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Abstract

This paper studies both the design and the cyclic
scheduling of multi-hoist treatment surface facili-
ties. Former research have always assumed that the
design of the production line is already available
with a fixed material handling fleet size. However,
in this study, the number of hoists is considered as a
decision variable of the problem. The latter is then
bi-objective and called the Cyclic Hoist Design and
Scheduling Problem (CHDSP). The optimization
objective is to determine an optimal cyclic schedule
for each possible number of hoists that minimizes
the cycle time and thus maximizes the line through-
put rate. The achieved results will contribute to
building a decision support system that will enable
to choose the required number of transportation re-
sources for the production line regarding both aims
of productivity maximization and cost savings. An
original encoding approach is proposed that both
assigns a number of hoists to the line and generates
their move sequences, which are evaluated thanks to
a mixed integer linear programming model. A rich
and well-structured solving algorithm based on vari-
able neighborhood search is developed and adapted
to solve efficiently the whole problem. It is also im-
proved by a backtrack procedure that further en-
hances the findings. Computational experiments
are conducted on benchmark problems and demon-
strate the high performance and effectiveness of the
proposed algorithm that was, in most cases, even
able to reach the optimal solutions.
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1 Introduction

Scheduling plays a key role in production processes
as it aims to maximize operation efficiency. It has a
fundamental impact on enhancing productivity by
lowering production time and costs. The schedul-
ing problem becomes more critical when produc-
tion processes are automated. It is the case in most
contemporary manufacturing systems where trans-
porting parts, throughout the workstations, is per-
formed by robots. This kind of problem is espe-
cially encountered in electroplating facilities, where
computer-controlled robots (hoists) are used for ma-
terial handling. One famous among these processes
is the production of printed circuit boards (PCBs).

Electroplating is the process of coating an item
(electrode) with a thin layer of metal to give it a
desired surface property like electric conductivity,
resistance to rust, protection against wear and cor-
rosion or even aesthetic qualities. In electroplating
facilities, parts must soak in several tanks contain-
ing chemical solutions. Each one is needed for a spe-
cific step of part processing such as cleaning, acid
pickling, plating, rinsing, etc. Tanks are commonly
arranged in a row and ordered following the process
sequence (Figure 1). Parts, usually mounted on car-
riers to be processed in batches, are moved from one
tank to another one thanks to automated handling
hoists. Depending on production requirements, the
electroplating line uses one or more identical hoists
that circulate on a single track. The production line
begins with an input station, the first tank of the
line where carriers are prepared and waiting to be
loaded. The output station is then the last tank
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of the line where processed carriers are unloaded.
Sometimes, the loading and unloading occur in the
same tank: it is the case of associated input-output
stations.

Electroplating systems are often mass production
systems where a great and an unlimited number of
parts are to be treated, following the same process-
ing sequence. The processing here begins by load-
ing a carrier from tank 1, soaking it in a sequence
of tanks and finally unloading it at output station
(tank N+1). As all parts go through the same pro-
cessing sequence, the production becomes uniform
and a fixed processing sequence is repeated. This
means that the hoists repeat the same sequence of
moves. The repetition of the same sequence is the
production cycle and the fixed move sequence of the
hoists is called the cyclic schedule. The problem
of searching the cyclic schedule that minimizes the
cycle period is known as the Cyclic Hoist Schedul-
ing Problem (CHSP) [44, 24]. CHSP is one vari-
ant among others of the general Hoist Scheduling
Problem (HSP) [41]. Most of previous approaches,
whatever the HSP variant considered was, have only
focused on scheduling hoists moves while supposing
that the design of the line is already furnished and
the number of hoists is a fixed constant. However, in
our study, we deal with both design and scheduling
problems together. We suppose that the number of
transportation resources is unknown and we try to
find the best couples that gather each possible num-
ber of hoists with its optimal cycle time. Hence, we
tackle a dual problem that we call, the Cyclic Hoist
Design and Scheduling Problem (CHDSP). Our ap-
proach is at the same time intriguing and challeng-
ing. It will provide a decision support system to
enable decision-makers to choose a suitable couple
of parameters to their production line while regard-
ing investment costs as well as productivity objec-
tives. In addition, as we add a new variable to the
problem (the number of transportation resources)
its complexity does increase. Thus, adaptive and
efficient solving methods will be needed that may
be computationally demanding compared to other
approaches. This paper, thereby, outlines a new ap-
proach to deal with the CHDSP problem. Our ob-
jective is to determine an optimal cyclic schedule for
each possible number of hoists that minimizes the
cycle time and thus maximizes the line throughput
rate. The proposed encoding method is original as it
both assigns a number of hoists to the line and gen-
erates their move sequences. A mixed integer linear
programming model [36] is used to evaluate these
move sequences to deduce hoist move schedules and
calculate associated cycle times. The whole prob-

lem is solved due to an adapted and rich Variable
Neighbourhood Search (VNS) based approach. The
developed solving algorithm is called ”AVNS”. It is
also further improved thanks to a backtrack proce-
dure that enhances its efficiency. We test its per-
formance on benchmark data and compare it with
the optimal results of the literature as well as our
previous findings [19].

