
Deep Recurrent Neural Network-based Autoencoder for
Photoplethysmogram Artifacts Filtering

Joseph Azara,∗, Abdallah Makhoula, Raphaël Couturiera, Jacques Demerjianb
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Abstract

Recently, the need for fast, cost-effective, convenient and non-invasive cardiovas-

cular analysis techniques is the primary attractive reason to use photoplethys-

mogram (PPG). Most wearable devices on the market today, are capable of

collecting PPG data and enabling the measurement of important features such

as heart rate, respiration rate, and blood pressure in addition to detecting ir-

regular pulses and cardiovascular diseases. One major drawback of PPG data

is its high sensitivity to motion, resulting in distorted signal and meaningless

data zones. This paper proposes a neural network-based filtering method to

remove corrupted zones from the collected PPG data in an unsupervised man-

ner. It also proposes a PPG data summarization and augmentation strategy

which optimizes the network performance. Experimental results show that the

proposed approach was capable of achieving 90% precision and 95% recall when

processing PPG data collected from a Shimmer3 GSR+ sensor.
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1. Introduction

Wearable devices and fitness tracking applications have been introduced and

used by millions of people, allowing continuous and unobtrusive tracking of an

individual behavior and physiological features. One of the important signals

to calculate the physiological features from these devices is the photoplethys-

mogram (PPG) signal. Photoplethysmography (PPG) is a non-invasive optical

method to monitor vital signs of the body such as heart rate, heart rate variabil-

ity, and blood oxygenation. The PPG waveform represents variations in blood

volume and contains important characteristics such as cycle period, baseline,

and amplitude that are useful for analysis. Fortunately, wearable health mon-

itoring devices, including smart watches and fitness trackers, can now capture

PPG signals and allow cardiac activity monitoring by deriving from the PPG

the same R-R intervals derived from the electrocardiogram (ECG).

Due to the enormous need to track chronic diseases and monitor elderly par-

ents, ubiquitous health monitoring applications were listed among the various

categories on the wearables market as the fastest growing segments [1][2]. Today,

current wearable devices and sensors no longer focus on basic metrics for fitness

tracking such as the number of steps taken, but also control essential physiolog-

ical features. Commercial smartphone and wearable devices are currently able

to measure a range of physiological parameters using PPG, such as the interval

between successive heartbeats, respiration rate, and blood pressure [2].

One of the challenges of using PPG-based monitoring methods is the inac-

curacy of the PPG signals during daily routine activities and physical exercises.

This restriction is based on the fact that PPG signals are highly vulnerable to

hand motion artifacts and environmental noise [3]. Examples of clean PPG and

PPG with artifacts are shown in Figure 1. The estimation of heart rate vari-

ability data is strongly affected by artifacts, and the existence of these artifacts

has consequences for anyone who relies on such data for higher-level analysis in

addition to wasting storage space on meaningless data.

The aim of this paper is to address the artifacts in PPG data. The problem
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(a) clean PPG signal

(b) PPG signal with artifacts

Figure 1: Processing two PPG signals using the HeartPy library developed in [4]

can be conceived as a problem of anomaly detection since the artifacts can be

viewed in a PPG signal as anomalies. The difference between denoising a PPG

signal and removing artifacts is important to note. An area containing artifacts

such as in Figure 1(b) is an area where features such as heart rate variability

and heart rate can not be extracted, while those features can still be extracted

with confidence if the signal contains an acceptable noise level.

The ability to detect anomalies in a data stream is possible with the advances

of deep learning and Neural Networks (NNs). Deep learning methods like Con-

volution Neural Network (CNN), autoencoders, and Long Short-Term Memory

(LSTM) have been commonly used for anomaly detection problems [5]. This

paper proposes an unsupervised deep learning architecture based on a CNN-
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LSTM autoencoder that is able to detect artifacts in a PPG signal. Moreover,

it proposes a sequences summarization approach for the neural network using

the discrete wavelet transform (DWT) that enhances the training speed and

and helps to avoid the problem of the vanishing gradients, as well as a data

augmentation procedure for PPG data which enables a better generalization of

the model.

