0.65), a finding that is consistent with 
previous research relying on similar visual paradigms (Charles, Van 
Opstal, Marti, & Dehaene, 2013; Kunimoto, Miller, & Pashler, 2001). 
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Meta-d’ was significantly above chance for seen stimuli (glimpse: M =
1.36 +/− 0.88, t(39) = 6.2, p < 0.001, Cohen’s d = 1.4; almost clear: M 
= 1.19 +/− 0.72, t(39) = 5.97, p < 0.001, Cohen’s d = 1.35, clear: M =
2.55 +/− 1.27, t(39) = 10.12, p < 0.001, Cohen’s d = 2.29), but it was 
not significantly better than chance for unseen stimuli (M = 0.59 +/−
1.24, t(39) = 0.46, p = 0.64, Cohen’s d = 0.1). This result is in line with 
research suggesting that metacognitive sensitivity depends on conscious 
access (Persaud, McLeod, & Cowey, 2007), but contrasts with other 
studies reporting that metacognitive sensitivity can be better than 
chance even for unseen stimuli (Charles et al., 2013). This may be due to 
the fact that we rely on verbal reports here, and this hypothesis could be 
specifically explored in further studies. 

3.2. Speech prosody reflects subjective confidence, even in the absence of 
an audience 

We then turned to the analysis of verbal productions. First, we 
wanted to compare the prosody of doubtful and confident responses, to 
confirm that prosodic markers of confidence are present in speech even 
in a non-social context, as expected from a previous study that only 
examined global loudness and speech rate (Kimble & Seidel, 1991). To 
this end, we extracted the duration, pitch profiles and loudness profiles 
of each verbal response. As can be seen in Fig. 2 and Fig. S2, compared to 
doubtful responses, confident responses were characterized by rising - 
falling intonations (LHL%), longer durations, and increased volumes - 
mostly towards the beginning of the word. 

Regarding mean pitch, there were no significant differences between 
confident and doubtful responses (mean difference in pitch = − 0.23 
+/− 2.16, t(39) = − 0.7, p = 0.5, Cohen’s d = 0.1). This contrasts with 
previous research involving actor-produced speech (Jiang & Pell, 2017), 
or speakers whose intention is to persuade their interlocutors (Van Zant 
& Berger, 2019), that have produced discrepant findings concerning the 
relation between mean pitch and confidence. Our result suggests that 
such discrepancy may be due to focusing on mean pitch. One possibility 
is that mean pitch is associated to social traits (e.g., dominance, trust-
worthiness), rather than attitudes such as confidence, that are more 
related to dynamic aspects of pitch (i.e., intonation, (Goupil et al., 2021; 
McAleer, Todorov, Belin, Taylor, & Iredell, 2014; Ponsot et al., 2018). 
Mean pitch may also be easier to manipulate than intonation for 
speakers asked to persuade or simulate confidence, which would pro-
vide a distorted picture of what “confident” prosodies naturally sound 
like due to social influences and self-presentation effects. 

By contrast, as expected intonation (i.e., evolutions of the pitch over 
time) was impacted by confidence: a rmANOVA revealed an interaction 
between the level of confidence (including the full range of responses 
from 1 to 4) and segment (F(1,39) = 7.3, p = 0.013, ηp2 = 0.01), as well 
as main effects of both segment (F(1,39) = 4.1, p < 0.05, ηp2 = 0.08) 
and confidence level (F(1,39) = 5.5, p < 0.03, ηp2 = 0.01). As can be 
seen in Fig. 2 and S2 this interaction reflects the fact that confident re-
sponses present a rise and fall pattern, while doubtful responses present 
the opposite fall and rise pattern. 

Regarding loudness, there was a static effect such that confident 
responses were louder than doubtful ones (mean difference = 0.36 +/−
1, t(39) = 2.15, p = 0.038, d = 0.34). A rmANOVA also revealed a main 
effect of segment (F(1,39) = 183, p < 0.001, ηp2 = 0.78) and confidence 
level (F(1,39) = 5.25, p < 0.03, ηp2 = 0.02) but no interaction (F < 1), 
suggesting that contrary to pitch, the effect was global rather than 
dynamic. 

