
Behavioral Simulations of Lattice Modular
Robots with VisibleSim

Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

Abstract Robotics research needs complex hardware and software that is why sim-
ulation is often view as an alternative for testing. Large scale self-reconfiguring
modular robotic systems needs a scalable simulation environment which cannot be
physics-based.
This paper presents VisibleSim, an open-source behavioral simulator for lattice-
based modular robots that uses discrete-event simulation to simulate ensembles of
up to millions of modules. We describe the principles behind the simulator and in-
troduce its features and usage from a user standpoint. VisibleSim is built with exten-
sibility, versatility, and flexibility in mind, can be used as a powerful visualization
tool, and already has a proven track record with several modular robotic architec-
tures.

1 Introduction

Simulation can be used for multiple purposes in robotics research, one of them
being, researching software solutions for managing complex systems that are not
yet producible. This is particularly relevant for self-reconfigurable modular robotic
systems [1] which assemble individual modules latched to one another. The software
challenge is to coordinate all the modules to achieve a common goal like in self-
reconfiguration [23].

In this paper, we present VisibleSim1, a framework for creating behavioral sim-
ulators for distributed lattice-based modular robotic systems in regular 3D environ-
ments. VisibleSim can be used for studying the behavior and programmability of
such distributed systems, but it does not comprise physics simulation.

Pierre Thalamy · Benoı̂t Piranda · André Naz · Julien Bourgeois
Univ. Bourgogne Franche-Comté (UBFC), University of Franche-Comté (UFC), FEMTO-ST In-
stitute, UMR CNRS 6174, 1 Cours Leprince-Ringuet - 25200 Montbéliard, France.
e-mail: \{benoit.piranda,julien.bourgeois\}@femto-st.fr

1 https://projects.femto-st.fr/programmable-matter/visiblesim

1

\{benoit.piranda, julien.bourgeois\}@femto-st.fr
https://projects.femto-st.fr/programmable-matter/visiblesim

2 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

Each module executes the same program as all other modules, generating com-
munications and/or events that are handled deterministically by VisibleSim’s discrete-
event scheduler. Beyond reproducibility, this allows for scaling up in the number of
simulated modules which can be greater than 32 millions. A video presentation of
the simulator and its aforementioned features is available on Youtube2.

2 Related Works

There are many general simulation frameworks dedicated to robots [11]. Some
of them have been used for many different kinds of robotics projects like Player [8],
associated at Stage or at Gazebo [10]. Webots [13] is another reference of a com-
mercial open-source simulator, now a leader in this field. ARGos [17] simulator for
swarm robotics, which can simulate large and heterogeneous multi-robots systems.
These simulators are not particularly well-suited for the specificities of modular
self-reconfigurable systems.

On the one hand, regarding hardware-specific modular robot simulators, many
platforms for simulating self-reconfiguration for lattice modular robots are unnamed
simulators with core features implemented using Java3D [25, 22].

On the other hand, several generic modular robot simulators have been devel-
oped, mostly physics-based and targeting chain or hybrid modular robots like Re-
bots [4], including models for Roombots [21], Smores [5] and Superbot [20]. Sim
[24], USSR [3] including models for ATRON, Odin [12], and M-TRAN [9].

Nevertheless, there are still a few generic simulators that are designed for lattice
modular robots, the type of robots targeted by VisibleSim. For example, SRSim [7]
used with Sliding-Cube [7], Crystalline [19] and Superbot [6]. Finally, DPRSim [2]
has been shown to efficiently simulate ensembles with up 20 millions of Catom
modules, both in their 2D and 3D forms, by maximally leveraging the potential for
multi-threading of the simulation and using computing clusters.

The common feature among all the aforementioned simulators except perhaps
SRSim, is that they are all physics-based, which is useful when developing robotic
designs, evolving controllers, and interacting with complex environments, but might
be superfluous and prohibitively costly when researching distributed robotic control
from a more fundamental, or behavioral, point of view. This is the kind of simu-
lator that VisibleSim is thus intended to be, a framework for performing all kinds
of behavioral simulations on lattice-based modular robotic systems with low envi-
ronmental interactions. Furthermore, it is most similar to USSR and SRSim in its
usage, being a framework for developing simulator instances rather than an actual
monolithic executable software where all simulation parameters are interpreted.