The rest of this paper is as follows. Section 2 discusses various works based

on PPG processing in wearable applications. Section 3 gives a background

information on the discrete wavelet transform and explains how an autoencoder

can be used for anomaly detection. Sections 4 and 5 explain the proposed data

augmentation approach and deep learning architecture respectively. section 6

presents the experimental results and the conclusion is presented in section 7.

2. Related work

Different research work in the literature tackled the processing and analysis

of PPG data in the context of wearables and IoT. In [6], the technology of

photoplethysmography and its potential applications was reviewed. This review

focused on two important stages when dealing with PPG data, namely: pre-

processing and feature extraction.

Van Gent et al did extensive work on analyzing and processing PPG. They

developed the HeartPy library which works well with noisy PPG data [4]. The

developed algorithm is capable of extracting the heart rate from the raw data

and estimating the breathing rate. Additionally, they proposed a method that

uses the R-R intervals and R-peaks to detect error/artifacts in the data [7].

In [8], the authors proposed a neural network model to enhance PPG measure-

ments containing artifacts. The proposed approach consists of a global reference

template reflecting a subject’s clean heart beat morphology to be prestored in

system memory. The reference template is derived through a beat quality as-

sessment method from the acceptable quality beats of the current data. The

extracted template should reflect the subject’s clean heart beats morphology in
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order for the neural network to work well. In [9], the authors used frequency-

domain analysis techniques such as fast Fourier transform and band-pass filter-

ing to process PPG data. They referred to an adaptive echo cancellation method

to remove the motion artifacts from the signal. The authors in [10] proposed

to use the singular spectrum analysis and a spectral subtraction technique to

reduce the corruption in the signal and remove the artifacts. The authors used

the artifact-related 3-D accelerometer signal as an additional information to

help eliminating the artifacts. Different other approaches have been proposed

in [11, 12, 13, 14, 15] that use methods such as independent component analysis,

Kalman smoother, wavelets, and adaptive filters in order to reduce the artifacts

from PPG data.

The contribution of this paper, as compared to the above approaches, con-

sists of detecting and removing the zones where the data are meaningless, and

not denoising or enhancing the signal. The removal of these zones happens in

an unsupervised manner without the need of extra information from other types

of data or manually crafted features.

3. Background

3.1. Discrete wavelet transform

The Discrete Wavelet Transform (DWT) allows a signal to be represented in

a time-frequency domain. It divides the signal into components of low frequency

(approximations) and components of high frequency (details) by using filters as

shown in Figure 2.

The inspiration to use the DWT lives in transforming redundant samples

in the temporal domain into decorrelated coefficients in the time-frequency do-

main, enabling the original samples to be compacted and represented with less

coefficients [16][17]. This process therefore helps facilitate the analysis of certain

original dataset’s features.

DWT has been used in several research works for time series classification

tasks [18][19]. Usually, accuracy is evaluated in accordance with other criteria
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Figure 2: Discrete Wavelet Transform frequency portions of signal

when comparing several competing classification approaches. The classification

algorithm’s computation time (speed) is probably the second most important

criterion, particularly for time series data. Since DWT produces a number of

signal decompositions, the classification methods can be applied to the wavelet-

transformed domain at a specific level. Compared to the original data, the

wavelet coefficients are sets of smaller size, and therefore the computation speed

of the classification method can be increased.

3.2. Autoencoder-based anomaly detection

An autoencoder is a particular type of neural network which copies the

input values to the output values. It consists of two modules, the encoder and

the decoder. The encoder is learning a process’s latent space representation.