Overall, the pattern of intonation and loudness observed in partici-
pants’ verbal productions was consistent with previous results obtained 
in social contexts (Brennan & Williams, 1995; Dijkstra et al., 2006; Jiang 
& Pell, 2017). These results confirm that these two acoustic parameters 
are consistent indices that can be used by listeners to infer the confi-
dence of a speaker, and show that these prosodic manifestations of 
confidence are constitutively present even in the absence of an audience. 

Regarding duration, we found that confident responses were longer 

than doubtful responses (mean difference = 7.85 +/− 21.4, t(39) = 2.3, 
p = 0.027, d = 0.37). This is inconsistent with previous reports that 
confident responses are produced with a faster speech rate (Jiang & Pell, 
2017; Scherer et al., 1973), and also with some results obtained in 
perception (Goupil et al., 2021). Thus, like response times, speech rate 
may not be a stable index enabling listeners to infer the reliability of a 
speaker. This is potentially due to the fact that the relationship between 
response speed, accuracy and confidence greatly varies depending on 
task characteristics such as the speed accuracy trade off (our task here 
was speeded, which would typically lead to slower responses for correct 
and confident responses) (Pleskac & Busemeyer, 2010). Interestingly, 
previous research has also shown that experience with the contingencies 
of a task is required to make accurate inferences about how response 
times relate to confidence in others (Koriat & Ackerman, 2010; Patel 
et al., 2012). In order to further elucidate the precise relationship be-
tween speech rate and confidence, further research relying on the 
method that we develop here could systematically vary the speed ac-
curacy trade-off. 

Regardless of these fine-grained aspects, the presence of prosodic 
markers of confidence in the absence of an interlocutor confirms that 
they constitute natural signs (Kimble & Seidel, 1991), that are present 
even when speakers have no deliberate intention to communicate their 
uncertainty. Next, we wanted to determine what these prosodic markers 
really reflect: metacognition, cognition, or perception? 

3.3. Respective contributions of sensory evidence, accuracy and 
confidence to speech prosody 

To this aim, we also computed differential prosodic profiles for 
correct versus incorrect responses, and long versus short SOAs. As can be 
seen in Fig. 2, we observed that both accuracy (middle row) and SOA 
(bottom row) were also reflected to some extent in prosody. To elucidate 
whether prosody is specifically linked to confidence or related to other 
underlying variables, we ran hierarchical linear mixed regressions 
assessing the impact of SOA (four durations), accuracy (two levels) and 
confidence (four levels) on duration, loudness and pitch (see Table 1 for 
the full outputs of the models). 

For duration, we included SOA, accuracy and confidence as fixed 
factors, plus interactions between these factors, and participant and 
target word as random factors. The regression revealed that duration 
was significantly predicted by confidence (beta = 0.035 +/− 0.01 se, t 
= 3, p = 0.003), but not significantly so by accuracy (p > 0.7) and SOA 
(p > 0.8) when the three covariates were present in the model. In 
addition, there were no significant interactions between the three 
acoustic dimensions (all p-values >0.1). Thus, overall, duration was 
predicted by subjective confidence rather than underlying variables, 
with confident responses being spoken slower than doubtful responses. 

For pitch and loudness, we ran a similar model that also included 
interactions with segment, since these two acoustic features typically 
vary across time. Regarding loudness, there were no interactions with 
segment (all p-values >0.8) however, revealing that the effects were 
mostly non-dynamic for this acoustic dimension; we therefore reduced 
the model to the static model used for duration above. This static model 
revealed a main effect of accuracy (beta = 0.07 +/− 0.03 se, t = 2.7, p =
0.007), while the main effect of confidence (p = 0.21) and SOA (p =
0.36) were not significant when entering the three co-variates into the 
model. Furthermore, there were no interactions between the three var-
iables (all p-values >0.2). Hence, it appears that loudness primarily 
reflects accuracy rather than confidence per se, or sensory evidence. 