The paper is organized as follows. The next sec-
tion gives an overview of related work. The third
section states the problem and the constraints in
scope. In the fourth section, we present a novel en-
coding idea. Resolution algorithm and fitness eval-
uation model are described in Section 5. In Section
6, computational experiments and benchmarks are
provided and results are analyzed and discussed. A
conclusion to our work is drawn in the final section.

2 Related work

2.1 The Hoist Scheduling Problem

The Hoist Scheduling Problem (HSP) has always
been an important issue for research since 1976,
when Phillips and Unger [41] were the first to
propose a Mixed Integer Programming Model for
CHSP to maximize the production throughput.
They used it to solve an industrial 13-tanks numer-
ical example. In 1988, Shapiro and Nuttle [44] de-
scribed a linear programming model and associated
algorithm to find an optimal cycle for a single hoist
system. They used it to solve the same numeri-
cal example proposed by [41]. Thenceforth, HSP
continued to receive much attention from scientists
who proposed various models and methods to tackle
one of its variants while considering specific objec-
tives and constraints. An interesting study, worth
to cite here, is the classification of HSPs made by
Manier and Bloch [34] who identified four main
classes (variants) of the problem: Cyclic (CHSP),
Predictive (PHSP, [7, 17, 46]), Dynamic (DHSP,
[15, 21, 48]) and Reactive (RHSP, [45, 49]). The
authors also provided a typology of the different
classes and proposed a generic notation for HSP.
As in this study we are interested in a cyclic HSP,
we will focus more on researches belonging to this
class.

2.2 The CHSP in single hoist lines

The CHSP, was the most studied variant in litera-
ture with different physical system parameters and
production specifications, and then solved with var-
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Figure 1: An electroplating line with associated loading-unloading station.

ious methods and approaches. It was broadly in-
vestigated in the single hoist case like in the work
of [41] or in [44] which considered lines with du-
plicated tanks (i.e., multi-capacity tanks). Then,
many models were proposed. Baptiste et al. [4, 3]
used a constraint logic programming model that was
simply implemented and able to provide the opti-
mal solution as in [44]. Lei [22] suggested a binary
search procedure to find the optimal integer start-
ing times for the operations in a cyclic transporta-
tion schedule. Armstrong et al. [2] used a branch
and bound solution procedure based on the ”Mini-
mal Time Span”, a lower bound of the cycle time,
to solve an N-stage HSP with time-window con-
straints. Rather than mathematical programming
based approaches, Lim [29] proposed a genetic al-
gorithm based method to solve the HSP.

Unlike previous studies did, NG and Leung [40]
assumed that the inter-tank move times should not
be constant, i.e., they supposed that pauses are
allowed for hoists while moving parts. Other ex-
tensions of electroplating systems were also exam-
ined. Liu et al. [32] considered production lines with
multi-function tanks and multi-tank stages and de-
veloped a mixed integer linear programming model
to solve the problem. A multi-function tank is a
processing tank that might be visited by a carrier
more than once and a multi-tank stage is a same
stage with many identical tanks. This kind of stages
is used when a single tank stage performs a soaking
operation with a long processing time and creates a
bottleneck stage for the work-flow. Zhou and Li [53]
have also treated the single cyclic HSP with bot-

tleneck stages and proposed a multi-tank sequenc-
ing procedure to solve it. Che and Chu [9] investi-
gated the single CHSP with these two extensions,
as well. They called such systems ”large real-life
electroplating lines”. To solve the problem, they
studied analytic properties of this kind of systems
and suggested an efficient branch and bound algo-
rithm based on this analysis to avoid dominated
or infeasible solutions. Otherwise, Che et al. [12]
studied an electroplating facility with multi-type
parts and fixed processing times. They used a dy-
namic branch and bound procedure and tested it
on randomly generated test instances. Recently,
Feng et al. [16] have tackled the cyclic jobshop
hoist scheduling problem where multi-type parts
are considered together with multi-capacitated and
multi-function tanks. The authors have developed
a mixed integer linear programming model to solve
the problem.