3 Simulator Overview

VisibleSim is designed for researchers that have computer programming experi-
ence as it consists in a C++ framework for building lattice modular robot simulators

2 Video presentation of VisibleSim: https://youtu.be/N09KElCbUNk

https://youtu.be/N09KElCbUNk

Behavioral Simulations of Lattice Modular Robots with VisibleSim 3

controlled by distributed programming. Several sample modular robot simulators
are provided with the software. VisibleSim takes the form of an open source project
under AGPLv3 license and is available on Github3.

In VisibleSim lingo, the distributed program that is executed on each module
during the simulation is named a BlockCode. It is effectively the controller of the
modules and where users will describe the behavior of the robot in response to
all kinds of events whether external (interactions with the world, reception of a
message, etc.), or internal (interruption or timer, initialization, end of a motion, etc.).

Unlike other simulators where each robot is fitted with a number of sensor and ac-
tuator components, this distinction is not materialized in VisibleSim. Modules from
any type of robots are however fitted with a constant number of interfaces, depend-
ing on the geometry of their lattice, and which can both be used for sensing con-
nected modules (by examining whether an interface is connected) and communicat-
ing with them. In the current state of the simulator communication between modules
is only natively allowed in a peer-to-peer manner between connected neighbors.

Previous work on modular robots can be classified based on the shape of the
robots and the type of grid in which they are placed. Each grid has a specific number
of positions adjacent to each of its cells, which determines the number of neighbors
a module in that grid can communicate with (2D square or hexagonal lattices, Face
Centered Cubic lattice, etc.).

VisibleSim offers different classes of modular robots across these different lat-
tices, as shown in Figure 1.

Smart Blocks
Square lattice (2D)
4 neighbors
Motion: Slides along a vertical border
Display: Lights in color and draws numbers
 on the top

Hexanodes
Hexagonal lattice (2D)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Hexagonal lattice (2D)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

2D Nodes
Square lattice (2D)
4 neighbors
Motion: Slides along a neighbor
 or Turns around an edge.
Display: Lights in color

Blinky Blocks
Cubic (3D)
6 neighbors
Display: Lights in color
Sensor: tap

2D Catoms
Hexagonal lattice (2D vertical)
6 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Datoms
Face-Centered Cubic lattice (3D)
12 neighbors
Motion: Deforms to turn around a neighbor
 (pivot)
Display: Lights in color

3D Catoms
Face-Centered Cubic lattice (3D)
12 neighbors
Motion: Turns around a neighbor (pivot)
Display: Lights in color

Sliding Cubes
Cubic (3D)
6 neighbors
Motion: Slides along a neighbor
 or Turns around an edge.
Display: Lights in color

Fig. 1: Several shapes of robots proposed in VisibleSim.

3 https://github.com/ProgrammableMatterProject/VisibleSim

https://github.com/ProgrammableMatterProject/VisibleSim

4 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

What characterizes a modular robot in VisibleSim is therefore: the geometry and
visual aspect of its modules; the lattice in which they belong (hence their number
of possible neighbors), and a specific mode of motion. Additional components and
state visualization features such as a display, speakers, or tap sensors can however
be added.

4 Programming Environment and Features

4.1 User Application Demonstration

This section presents an example of a SlidingCube modular robot application,
where a message is broadcast distributively through the robot from a leader module
(identified by its identifier) to instruct modules to perform a random motion. Though
this application has no practical purpose, it demonstrates concisely the structure of
a user application as well as elements of its motion and communication API.

Furthermore, a visual BlockCode generator is available online4, which takes a
target robotic architecture and a list of messages as input and returns a code template
for that setup.

Listing 1: Sample BlockCode: Broadcast of a message across the robot from a
master module and moves upon reception
#include "myBlockCode.h"

void MyBlockCode::startup() {
addMessageEventFunc(BROADCAST_MSG, bind(&myBlockCode::onBroadcastRcvd,

this, std::placeholders::_1, std::placeholders::_2));
if (module->blockId == 1) { // module #1 is the master

this->broadcastReceived = true;
sendMessageToAllNeighbors(new Message(BROADCAST_MSG));

} else {
this->broadcastReceived = false;