Regarding pitch, we found a significant main effect of confidence 
(beta = 0.08 +/− 0.008 se, t = 10.7, p < 0.001), but the effects of ac-
curacy (beta = 0.017 +/− 0.016 se, t = 1.07, p = 0.29) and SOA (beta =
− 0.0004 +/− 0.0002 se, t = − 1.9, p = 0.052) were not significant when 
entering the three co-variates into the model. Importantly, there was 
also a significant interaction between segment and confidence (beta =
− 0.002 +/− 0.0004 se, t = − 5.53, p < 0.001), reflecting the fact that 
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this effect was dynamic (the interaction with segment did not reach 
significance for accuracy: p = 0.1, nor SOA: p = 0.18). While in low 
confidence trials participant’s intonation presented a typical fall and rise 
pattern (HLH%), in high confidence trials it presented the opposite rise 
and fall (LHL%) pattern (see Figs. 1B and S2). Finally, there was also an 
interaction between confidence and accuracy (beta = − 0.054 +/−
0.006 se, t = − 8.8, p < 0.001) and confidence and SOA (beta = − 0.0002 
+/− 0.00006 se, t = − 3.1, p < 0.01). 

In order to further examine these dynamic effects, we identified 
significant clusters in participant’s intonation by running a permutation 
test on the differences between confident and doubtful utterances (see 
methods). There were two significant clusters: the first one corre-
sponded to segments 5 to 11 (p = 0.008) and the second one to segments 
16 to 20 (p = 0.036, see Fig. 2). To examine which underlying variables 
(SOA, accuracy or confidence) predicted pitch in these two temporal 
windows, we ran hierarchical regressions in the two clusters separately. 

In the first time window, we found that – as expected – there was a 
highly significant effect of confidence (beta = 0.08 +/− 0.02 se, t = 4.2, 
p < 0.001) on pitch, but there was also a main effect of accuracy (beta =
0.06 +/− 0.025 se, t = 2.4, p = 0.016) and an interaction between 
confidence and accuracy (beta = − 0.05 +/− 0.02 se, t = − 2.4, p =
0.015), while the effect of SOA was not significant when entering all 
three variables in the model (beta = 0.0003 +/− 0.0002 se, t = 1.27, p 
= 0.2). In addition, a mediation analysis revealed that the effect of 
confidence on pitch was mediated at 12% (95% ci [− 0.07, 0.30]) by 
accuracy in this temporal window, which was not significantly different 
from chance level (p = 0.18). Confidence still had a significant direct 
effect after taking this mediation into account (p < 0.001). Conversely, 
the effect of accuracy on pitch was partially mediated by confidence 
(38%, 95% ci [0.23, 0.61], p < 0.001), but was still significant after 
taking this mediation into account (p < 0.001). In the second time 

window, there was a main effect of confidence (beta = − 0.03 +/− 0.01 
se, t = − 3, p = 0.002), but no effects of SOA (p > 0.7) nor accuracy (p >
0.8), and SOA and accuracy did not mediate the effect of confidence on 
pitch (p > 0.7). Thus, in the beginning of the word, pitch was deter-
mined by a mixture of accuracy and confidence; however, it depended 
exclusively on confidence towards the end of the word. 

Strikingly, the interaction between confidence and accuracy re-
flected the fact that, when examining separately high and low confi-
dence trials, intonation still reflected accuracy (Fig. 3; see also Fig. S3 for 
a detail of the four levels of confidence). In particular, when participants 
reported being confident in their responses, their pitch was still higher in 
correct trials than in incorrect trials in a temporal window ranging from 
the 5th to the 10th segment (see Fig. 3). Similarly, when participants 
reported low confidence, their pitch was still higher in correct trials as 
compared to incorrect trials in a temporal window ranging from the 3rd 
to the 14th segment (corresponding to two successive significant clusters 
ranging from the 3rd to the 7th and 8th to the 14th segment). This 
analysis shows that speakers’ accuracies are still manifested in their 
intonation, over and beyond their own metacognitive awareness. 

3.4. Subjective confidence and objective accuracy can be extracted from 
speech prosody algorithmically 

To further examine this dissociation, we used automatic classifica-
tion algorithms to test whether speakers’ accuracy and confidence can 
be decoded separately from the pitch, loudness and duration of their 
speech prosody (see methods). We found that both accuracy and con-
fidence could be separately decoded from this information only (see 
Fig. 4 and S4). 