2.3 The CHSP in multiple hoist lines

The CHSP was also widely studied in the multiple
hoist case. A first work to quote here is that of Lei
and Wang [25], in 1991. The authors suggested a
heuristic algorithm that finds schedules for systems
with two hoists using a partitioning approach. This
approach was used to partition the system into two
sets of contiguous work stations where each hoist
is assigned to a set. Then, the ”minimum com-
mon cycle” algorithm was proposed to search the
optimal cycle between the common cycles that are
derived from all generated partitions. They solved
the industrial example of [41] for two hoists. They
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pointed out the advantage of their approach that
the hoist assignment was simplified by the partition-
ing approach (no risk of collision as non-overlapped
zones is assumed) but they also affirmed that with
the partitioning approach, not all possible solutions
are examined. Lei et al. [23] aimed to find a cyclic
schedule for a CHSP while minimizing the num-
ber of hoists required for the production line. They
proposed a heuristic algorithm based also on a par-
titioning approach that partitions the system into a
number of non-overlapping stages, so that the sin-
gle track constraint is satisfied. The same problem
was tackled by Armstrong et al. [1] where they used
a greedy local optimization algorithm that maxi-
mizes the size of the divided stage zones. Hanen
and Munier [18] studied the same problem while
assuming that transport moves are arbitrarily as-
signed to the hoists. They proposed a mixed integer
programming model and a branch and bound pro-
cedure to solve the problem. Otherwise, Manier et
al. [37] dealt with the multi-hoist case in lines that
may have duplicated tanks and multi-function tank.
As they considered multi-directional sequences of
treatments, the partitioning of the line into non-
overlapped zones was no longer possible. Thus, they
proposed a portioning approach that assigns the
transfer operations to the hoists instead of divid-
ing the line into non-overlapped zones that would
be assigned to each hoist. To treat the collision
free constraint, they imposed a security zone for
each hoist that must lie in his circulation zone. The
assignment problem was solved due to a heuristic
rule whereas for the scheduling problem, the au-
thors presented a model based on constraint logic
programming. Later, a different approach to deal
with the collision free constraints rather than par-
titioning approaches has been suggested by Che
and Chu [8]. They formulated these constraints as
disjunctive inequalities and studied two additional
properties that check collision. To solve the prob-
lem, they presented a branch and bound algorithm
where the two mentioned properties were relaxed.
Leung et al. [27] and Che et al. [11] developed a
mixed integer programming formulation to model
the problem. Che et al. [11] have submitted an im-
proved mixed integer programming approach where
they assumed that the loaded moves of the hoists
can start and end within different cycles. As for
Leung and Levner [26], they studied the multi-hoist
CHSP with fixed processing times and proposed an
algorithm that finds the minimum number of hoists
for all possible cycle times and then determines the
minimal time cyclic schedule for the hoists. Zhou
and Liu [55] studied the CHSP with overlapping

hoist zones in a bi-hoist electroplating line. They
proposed a heuristic algorithm to generate trans-
fer operation sequences and assign the sequences to
the hoists, and a linear programming model with
the collision-free constraints to compute the opti-
mal schedule for each hoist assignment. Che and
Chu [10] have investigated the multi-hoist schedul-
ing problem but with constant processing times
rather than bounded ones and developed a mathe-
matical model and a polynomial algorithm to solve
it. They claimed that the proposed algorithm can
serve as a heuristic in solving the same problem but
with dependant time-windows. Zhou and Li [54]
studied the multi-hoist CHSP with time windows.
They suggested a method that divides the system
into multi non-overlapping zones and assigns a hoist
to each zone, like in [25] and developed a mixed inte-
ger linear programming model to treat the schedul-
ing dimension. They also extended their model to
solve the cases with bottlenecks that need multi-
tank stages. Chtourou et al. [13] proposed a colli-
sion test procedure to check collisions, in a bi-hoist
electroplating system. Other researches [28, 38]
have studied the k-degree CHSP: it is the case where
k identical parts join and leave the production line
in only one cycle. Both studies developed a MILP
model to solve the multi-hoist problem.