Typically, the latent features are in a smaller dimension. From these underlying

features, the decoder can reconstruct the original data. The autoencoder can

be used for anomaly detection problems. This is done by learning the pattern

of a normal process. A given input that does not follow this pattern is then

categorized as an anomaly since the model will find it different from what it has

learned during the training phase. The reconstruction error is the metric used to

evaluate a given input. By defining a threshold, an input vector can be labeled

as anomaly if the difference between the values of this input and the output

exceeds the threshold. Autoencoder-based anomaly detection can be used to
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process different types of data such as images and time series, therefore it can

contains convolution layers (CNN autoencoder), long short-term memory layers

(LSTM autoencoder), or a combination of both (CNN-LSTM autoencoder).

4. Data augmentation

The approach to data augmentation used in this paper is to apply various

types of noise to the existing time series. The purpose of data augmentation is

to prevent overfitting and enhance a deep learning model’s generalization ability.

Different approaches to data augmentation were proposed in the literature such

as in [20]. While working with medical signals such as PPG, the main challenge

is to ensure that the signal produced follows the temporal order of samples and

the original signal form/shape. In other words, the peaks should still be easy

to detect and the time between two consecutive peaks should stay the same so

that the same features can be derived from the newly generated data as from

the original data.

4.1. Gaussian and uniform noise

Uniform noise has a flat distribution which ranges between 0 and 1, which

means that it is equally likely to draw all values between 0 and 1. Normally dis-

tributed noise, or Gaussian noise, has a zero-centered “bell-curve” distribution,

with most values clustered to zero. Through adding and multiplying by some

constants, the distribution of both uniform and Gaussian noises can be shifted

and stretched. Such constants are carefully selected to keep the produced signal

analyzable and meaningful and their values depend on the application and the

available data.

These two types of noise are referred to as “white noise” since they have a

flat power spectrum.

4.2. Scaling and magnitude-warping

The scaling approach adjusts the magnitude of the data in a batch by mul-

tiplying by a random scalar, while magnitude-warping adjusts the magnitude
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of each sample in this batch by convolving the data with a smooth curve that

varies around one. These two approaches were inspired from the work proposed

in [20]. The results of applying scaling and magnitude-warping to a PPG time

series are shown in Figure 3.

0 50 100 150 200 250 300

1400

1600 original

0 50 100 150 200 250 300
1200

1400
scaling

0 50 100 150 200 250 300
1250

1500
magnitude-warping

Figure 3: Applying scaling and magnitude-warping to a PPG time series

4.3. Pink and brownian noise

Pink noise, also known as fractal noise or 1
f noise, has a power spectrum that

decreases as the frequency increases. Pink noise is weighted toward low frequen-

cies, as its power decreases like 1
f . The application of a vanishing frequency filter

is one way to compute pink noise [21].

Brownian noise further lowers the higher frequencies than the pink noise. It

is also known as random walk noise and is calculated by integrating random

noise that is normally distributed. Brownian noise has memory, which means

that its past values influence each time point. Figure 4 shows the results of

adding pink and brownian noise to a PPG time series. Although the shape

of the time series has been affected, it is still possible to extract the relevant

features.
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Figure 4: Adding pink and brownian noise to a PPG time series

5. Our proposed neural network model

In this paper, we propose the use a hybrid model, namely CNN-LSTM au-

toencoder, to detect the artifacts in a signal in an unsupervised manner. Given

that PPG data are time series, an interesting approach is to use a model based

on LSTM. If input sequences are very long, such as a PPG trace of hundreds

of time steps, LSTMs can be difficult to use. The first problem of dealing with

long sequences is the very long time required to train the model. Additionally,

the back propagation through long input sequences can lead to vanishing gradi-

ents and, in turn, an unlearnable model. The first step in this paper’s proposed

solution is to address the issue of long input sequences. Note that the goal is to

check that a PPG data window is clean or contains artifacts, and that window

can contain hundreds to thousands of data points. The approach taken is se-

quences summarization using the discrete wavelet transform (DWT). In natural

language processing where input sequences are words, summarizing sequences

were used, it might be possible to eliminate all words from input sequences

above a defined word frequency. Instead of removing samples from the data,
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the use of the DWT will introduce a more compact version of the signal to the