Machine classifiers were able to detect speakers’ accuracy with a 
performance of 60.2% (SD = 3.7) when they reported being ‘fully 

Table 1 
Results of the linear mixed regressions testing the impact of SOA, accuracy and confidence on the duration, loudness and pitch of participants’ verbal responses, 
computed in the whole 20 segments window (top) or in the two significant clusters windows (bottom; this analysis was conducted only for pitch as interactions with 
segments were not significant for loudness). We also report the interactions between SOA / accuracy / confidence and segments (e.g., SOA:segment), and interactions 
between variables (e.g., SOA:confidence).  

time window dependent variable independent variable beta se t p 

global duration SOA 0.0001 0.0003 0.37 0.71 
accuracy 0.007 0.03 − 0.22 0.82 
confidence 0.035 0.01 3 0.003 
SOA:confidence 0.0004 0.0003 1.21 0.22 
accuracy:confidence 0.03 0.027 1.31 0.19 
SOA:accuracy 0.0008 0.0009 0.9 0.37 

loudness SOA − 0.0002 − 0.0002 − 0.92 0.36 
accuracy 0.07 0.03 2.7 0.007 
confidence 0.013 0.01 1.24 0.21 
SOA:confidence 0.00001 0.0002 0.05 0.96 
accuracy:confidence 0.0007 0.002 0.03 0.98 
SOA:accuracy − 0.0006 − 0.0008 − 0.81 0.42 

pitch SOA − 0.0004 0.0002 − 1.9 0.052 
accuracy 0.017 0.016 1.07 0.29 
confidence 0.08 0.008 10.7 < 0.001 
SOA:confidence − 0.0002 − 0.00006 − 3.1 0.002 
accuracy:confidence − 0.054 0.006 − 8.8 < 0.001 
SOA:accuracy 0.0004 0.0002 1.94 0.053 
SOA:segment 0.00001 0.000009 1.34 0.18 
accuracy:segment − 0.001 0.0008 − 1.63 0.1 
confidence:segment − 0.002 0.0004 − 5.53 < 0.001 

first cluster (segments 5 to 11) pitch SOA 0.0003 0.0002 1.27 0.2 
accuracy 0.06 0.025 2.4 0.016 
confidence 0.08 0.02 4.2 < 0.001 
SOA:confidence − 0.0002 0.0002 − 0.9 0.37 
accuracy:confidence − 0.05 0.02 − 2.4 0.015 
SOA:accuracy − 0.0002 0.0006 − 0.3 0.77 

second cluster (segments 16 to 20) pitch SOA − 0.00006 0.0003 − 0.26 0.79 
accuracy 0.005 0.03 0.18 0.86 
confidence − 0.03 0.01 − 3 0.002 
SOA:confidence 0.00006 0.0002 0.23 0.81 
accuracy:confidence − 0.04 0.02 − 1.94 0.052 
SOA:accuracy 0.001 0.0008 2.02 0.044  
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confident’ (rating of 4), and with a performance of 54.6% (SD = 4.4) 
when they reported being ‘confident’ (rating of 3). By contrast, the ac-
curacy of the speaker could not be reliably decoded for low levels of 
confidence: classification performance only reached 53.2% (SD = 4) for 
the lowest level of confidence, and 50% (SD = 3.8) for the second level 
of confidence. To assess the significance of this result, these classifica-
tion performances in decoding accuracy were compared with classifi-
cation performances obtained with randomly permuted data (Ojala & 

Garriga, 2010). A rmANOVA with the accuracy of the classifications as a 
dependent variable, and confidence (four levels) and dataset (real vs. 
permuted) as independent variables, revealed a main effect of confi-
dence (F(1,19) = 22.5, p < 0.001, ηp2 = 0.33), a main effect of dataset (F 
(1,19) = 58.51, p < 0.001, ηp2 = 0.52) and a significant interaction (F 
(1,19) = 40.81, p < 0.001, ηp2 = 0.33). This interaction reflected the 
fact that classification performances in decoding a speaker’s accuracy 
were significantly higher than the chance-level estimated in the 