2.4 The CHSP with other optimiza-
tion objectives

The cyclic hoist scheduling problem was most of-
ten treated with the objective to find the optimal
schedule with the minimal cycle time which will
maximize the throughput rate of the system. Few
works have considered other optimization objectives
rather than scheduling one. With environmental
objective, Xu and Huang [47] associated the CHSP
and waste minimization and proposed an environ-
ment friendly electroplating process. As for Liu et
al. [30], they developed a triple objective model that
simultaneously optimizes the productivity, the en-
ergy saving and minimizes freshwater. The design
dimension, however, was rarely tackled associated
to the scheduling one. It was sometimes linked to
the production line arrangement where the aim was
to optimize the spatial allocation of the processing
resources, like in Zhao et al. [52]. Qu et al. [42],
yet, studied the simultaneous design and operation
problem of CHSP but in 2-Dimension case. They
assumed that the production line is not necessarily
a 1-D line structure but a compact 2-D production
line. Otherwise, the simultaneous design and op-
eration hoist problem tackled in our study, called
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CHDSP, does not concern the allocation of the pro-
cessing resources (the soaking tanks) but the quan-
tification of the fleet size of the material handling
resources. In other studies dealing with the multi-
hoist case, the size of the hoist fleet was fixed be-
forehand to perform the assignment of transfer op-
erations and then their scheduling. Differently, in
our study, the hoist fleet size is assumed unknown
and then considered as a decision variable of the
problem. Of course, that would bring a harsh chal-
lenge in modeling and computation, but it will offer
a worthy decision support system allowing to con-
sider at the same time both objectives of produc-
tivity maximization and energy and cost savings.

3 Problem description and no-
tation

As was pointed out above, we investigate the
CHDSP problem, where we aim to find the optimal
cyclic schedule that minimizes the cycle time for
each possible number of hoists. The cyclic schedule
is a repetitive sequence of moves performed by the
hoists. The hoist move durations are not negligible
and they are as important as processing times. So,
they cannot be ignored. As a result, to ensure pro-
ductivity, the hoists (also called robots) are seen
as the critical resources of the line. These robots
are programmed to perform a sequence of loaded
and unloaded moves (Figure 2). The hoist per-
forms a loaded move when it transports a carrier
between two consecutive tanks (i and i + 1) as fol-
lows: it raises the carrier from the first tank (i),
pauses over the first tank (i), if necessary, to al-
low the carrier drip-off, transports the carrier to the
next tank (i+ 1) and finally lowers it into this tank
(i+ 1). After each loaded move, the hoist performs
an unloaded move where it travels empty to another
tank (j) of the line to execute the next scheduled
loaded move (transport operation). Therefore, the
repetitive sequence of hoist moves is composed of
alternate loaded and unloaded moves.

We consider a production line with N tanks (Fig-
ure 1). We refer by E(i, j) to every hoist’s empty
move from tank i to tank j, and by L(i, i + 1) to
every hoist’s loaded move between two consecutive
tanks i and i + 1, where i, j = 1, . . . , N . Times
required for loaded and unloaded moves are given
constants. Let di,j be the empty move time and
ri be the loaded move time; ri = di,i+1 + c, where
di,i+1 is the empty move time between any two con-
secutive tanks; c is a constant that gathers the time
needed to raise a carrier and to let it drip-off above

Figure 2: Decomposition of hoist moves.

tank i, plus the time needed to stabilize and lower
the carrier into tank i + 1. The line has associated
input-output stations, where loading and unloading
carriers belong to tank 1. Tank N+1 may be used to
refer to the unloading station, which is here equiv-
alent to tank 1 (associated stations). The soaking
tanks are then tank 2, tank 3, . . ., tank N . Let
(nop) be the number of operations of the process-
ing sequence. Loading and unloading carriers are
the first and the last operations of this sequence, re-
spectively. Thus, nop = N +1. We denote the cycle
period by T and the number of hoists of the line by
H; h = 1, . . . ,H is the hoist number. We suppose
that hoist 1 always begins the processing sequence,
i.e., it is the responsible for the first transport oper-
ation L(1, 2) and then, the empty move E(2, j). In
case of multiple hoists, each one has to perform zh
moves and will have a repetitive sequence of moves
that we denote by Sh.