}
}

void MyBlockCode::onBroadcastRcvd(shared_ptr<Message> msg,
P2PNetworkInterface* sender) {

if (not this->broadcastReceived) {
this->broadcastReceived = true;
// Propagate broadcast (ignoring sender interface)
sendMessageToAllNeighbors(new Message(BROADCAST_MSG), sender);
// and move to first available location
list<Cell3DPosition> dests = getPossibleDestinations();
if (not list.empty()) initiateMotionTo(dests.front());

}
}

4 https://services-stgi.pu-pm.univ-fcomte.fr/visiblesim/generator.php

https://services-stgi.pu-pm.univ-fcomte.fr/visiblesim/generator.php

Behavioral Simulations of Lattice Modular Robots with VisibleSim 5

Listing 2: Sample main file: initiates and cleans up the simulation
#include <iostream>
#include "robots/slidingCubes/slidingCubesSimulator.h"
#include "robots/slidingCubes/slidingCubesBlockCode.h"
#include "myBlockCode.h"

int main(int argc, char **argv) {
// Create simulation world and modules
// attach a MyBlockCode instance to each module
createSimulator(argc, argv, MyBlockCode::buildNewBlockCode);
// Previous call returns only once scheduler has ended
deleteSimulator();
return 0;

}

Listing 3: Sample XML configuration file: describes the simulated world; the
modules within it; and other simulation parameters
<?xml version="1.0" standalone="no" ?>
<world gridSize="20,20,20" windowSize="1920,1080">

<blockList defaultColor="128,128,128" ids="RANDOM">
<!-- Describe individual modules -->
<block position="3,4,2" color="127,255,43" />
<!-- or use Constructive Solid Geometry (CSG) -->
<csg content="union() { cube([10, 5, 5]); cube([5, 10, 5]); }"/>

</blockList>
<targetList> <!-- Goal shape for reconfiguration -->

<target format="csg">
<csg content="sphere(10)"/>

</target>
</targetList>

</world>

4.2 User Interactions

In fixed-increment time progression mode, VisibleSim supports pausing and re-
suming of the simulation (programmatically or using the keyboard), which can be
used to inspect the simulated world at any given time. This is especially useful since
VisibleSim has a built-in console that provides useful information about a number
of core (messages sent or received, motions, etc.) or custom (any user-implemented
event or debugging trace) events. This includes the time of the event and any other
useful information that is necessary for retracing what in the chain of events that
led to the current state of the simulation. Not only can the traces concerning all the
modules in the system be shown at once from within the simulation window, but
individual threads of events relative to a specific module can be shown by selecting
the module from the GUI.

Furthermore, left-clicking a module opens a pop-up for interacting with the sim-
ulated world and the module itself. These interactions are the addition and removal
of neighbors on the interfaces of a module, motion commands, or a physical event
such as an accelerometer tap. Finally, the current world configuration can be ex-
ported, making VisibleSim both a simulation software and a sandbox for building
robotic configurations.

6 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

Fig. 2: Screenshot of a VisibleSim simulation of Catom 2D modules with the console
and interaction menu open for the selected module.

4.3 Customization Hooks

VisibleSim proposes a number of customization hooks that are called at various
points of the simulation and that can be used to implement custom behaviors for a
given BlockCode application. Some of these functions provide greater flexibility to
the user, others simply facilitate debugging:

• Parsing custom configuration file elements pertaining to the world or individual
modules.

• Parsing custom command line arguments exclusive to this specific BlockCode
application.

• Responding to custom keyboard events generated by the user during simulation
and specific to that application.

• Drawing custom graphical elements in the OpenGL world every time it is up-
dated.

• Drawing custom text onto the OpenGL window to keep some essential infor-
mation always visible.

• A custom function that gets called on a module whenever a VisibleSim assertion
has been triggered for that module, and that can provide critical information on
its current state.

4.4 Export Tools

An important aspect of VisibleSim is that it is more than a simulation tool. Its
other main purpose is to produce impactful visual results for academic research, at
a low cost for the user. It does so by allowing researchers to easily export various

Behavioral Simulations of Lattice Modular Robots with VisibleSim 7

content from their simulated world: screenshots and videos of a simulation, 3D an-
imation data for stunning videos in Blender or similar software, Stereolithography
(STL) data for the 3D printing of a configuration, etc. This thus makes VisibleSim a
visualization tool as well as a simulator, supporting research at multiple levels.