Fig. 3. Intonational profiles depending on accuracy and confidence. Normalized pitch is shown separately for low (left) versus high (right) confidence, and accurate 
(dark blue) and inaccurate trials (light blue). Markers’ sizes show significant clusters identified by running a permutation test on the differences between accurate 
and inaccurate responses in low and high confidence trials separately (p < 0.05: small circles; p < 0.01: big circles). For low confidence responses, the permutation 
test revealed two significant clusters: the first one ranging from the 3rd to the 7th segment (p = 0.04), and the second ranging from the 8th to the 14th segment p =
0.005). For high confidence responses, the permutation test revealed one significant cluster (p = 0.013) from the 5th to the 10th segment. Shaded areas show the 95% 
confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Results of the k-nearest-neighbors classification. A) Classifiers’ performances in decoding objective accuracy for each level of confidence (left), and overall 
(right). To examine whether speech prosody contains enough information to automatically infer a speaker’s accuracy, we relied on a 5-fold cross-validation k-nearest 
neighbors (kNN) classification procedure. Over 20 independent iterations, a balanced subset of the data was selected pseudo-randomly from the full dataset for each 
levels of confidence, and divided into five folds containing 50% of correct trials, and 50% of incorrect trials (see methods for full details). One of the folds served as a 
“test set”, and the four other fold served as a “training test”. For each items of the test set, the Euclidean distance between the pitch and loudness profiles of this item, 
and the pitch and loudness profiles of each of the items of the training test, was computed. For duration, a simple difference was computed. For each acoustic 
dimension, the 5 training test items with the smallest distance to the test item were identified. The supposed accuracy of the test item was then classified as the most 
frequent class amongst these fifteen nearest neighbors (five for each acoustic dimension). Finally, the classifier’s performance was estimated by computing an F- 
value, which is the harmonic mean of the recall and precision of the classifier (see methods). We present the F-values averaged across the 20 repetitions. Bar plots 
show the average performances of the classifier for real (darker shades) and permuted (lighter shades) data, with error bars showing the 95% confidence intervals 
estimated over the 20 repetitions. Dashed lines show the theoretical chance-level (50%, black). Asterisks show the results of the post-hoc Tukey HSD with FDR 
correction comparing real and permuted data allowing to estimate chance-level (see methods), with * p < 0.05, ** p < 0.01, *** p < 0.001 (exact p-values are 
reported in the main text). The chance-level estimated with permuted data was 50.2% overall (SD = 2; confidence = 1: 50.7% (3.5); confidence = 2: 49.5% (3.3); 
confidence = 3: 50.6% (4.6); confidence = 4: 50.2% (4.2)). The performance of the classifier over all confidence levels was 54.5% (SD = 2), which was highly 
significantly above chance (t(19) = 7.65, p < 0.001). B) Classifiers’ performances in decoding subjective confidence for each level of accuracy (left) and overall 
(right). To assess whether speech prosody contains enough information to infer a speaker’s level of confidence, we applied the same method, now decoding binary 
confidence (High vs. Low) for each level of accuracy and SOA (see methods). The chance-level estimated with permuted data was 50.3% (SD = 4.2) for incorrect 
trials, 50.7 (3.5) for correct trials, and 50.5 (2.6) overall. The performance of the classifier over all accuracy levels was 56.3% (SD = 3.5), which was highly 
significantly above chance level (t(19) = 7.81, p < 0.001). 
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permuted dataset when participants were confident (post-hoc Tukey 
HSD with FDR correction, confidence = 4: p < 0.001; confidence = 3, p 
= 0.004), but only marginally so for the lowest level of confidence 
(confidence = 1: p = 0.07) and not significantly so for the second level 
(confidence = 2, p = 0.78). 

The confidence of the speaker could also be decoded above chance, 
with a performance of 55.4% in incorrect trials (SD = 4.4), and 57.1% 
(SD = 3.8) in correct trials. A rmANOVA with classification perfor-
mances as a dependent variable, and accuracy (two levels) and dataset 
(real vs. permuted) as independent variables, revealed a main effect of 
dataset (F(1,19) = 60.95, p < 0.001, ηp2 = 0.48), no effect of accuracy 
(F(1,19) = 2.43, p = 0.14, ηp2 = 0.03) and no interaction (F(1,19) = 0.4, 
p = 0.54, ηp2 = 0.01). Classification performances in decoding speakers’ 
confidence were significantly higher than the chance-level estimated in 
the permuted dataset both when participants were accurate (post-hoc 
Tukey HSD with FDR correction, p < 0.001), and when they were 
inaccurate (p < 0.001). 

Overall, this analysis confirms that the intonation, loudness and 
duration of a spoken utterance separately reflect accuracy and confi-
dence, since both components could be decoded automatically, across 
all conditions in the case of confidence, and in a subset of the data (i.e., 
high confidence responses) for accuracy. Note that an alternative clas-
sification method (support vector machines) lead to the same conclu-
sions (see Fig. S4). 