neural network. It can be viewed as a summary of the original signal with fewer

data points. For example, if we take a PPG signal with length of 312 as shown

in Figure 5, applying one-level decomposition will result in a set of 156 approxi-

mation coefficients and 156 detail coefficients. Then another decomposition can

be applied to the approximations obtained, resulting in 78 approximation and

detail coefficients. The model will then be trained on the approximation coeffi-

cients and the details will be discarded. As a result, the speed of the learning

could be improved and the problem of the vanishing gradient avoided.

0 50 100 150 200 250 300
1000

1500

2000

2500

original

0 25 50 75
1000

1500

2000

2500
level 2 approximations

0 25 50 75

200

0

200
level 2 details

0 50 100 150

100

0

100
level 1 details

Figure 5: Example of the two-level decomposition of a PPG signal

The proposed architecture takes as inputs a fixed-length vector with shape

< S, T, 1 >, where S is the number of data windows in a mini-batch, and T is the

number of samples in each data window. Note that the data are standardized

before being initialized to the model. The encoder part is made up of a 1D

convolution layer with a kernel size of 5 and 320 feature maps, followed by a 1D

max pooling layer with a pool size of 4 and a dropout layer with a rate of 40%.

The output of the convolution layer is then flattened and fed into a bidirectional
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LSTM layer with 256 units followed by a second dropout layer. The decoder part

consists of a LSTM layer with 192 units followed by a Gaussian noise layer for

regularization and a time distributed dense layer. The linear activation function

has been used for the output dense layer and ReLu [22] for the convolution

and LSTM layers. Additionaly, the He normal initialization [23] was used for

weights initialization, the mean squared error was used as a loss function, and

Adam [24] as optimizer with gradient clipping to avoid exploding gradients.

Figure 6 illustrates the proposed approach used for unsupervised PPG artifacts

Original signals

DWT filters

Details Approximations

Training set

Validation set

Testing set

Data augmentation

Uniform noise
Gaussian noise
Scaling
Magnitude-warping
Pink noise
Brownian noise

Input

Conv 1D + Max pool 1D + Dropout

Bidirectional LSTM + Dropout

Encoded features

LSTM + Gaussian noise

Dense

Encoded features

Reconstructed signals

EncoderDecoder

Figure 6: Proposed neural network approach for unsupervised PPG artifacts detection using

CNN-LSTM Autoencoder

detection. Note that the data augmentation described in section 5 is applied

on the training set after applying the wavelet transform on the original signals

and splitting the resulting approximations into training, validation and testing

sets. Then the model is trained only on clean PPG signals and tested on mixed

PPG signals.
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6. Experimental results

The PPG dataset was collected using Shimmer3 GSR+Unit [25] with a sam-

pling frequency of Fs = 52 Hz in the Femto-ST laboratory department DISC,

Belfort, France. An overlapping sliding window was used to split the collected

data set into batches, resulting in a training set containing 10212 batches of clean

PPG and 3149 batches of artifacts, a validation set containing 4358 batches of

clean PPG and 1369 batches of artifacts, and a test set containing 150 unlabeled

windows of clean PPG and artifacts.

In the experimentation two strategies are considered. The first is to use PPG

recording windows of 3 seconds (Fs × 3 = 156 samples), so the model’s input

will be a tensor of shape < S, 156, 1 >. The second strategy is the proposed

one, which takes larger PPG recording windows of 6 seconds (312 samples) and

then applies two-level decomposition on these windows to reduce their length.

As a result, the model’s input will be a tensor of shape < S, 78, 1 >. The data

augmentation process has been applied to the second strategy only in order to

assess its advantage on the final output. The computations were performed on

a NVIDIA Tesla Titan X GPU.