Apart from the standard simulation workflow of VisibleSim, where a simulation
is run in real time either in terminal-mode or with a graphical output, VisibleSim
offers to export a simulation to a file on disk, so that the simulation can be later
be visualized on a replayer in an interactive fashion. This replayer allows the user
to slowly and repeatedly analyse events generated during the simulation, record a
part of it as a video or an animation, or compare results. This feature is particularly
helpful for inspecting a problematic simulation when debugging, or for viewing the
graphical output of a terminal-mode simulation that would have taken too long or
too much memory to be computed graphically.

5 Usage and Evaluation

In this section, we highlight a number of different modular robots and applica-
tions that have been successfully simulated using VisibleSim in published research.
Our aim is to highlight different ways VisibleSim can be used and has been used. We
also show that the simulation of existing hardware system can show a high level of
fidelity to hardware experiments. Finally, we bring to light the current capabilities
of VisibleSim in terms of scalability.

5.1 Use Cases

VisibleSim has become over the years the dedicated simulation and experimenta-
tion tool of the Programmable Matter Project. As such, not only has it been used for
simulating diverse modular robotic models, but also for a wide variety of applica-
tions (distributed time synchronization, self-reconfiguration, center election, etc.).
Figure 3 thus illustrates the versatility and reliability of the VisibleSim framework
by highlighting select research work that has relied on it in recent years.

5.2 Simulation Fidelity

In addition to faithfully reproducing the functional behavior of algorithms, Visi-
bleSim also accurately simulates timing. Communication and clock models can be
customized and passed to VisibleSim in order to fit best with the simulated modular
robotic platform.

After having modeled the communication system of the Blinky Blocks in Visi-
bleSim [14], we measured the execution time of the ABC-CenterV1 algorithm [15,
14] — an algorithm for electing an approximate-center module in modular robots
— on hardware Blinky Blocks and in simulations. Table 1 shows that the simulated
execution times (average and standard-deviation) on VisibleSim closely match the
execution time obtained experimentally on hardware Blinky Blocks, for small and
larger configurations, and for sparse (e.g., lines), less-sparse (e.g., squares), compact

8 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

A Distributed Algorithm for
Reconfiguration of Lattice-based Modular

Self-Reconfigurable Robots (PDP’16)

Distributed Self-Reconfiguration
Algorithm for Cylindrical Lattice-Based

Modular Robots (NCA’16)

Electing an Approximate Center in a Huge
Modular Robot with the k-BFS SumSweep

Algorithm (IROS’18)

Distributed prediction of unsafe
reconfiguration scenarios of modular-
robotic Programmable Matter (2020)

Efficient Scene Encoding for Program-
mable Matter Self-Reconfiguration

Algorithms (SAC’17)

A Distributed Self-Assembly Planning
Algorithm for Modular Robots

(AAMAS’18)

Distributed Self-reconfiguration using a
Deterministic Autonomous Scaffolding

Structure (AAMAS’19)

Coating Self-Assembly for Modular
Robotic Scaffold

(IROS’20)

Approximate-Centroid Election In
Large-Scale Distributed Embedded

Systems (AINA’16)

Fig. 3: Several results from previous work based on VisibleSim across several mod-
ule types and tasks.

(e.g., cubes) and mixed-density configurations with compact components linked by
a critical path (e.g.,the dumbbell-like shape).

We have also modeled the Blinky Blocks hardware clocks in VisibleSim and evalu-
ated the synchronization precision of the Modular Robot Time Protocol (MRTP) [16]
— a protocol for providing global time synchronization across a modular robotic
system — both with hardware modules and simulations. Experiments were con-
ducted on a doubled L-shaped system composed of 10 Blinky Blocks over an hour,
with a synchronization period of 5 seconds. Synchronization error distribution looks
Gaussian both in simulation and hardware experiment results [14]. In the hardware
Blinky Blocks system (resp. in VisibleSim), MRTP has an average precision of 0.06
ms (resp. -0.11 ms) and a standard-deviation of 1.62 ms (resp. 1.40 ms).

Results obtained using VisibleSim show a very high fidelity to the hardware re-
sults, which indicates that VisibleSim is able to perform an accurate timing simula-
tion of the algorithms.