3.5. Impact of competence, confidence bias and metacognitive sensitivity 
on prosodic signatures of confidence 

Finally, we wanted to assess whether participants’ ability to perform 
the task (their competence), their general tendency to be confident 
(their confidence bias), and their global ability to evaluate their per-
formances (their metacognitive sensitivity) related to how accuracy and 
confidence were automatically reflected in their voice. If epistemic 
prosody constitutes an adaptive mechanism allowing listeners to filter 
information coming from unreliable social partners, we may expect that 
vocal signatures of accuracy and confidence may be more manifest in 
competent (or meta-competent) speakers. 

To test this idea, we computed for each participant their global 
performances (mean d’ over all trials, reflecting how competent they 
were in the perceptual task), their confidence bias (mean confidence 
over all trials corrected for performances, see methods), and their met-
acognitive sensitivity (approximated through meta-d’, a measure that 
reflects how well participants confidence judgments’ track their per-
formance, independently of their general biases to be more or less 
confident, see methods and Fleming, 2017). We then examined how 
these measures related to signaling (after controlling for several other 
individual factors, see below), by computing three metrics that reflected 
the extent to which confidence and accuracy affected pitch, loudness 

and duration. 
For pitch, we quantified this difference by taking the Euclidean 

distance between pitch profiles extracted from high versus low confi-
dence (or correct versus incorrect) responses for each participant. For 
loudness and duration, we computed the mean difference between high 
(or correct) and low confidence (or incorrect) trials. Three linear re-
gressions including global performance, confidence bias, metacognitive 
sensitivity, as well as several individual factors (gender, age, socioeco-
nomic status, and empathic traits), and interactions between these fac-
tors and signaling type (accuracy or confidence) were then conducted 
separately for each acoustic dimension (see methods for the exact 
formula). 

As can be seen in Fig. 5, after controlling for all other factors, 
competence significantly predicted higher intonational signaling (beta 
= 0.39 +/− 0.09 se, t = 4.27, Bonferroni corrected p = 0.002), with no 
significant interaction with the type of signaling (i.e., accuracy or con-
fidence, p > 0.6). When all other factors including competence were 
considered, metacognitive sensitivity also significantly predicted 
increased intonational signaling (beta = 0.28 +/− 0.08 se, t = 3.32, p =
0.049, here again with no significant interaction with the type of 
signaling, p > 0.2), and it also marginally increased signaling at the level 
of duration (beta = 0.05 +/− 0.04 se, t = 1.315, p = 0.053). Thus, 
speakers’ level of competence and metacognitive sensitivity in the task 
increased their prosodic signaling of both confidence and competence. 
By contrast, there were no significant associations between confidence 
bias and any of the acoustic dimensions (all p-values >0.1), which 
suggests that individuals did not display signs of competence or confi-
dence more or less saliently depending on their metacognitive biases 
(see Fig. 5 and supplementary results for details about additional effects 
of loudness, age and gender). 

4. Discussion 

We find that, even in the absence of an audience, speech prosody 
automatically and distinctively reflects speakers’ confidence and accu-
racy. This finding shows that the subjective confidence and objective 
competence of speakers are naturally manifested in on aspect of their 
behavior, thus potentially providing a low-level, cheap mechanism for 
detecting whether the information they are communicating should be 
trusted or not. 

Our results reveal that intonation, loudness and duration differently 
reflect the underlying psychological processes leading to the production 
of a verbal response. While duration and intonation reflect confidence 
per se, loudness appears to be mostly driven by cognition (i.e., accuracy) 
rather than metacognition (i.e., confidence). By revealing that various 
aspects of prosody are associated with different underlying psycholog-
ical processes, these results go beyond previous research showing simple 
associations between speech prosody and confidence, without assessing 

Fig. 5. Signaling depending on individual factors. Regression analysis were conducted on each acoustic dimension separately to assess the impact of individual traits 
on signaling. Signaling for pitch corresponded to the Euclidean distance between intonational profiles computed for high confidence (or correct responses) minus low 
confidence (or incorrect) responses. Signaling for loudness and duration were computed similarly, but using average values rather than time series. Given that no 
interactions were observed between factors and type of signaling (accuracy and confidence), we show combined effects. We present beta estimates, with error bars 
corresponding to standard errors. + represents Bonferroni corrected p < 0.06; * p < 0.05 and ** p < 0.01 for the statistical significance of each factor in the three (one 
for each acoustic dimension) linear regressions. 
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the impact and potentially mediating role of sensory evidence or 
accuracy. 