In order to determine what benefit training the model on wavelet approx-

imations and augmenting the data give compared to the standard approach,

we used the Precision vs. Recall and Receiver Operating Characteristic (ROC)

curves. The ROC curve illustrates the trade-off between the true positive rate

and the false positive rate for a model using different thresholds. Precision vs.

Recall curve illustrates the trade-off between the true positive rate and the pos-

itive predictions for a model using different thresholds. Note that high precision

is associated with a low false positive rate and high recall is associated with a

low false negative rate. The thresholds in the curves are the autoencoder re-

construction error and the desired outcome is a model with high scores for both

metrics (high precision and high recall).

Figure 7 shows that a better balance between recall and precision could be

achieved by the proposed approach. If the model is trained on three seconds
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Figure 7: Precision and recall for different threshold values

PPG windows with no data augmentation, the model will have a precision of less

than 0.4 in order to achieve a recall greater than 0.9 while the model was able to

have a precision of 0.9 with a recall greater than 0.9 when trained on six seconds

compacted PPG windows with data augmentation. During the experiments, it

was noticed that the larger the data window, the easier it was for the model

to detect anomalies since large PPG windows contain more features and enable

the model to learn more about the regular shape of PPG signals. The improved

results of the proposed approach can be explained by the fact that we can allow

the model to learn the patterns and shape of larger windows of PPG data from

a summarized version by using the discrete wavelet transform.

Figure 8 shows that the proposed approach have a higher area under the

ROC curve (AUC) than the standard approach. Note that a model with an

AUC higher than 0.5 is better than a random classifier. Selecting a threshold

that gives a true positive rate greater than 0.9 and a false positive rate close to

0 is possible when using data augmentation.

In order to define whether or not a PPG signal is valid, we defined the cut
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Figure 8: Receiver operating characteristic curves for the standard and proposed approaches.

point as 0.06, this threshold is based on the last training loss value obtained

during the training. If the mean squared error between the reconstructed signal

and the input exceeds this threshold then this signal is marked as a meaningless

PPG signal. Figure 9 shows the reconstruction of one clean PPG signal and

two irrelevant signals. The mean squared error when the signal is clean is 0.02,

while it exceeds the threshold value for the other two signals. It was noticed

that there was a reconstruction error greater than 0.1 in most PPG signals with

artifacts.

The trained model was tested on the test set containing a mix of clean and

irrelevant PPG windows. The test set is unlabeled, so a visual assessment was

needed to verify the model’s efficacy. Figure 10 displays four different parts

taken from the test set. The green zone is where the model predicted the signal

as clean and the red zone as artifacts. From the figures it can be seen that the

model can efficiently predict the irrelevant PPG windows where it is difficult

to extract important features. This paper, in addition to summarizing data,

proposed a data augmentation process for medical time series collected from

wearable devices and sensors to increase the amount of training data and make

the model more robust to noise.
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Figure 9: Examples of mean squared error obtained when clean PPG signals and artifact

signals are reconstructed

7. Conclusion

This paper proposed a deep learning model for automatic motion artifacts

detection from photoplethysmography. Before training the model, two major

steps were taken that helped to achieve better results. First, a data summariza-

tion step was applied to the input data through the discrete wavelet transform

to reduce the length of the sequences and avoid vanishing gradients. As a re-

sult, summarizing large windows can still allow the model to learn the same

patterns while processing less data points, the model can better learn patterns

from larger data windows than small ones.
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(a)

(b)

(c)

(d)

Figure 10: Four windows taken from the test set showing the prediction results obtained from

the trained model
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Finally, a CNN-LSTM autoencoder architecture was proposed to detect and

discard irrelevant zones in photoplethysmogram signals in order to avoid analyz-

ing and processing meaningless data. The findings of this paper show that the

proposed approach to data summarization and augmentation helped to improve

the performance of the neural network and was able to achieve 90% precision

and 95% recall. The proposed method in this paper can be generalized for

various types of medical time series such as electrocardiogram (ECG) data in

addition to periodic sensory data.
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