Behavioral Simulations of Lattice Modular Robots with VisibleSim 9

Shape Size
(module)

Diameter
(hop) Average execution time Absolute error of the

average execution time
± standard deviation (ms) simulator vs hardware
Hardware Simulator (ms) (relative error)

Line
5 4 234±1 244±3 10 (4.27%)
10 9 545±5 544±5 1 (0.18%)
50 49 2873±23 2885±17 12 (0.42%)

Square
9 4 598±45 588±14 10 (1.67%)
25 8 1117±30 1119±27 2 (0.18%)
49 12 1684±48 1686±44 2 (0.12%)

Cube 27 6 1229±56 1214±31 15 (1.22%)
64 9 1927±51 1941±33 14 (0.73%)

Dumbbell 59 15 1262±56 1252±57 10 (0,79%)

Table 1: Average execution time of ABC-CenterV1 on hardware Blinky Blocks and
in simulations. Statistics on the execution time were computed over 25 runs for
every configuration.

5.3 Scalability

In order to demonstrate the scalability of the VisibleSim simulation framework,
we have designed a stress test experiment which consists in simulating a sort of
brownian motion of as many modules as possible, within a square grid. The under-
lying BlockCode program is quite straightforward:

• At the start, a single leader module activates and sends an activation message
to all its neighbors.

• Upon reception of an activation message, modules turn into the activated state.
• Activated modules then alternate between a 0.5 s wait, and a random motion

lasting 1 s.
• When a motion ends for a module, it sends an activation message to its new

neighbors, if any, before starting the next wait/move cycle.
• The simulation ends when all modules are in the activated state.

This simple distributed program will thus propagate agitation across an entire
modular robotic system, generating a massive number of messages, motions, and
wait events in the process. The aim is therefore to stress the VisibleSim scheduler
as much as possible and show that a graphical simulation is still possible with a
massive robotic ensemble. Executions of this stress test program can be seen in the
video mentioned in footnote 2.

We run the program with a large set of square configurations and for each of
them we compute the number of messages and the number of displacements that
are necessary to activate the entire robotic ensemble. For each size of configuration,
the initial set of modules is made by growing a tree of modules from a regular list
of seeds, ending when branches reach a cell that is already in a filled state.

Figure 4 shows the number of messages and displacements as a function of the
number of robots in the several configurations. As shown in the figure, we are able

10 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

1.0e+09

1.0e+10

1.0e+11

1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06 1.0e+07

Number of Robots

Number of Events
Number of Messages

Number of Motions

Fig. 4: Number of motions and messages simulated during the stress test experiment
(Log-Log plot).

to simulate more than 32 million robots communicating and moving through the
grid, which is to the best of our knowledge a new record in the field of modular
robotic simulation. The first experiments, dealing with up to 3 million robots have
been made on a laptop with 32 GB of RAM, and all subsequent simulations have
been made on a server with 3 TB of RAM.

6 Conclusion and Future Work

In this paper, we have introduced VisibleSim, a C++ framework for simulating
large-scale lattice-based distributed modular robotic ensembles. It differs from other
modular robot simulators in its philosophy as a behavior-focused simulator, and
its corresponding discrete-event-based style of scheduling. Various modular robotic
designs supported by VisibleSim have been introduced, along with how to add new
architectures by instantiating the OOP simulator framework, and implementing user
applications. We have shown that it doubles as a powerful visualization software for
effectively communicating research results, and that the simulator is flexible and
easy to customize. Finally, we have outlined the versatility, reliability, and scalabil-
ity of VisibleSim, by showing diverse usages of the software in published research,
outlining the accuracy of simulations, and performing graphical simulations with
more than a million individual modules. We therefore argue that VisibleSim can ben-
efit any present of future research on the algorithmic foundation of modular robotic
systems, especially since it is freely available as open source software. VisibleSim is
an ongoing project and there are a number of features that are currently under inves-
tigation, detailed below. In its current implementation, all the scheduling tasks are

Behavioral Simulations of Lattice Modular Robots with VisibleSim 11

performed on a single thread. While it guarantees an accurate simulation, this also
limits the scalability of the software. We are thus enabling multi-thread scheduling
for the simulator, which raises a number of challenges for the preservation of the
integrity of the simulation flow. Moreover, with distributed algorithms being noto-
riously difficult to develop and debug, we are seeking to implement DPRSim-style
debugging [18] to provide critical support to application development.

Acknowledgment

This work was partially supported by the ANR (ANR-16-CE33-0022-02), the
French Investissements d’Avenir program, the ISITE-BFC project (ANR-15-IDEX-
03), and the EIPHI Graduate School (contract ANR-17-EURE-0002).