Some aspects of epistemic prosody were not systematically linked to 
cognitive aspects presumably associated with fluency, such as sensory 
evidence and accuracy, but rather, truly reflected subjective aspects of 
experience linked to metacognition (i.e., the subjective perception of 
such fluency, Ackerman & Zalmanov, 2012; Proust, 2012). In particular, 
intonation was impacted by confidence and accuracy early in the word, 
while towards the end of the word it was exclusively determined by 
confidence. Thus, this specific intonation pattern, in which pitch falls at 
the end of the word, naturally means that the speaker is confident: it is 
tightly linked to confidence reports per se, and present even when 
speakers have no deliberate intention to produce it. Interestingly, this 
intonation pattern finely overlaps with listeners mental representations 
about confident prosodies uncovered with a data driven method (Goupil 
et al., 2021), which is in line with our hypothesis that epistemic prosody 
supports a low-level adaptive mechanism of epistemic vigilance, with 
concurrent adaptations on the side of both senders and receivers. 

Another interesting aspect of this result concerns timing. Intonation 
was found to reflect the chronometry of the mental processes used to 
produce an utterance: cognition is reflected in intonation before meta-
cognition, just like it is in neural signals where correlates of perceptual 
and decisional processes are observable several hundreds of millisec-
onds before neural correlates of metacognitive processes (Fleming & 
Dolan, 2012). This sequence of events is thought to reflect the fact that 
metacognition, supported by pre-frontal regions (Bang & Fleming, 2018; 
Cortese et al., 2016), relies on the integration of several sources of in-
formation coming from downstream associative and perceptual areas. 
As such, our results are compatible with the idea that subjective confi-
dence results from inferential processes that incorporate various sources 
of information, over and beyond processes and representations directly 
responsible for decisions (Fleming & Daw, 2017; Koriat, 2012; Proust, 
2012). 

We also find that other acoustic features previously associated with 
confidence in the literature, such as loudness, are actually not system-
atically linked to confidence per se, but rather, reflect the speaker’s 
underlying accuracy. Thus, beyond offering a window into speakers’ 
confidence, speech prosody also directly provides information about 
competence. Consistent with this idea, we also found that accuracy can 
be decoded from prosody over and beyond confidence (Fig. 4). Further 
research should investigate whether - as is the case for confidence 
(Goupil et al., 2021; Jiang & Pell, 2017) - listeners are actually able to 
exploit these prosodic signatures to infer the accuracy of a speaker. This 
could be particularly important given the fact that explicit confidence 
reports are highly prone to biases (Moore & Healy, 2008), so being able 
to infer interlocutors competence directly (i.e., without relying on their 
metacognitive evaluations of confidence) could be more adaptive than 
inferring their confidence in some situations. Notably, individuals’ 
tendency to display their accuracy and confidence in speech prosody 
was not related to their confidence biases (Fig. 5). Thus, compared to 
explicit (verbal) reports, which are highly prone to metacognitive bia-
ses, speech prosody may provide a better proxy to competence, and be 
less misleading to infer whether a speaker is actually right or wrong, in 
particular when interacting with individuals that have an overconfident 
(Moore & Healy, 2008; Zarnoth & Sniezek, 1997) or underconfident bias 
(Björkman, Juslin, & Winman, 1993; Scheck & Nelson, 2005). 

We also find that epistemic prosody is increased in individuals who 
are more competent and, to a lesser extent, in individuals who have 
higher metacognitive sensitivity (after controlling for the impact of ac-
curacy). Thus, individuals who are proficient in a task manifest their 
confidence in speech prosody more than others, even in the absence of 
social partners. This is consistent with the idea that epistemic prosody 
serves an adaptive function, enabling listeners to infer truth and cer-
tainties from proficient partners. 