References

1. Ahmadzadeh, H., Masehian, E., Asadpour, M.: Modular Robotic Systems: Characteristics and
Applications. Journal of Intelligent & Robotic Systems 81(3), 317–357 (2016). DOI 10.1007/
s10846-015-0237-8. URL https://doi.org/10.1007/s10846-015-0237-8

2. Ashley-Rollman, M.P., Pillai, P., Goodstein, M.L.: Simulating multi-million-robot ensembles.
In: 2011 IEEE International Conference on Robotics and Automation, pp. 1006–1013. IEEE,
Shanghai, China (2011). DOI 10.1109/ICRA.2011.5979807. URL http://ieeexplore.
ieee.org/document/5979807/

3. Christensen, D., Brandt, D., Stoy, K., Schultz, U.: A unified simulator for Self-Reconfigurable
Robots. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 870–876. IEEE, Nice (2008). DOI 10.1109/IROS.2008.4650757. URL http://
ieeexplore.ieee.org/document/4650757/

4. Collins, T., Shen, W.M.: ReBots: A Drag-and-drop High-Performance Simulator for Modular
and Self-Reconfigurable Robots. Tech. Rep. 714, University of Southern California, Informa-
tion Sciences Institute (2016)

5. Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots - design of the SMORES
system. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4464–4469. IEEE, Vilamoura-Algarve, Portugal (2012). DOI 10.1109/IROS.2012.6385845.
URL http://ieeexplore.ieee.org/document/6385845/

6. Fitch, R., Butler, Z.: Million Module March: Scalable Locomotion for Large Self-
Reconfiguring Robots. The International Journal of Robotics Research 27(3-4), 331–
343 (2008). DOI 10.1177/0278364907085097. URL https://doi.org/10.1177/
0278364907085097

7. Fitch, R., Butler, Z., Rus, D.: Reconfiguration planning for heterogeneous self-reconfiguring
robots. In: Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, pp. 2460–2467 (2003). DOI 10.1109/IROS.2003.1249239

8. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot
and Distributed Sensor Systems. In: In Proceedings of the 11th International Conference on
Advanced Robotics, pp. 317–323 (2003)

9. Kamimura, A., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: A Self-Reconfigurable Mod-
ular Robot (MTRAN) – Hardware and Motion Generation Software –. In: 5th International
Symposium on Distributed Autonomous Robotic Systems, p. 10 (2002)

10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-
robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–2154. IEEE, Sendai, Japan
(2004). DOI 10.1109/IROS.2004.1389727. URL http://ieeexplore.ieee.org/
document/1389727/

https://doi.org/10.1007/s10846-015-0237-8
http://ieeexplore.ieee.org/document/5979807/
http://ieeexplore.ieee.org/document/5979807/
http://ieeexplore.ieee.org/document/4650757/
http://ieeexplore.ieee.org/document/4650757/
http://ieeexplore.ieee.org/document/6385845/
https://doi.org/10.1177/0278364907085097
https://doi.org/10.1177/0278364907085097
http://ieeexplore.ieee.org/document/1389727/
http://ieeexplore.ieee.org/document/1389727/

12 Pierre Thalamy, Benoı̂t Piranda, André Naz and Julien Bourgeois

11. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: A survey.
Autonomous Robots 22(2), 101–132 (2007). DOI 10.1007/s10514-006-9013-8. URL http:
//link.springer.com/10.1007/s10514-006-9013-8

12. Lyder, A., Garcia, R., Stoy, K.: Mechanical design of odin, an extendable heterogeneous de-
formable modular robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 883–888. IEEE, Nice (2008). DOI 10.1109/IROS.2008.4650888. URL
http://ieeexplore.ieee.org/document/4650888/

13. Michel, O.: Webots: Professional Mobile Robot Simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004). URL http://www.ars-journal.com/
International-Journal-of-Advanced-Robotic-Systems/Volume-1/
39-42.pdf

14. Naz, A.: Distributed Algorithms for Large-Scale Robotic Ensembles: Centrality, Synchroniza-
tion and Self-reconfiguration. PhD Thesis, FEMTO-ST Institute, Univ. Bourgogne Franche-
Comté, CNRS (2017)

15. Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: ABC-Center: Approximate-center elec-
tion in modular robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2951–2957. IEEE, Hamburg, Germany (2015). DOI 10.1109/IROS.
2015.7353784. URL http://ieeexplore.ieee.org/document/7353784/

16. Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: A Time Synchronization Protocol for
Modular Robots. In: 2016 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP), pp. 109–118. IEEE, Heraklion (2016). DOI 10.1109/
PDP.2016.73. URL http://ieeexplore.ieee.org/document/7445320/

17. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS:
a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4),
271–295 (2012). DOI 10.1007/s11721-012-0072-5. URL http://link.springer.
com/10.1007/s11721-012-0072-5

18. Rister, B.D., Campbell, J., Pillai, P., Mowry, T.C.: Integrated Debugging of Large Modular
Robot Ensembles. In: Proceedings 2007 IEEE International Conference on Robotics and
Automation, pp. 2227–2234. IEEE, Rome, Italy (2007). DOI 10.1109/ROBOT.2007.363651.
URL http://ieeexplore.ieee.org/document/4209415/. ISSN: 1050-4729

19. Rus, D., Vona, M.: Crystalline Robots: Self-Reconfiguration with Compressible Unit Mod-
ules. Autonomous Robots 10(1), 107–124 (2001). DOI 10.1023/A:1026504804984. URL
https://doi.org/10.1023/A:1026504804984

20. Salemi, B., Moll, M., Shen, W.m.: SUPERBOT: A Deployable, Multi-Functional, and Mod-
ular Self-Reconfigurable Robotic System. In: 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3636–3641. IEEE, Beijing, China (2006). DOI 10.1109/
IROS.2006.281719. URL http://ieeexplore.ieee.org/document/4058969/

21. Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P.A., Ijspeert, A.J.:
Roombots—Towards decentralized reconfiguration with self-reconfiguring modular robotic
metamodules. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Con-
ference on (2010). DOI 10.1109/IROS.2010.5649504

22. Støy, K., Nagpal, R.: Self-Reconfiguration Using Directed Growth. In: Distributed Au-
tonomous Robotic Systems 6, pp. 3–12 (2007). DOI 10.1007/978-4-431-35873-2 1. URL
https://doi.org/10.1007/978-4-431-35873-2_1

23. Thalamy, P., Piranda, B., Bourgeois, J.: A survey of autonomous self-reconfiguration meth-
ods for robot-based programmable matter. Robotics and Autonomous Systems 120, 103,242
(2019). DOI 10.1016/j.robot.2019.07.012. URL https://linkinghub.elsevier.
com/retrieve/pii/S0921889019301459

24. Vonásek, V., Saska, M., Košnar, K., Přeučil, L.: Global motion planning for modular robots
with local motion primitives. In: Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pp. 2465–2470. IEEE (2013)

25. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed Control for 3D Metamorphosis. Au-
tonomous Robots 10(1), 41–56 (2001). DOI 10.1023/A:1026544419097. URL https:
//doi.org/10.1023/A:1026544419097

http://link.springer.com/10.1007/s10514-006-9013-8
http://link.springer.com/10.1007/s10514-006-9013-8
http://ieeexplore.ieee.org/document/4650888/
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://ieeexplore.ieee.org/document/7353784/
http://ieeexplore.ieee.org/document/7445320/
http://link.springer.com/10.1007/s11721-012-0072-5
http://link.springer.com/10.1007/s11721-012-0072-5
http://ieeexplore.ieee.org/document/4209415/
https://doi.org/10.1023/A:1026504804984
http://ieeexplore.ieee.org/document/4058969/
https://doi.org/10.1007/978-4-431-35873-2_1
https://linkinghub.elsevier.com/retrieve/pii/S0921889019301459
https://linkinghub.elsevier.com/retrieve/pii/S0921889019301459
https://doi.org/10.1023/A:1026544419097
https://doi.org/10.1023/A:1026544419097

	Behavioral Simulations of Lattice Modular Robots with VisibleSim
	Pierre Thalamy, Benoît Piranda, André Naz and Julien Bourgeois
	1 Introduction
	2 Related Works
	3 Simulator Overview
	4 Programming Environment and Features
	4.1 User Application Demonstration
	4.2 User Interactions
	4.3 Customization Hooks
	4.4 Export Tools

	5 Usage and Evaluation
	5.1 Use Cases
	5.2 Simulation Fidelity
	5.3 Scalability

	6 Conclusion and Future Work
	References