Finally, the fact that such epistemic prosodic markers were observed 
in the absence of an audience is consistent with past research (Kimble & 

Seidel, 1991), and shows that they are manifested constitutively and 
automatically as a function of the speaker’s level of confidence and 
accuracy: i.e., they constitute natural signs of confidence and compe-
tence. Importantly, this is not to say that these displays are never under 
voluntary control: humans can obviously control the pitch, duration and 
volume of their voice, making it possible to deliberately use prosodic 
displays as “social tools” during conversation (Crivelli & Fridlund, 2018; 
Van Zant & Berger, 2019; Wharton, 2009) and past research has shown 
that, indeed, similar prosodic signatures as the ones we find here are 
exploited during communicative interactions: listeners perceive them to 
infer confidence and honesty in their partners (Goupil et al., 2021; Jiang 
& Pell, 2017), and speakers manipulate them in order to persuade their 
interlocutors (Van Zant & Berger, 2019). Thus, it will be important to 
extend our psychophysical approach to social interactions in future 
work, for instance by relying on dyadic collective decision-making 
paradigms (Bahrami et al., 2010; Fusaroli et al., 2012; Pescetelli & 
Yeung, 2020), in order to examine how specific social settings - such as 
the fact that speakers are engaged in cooperative or competitive in-
teractions - impact how they display these prosodic signatures. A 
particularly interesting question is whether speakers manipulate all 
prosodic features (intonation, accentuation, global levels of pitch or 
loudness, duration), or only some of them (e.g., global levels of loudness 
and pitch, but not intonation). Another open question is how variations 
in physical attributes (e.g., body size) and social traits (e.g., social 
dominance) would modulate and interact with the relationships we 
found here between prosodic signaling and (meta)competence. 

Beyond vocal communication, this result is to our knowledge, the 
first experimental demonstration that distinct features of a single 
observable behavior can reflect accuracy and confidence sequentially, 
and distinctively. Because accuracy and confidence typically correlate, 
there is considerable debate concerning whether or not confidence re-
duces to objective aspects of the decision-making process (Carruthers, 
2016; Kiani & Shadlen, 2009) or rather, is tied to higher-order, inte-
grative processes (Fleming & Daw, 2017; Koriat, 2012; Moulin & Sou-
chay, 2015). In favor of the second hypothesis, dissociations between 
objective accuracy and subjective confidence have been observed at the 
level of the brain (Bang & Fleming, 2018; Cortese et al., 2016), but 
whether this dissociation can also be manifested in overt behaviors, such 
as response times (Patel et al., 2012) or post-decision persistence, 
remained unclear (e.g., see Insabato et al., 2016 vs. Kepecs et al., 2008 
for debates concerning animals; Gliga & Southgate, 2016 vs. Goupil & 
Kouider, 2016 concerning preverbal children). By showing that 
decision-making and metacognition have different manifestations at the 
level of a socially-observable behavior like speech prosody, our results 
therefore make a key contribution in support of distinguishing confi-
dence from decision-making processes. 

5. Conclusions 

In this study, we show that speakers truly and automatically display 
their subjective confidence in the absence of an audience, and thus, 
without the necessary involvement of voluntary control and communi-
cative intentions. Further research could examine whether this behav-
ioral signature can be used to assess subjective confidence in pre-verbal 
populations (Goupil & Kouider, 2016), to discriminate confidence from 
accuracy in the context of forensic practices or witness testimonies 
(Tenney, MacCoun, Spellman, & Hastie, 2007), improve epistemic vig-
ilance during linguistic interactions to limit the spread of fake news 
(Lazer et al., 2018), or as a diagnostic tool, given that explicit meta-
cognition appears to be specifically linked to psychiatric symptoms, over 
and beyond the impact of task performances (Rouault, Seow, Gillan, & 
Fleming, 2018). Beyond confidence, the present methodology of “event- 
related prosody”, which combines a psychophysical task with single- 
trial acoustic analysis, opens up new avenues to investigate how sub-
jective mental states are related to speech prosody. For instance, it is 
generally assumed that emotional feelings such as happiness and 
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sadness can be directly perceived from the voice (Juslin & Laukka, 
2003), but it remains unclear whether we can truly and directly perceive 
feelings from prosody, rather than inferring them indirectly through the 
perception of physiological changes typically associated with these 
feelings (Barrett, 2017; Galvez-Pol, Salome, Li, & Kilner, 2020). 
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