The problem we investigate has numerous con-
straints. First, each carrier has to follow the same
processing sequence. Second, tanks are disjunctive
resources so that every tank can process only one
carrier at a time. This also involves no preemp-
tion constraint because a processing step can never
be interrupted. Besides, it implies no re-circulation
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constraint (i.e., no re-entrance), as each carrier vis-
its every tank just once a time (the tanks are said
mono-function ones). Third, a carrier, while soak-
ing, must respect time bounds, i.e., there is a min-
imal and a maximal processing time (mi and Mi,
respectively) to respect in each tank. If the soak-
ing time lies out of this interval, the parts are less
or more coated than the standard requirements and
then, they are considered as defective. These results
in a no-wait constraint where parts must leave tanks
as soon as they finish processing, without any delay.
Moreover, each hoist can only transport one carrier
at a time and must have enough time to perform
empty moves between ordered tanks. As well, we
assume that there is no buffer between two soak-
ing operations and that there is no pause during
transport operations (we mean hoist pauses are not
allowed while moving a carrier, otherwise, the drip-
off pause is a constant defined by the process re-
quirements). Besides, the multi-hoist case necessi-
tates to study the collision free constraints because,
collision may obviously occur between hoists which
share the same moving track. Nevertheless, in the
literature of shop scheduling problems with trans-
portation resources (Flexible Manufacturing Sys-
tems with AGVs, Robotic Cells with robots and
Surface Treatment Facilities with hoists), we can see
that the authors often focus mainly on assignment
and sequencing problems of machines and trans-
port resources without considering risks of collision
( [6], [14], [20], [31], [36], [43], [50], [51]). In our
studied problem, these constraints are relaxed in
the mathematical model used for evaluation.

As regards the suitable notation for our problem,
with respect to the general notation given in [34],
we can write it as follows:

CHSP |H,N − 1, 1//ass|/N + 1|(Tmin, Hmin)

It is the Cyclic Hoist Scheduling Problem, with H
hoists and N tanks in a single line production sys-
tem, where the loading and unloading tanks are
associated; nop operations are performed by each
carrier. It is a bi-objective problem aiming at min-
imizing both the cycle time T and the number of
the hoists H.

4 Original encoding/decoding
approach

The problem considered does not allow neither wait
nor preemption related to processing operations.
Hence, hoists’ transport operations and processing

operations will have correlated beginning and end
times. That is, the beginning of a transport oper-
ation exactly corresponds to the end of a soaking
operation and the end of a transport operation cor-
responds to the beginning of a soaking one, as can
be seen in the GANTT representation of the sched-
ule provided in Figure 4. As a result, the scheduling
of processing operations becomes equivalent to the
scheduling of hoist moves. On the other hand, the
repetitive sequence of hoist moves is composed of al-
ternate loaded and unloaded moves. Thus, schedul-
ing hoist moves is possible based on either loaded or
unloaded moves, from which the final cyclic sched-
ule can easily be deduced.

4.1 Empty-move based encod-
ing/decoding

We call solution any possible combination of tank
numbers and we denote it by L. It is a list of inte-
gers i, i = 1, . . . N , where i refers to “tank i” or also
“soaking operation i” (except for the unloading op-
eration which takes place in tank 1). Every couple
of two successive numbers refers to an empty move
occurring between these two tanks. The decoding
of the solution is also cyclic where the last couple of
tanks is composed by the last element of the list L
and the first one of it. That is, if we consider a solu-
tion {ijk}, we can deduce three empty moves associ-
ated to this solution: the first is E(i, j) that occurs
from tank i to tank j, the second E(j, k) is from
tank j to tank k and the last E(k, i) is from tank k
to tank i. A solution has a size that ranges between
2 and N . Accordingly, it may not contain all the in-
dices of tanks. The absent numbers will form fictive
empty moves as follows: if l is a tank number that is
absent in the solution {ijk}, then we add E(l, l) as
fictive empty move and the solution will have four
empty moves in all. Once the decoding of overall
empty moves from the solution is done, a number
H of cyclic move sequences Sh can be deduced. As
mentioned before, the move sequence is an alterna-
tion of loaded and unloaded moves and the loaded
ones occur between two successive tanks i and i+1.
Therefore, every empty move occurs between two
transport operations, i.e., an empty move E(i, j) is
preceded by the transport operation L(i− 1, i) and
followed by L(j, j + 1). If it is a fictive empty move
such as E(l, l), it is preceded by the transport op-
eration L(l − 1, l) and followed by L(l, l + 1). In
this last case, and after performing the transport
operation L(l − 1, l), the hoist waits for the carrier
above tank l during the processing time before per-
forming next transport operation L(l, l + 1). Thus,
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Figure 3: Decoding procedure of the empty moves and identification of move sequences and hoist number.

Figure 4: The hoist schedule corresponding to the
encoded solution {1, 5, 2, 6, 3}.

the move is called fictive because it has a duration
even though there is no real spatial move of the
hoist. Consequently, with this empty-move based
encoding, we are able to identify from every possi-
ble solution L one or more cyclic move sequences
Sh, whose number H corresponds to the number
of hoists associated to the solution. The complete
decoding process will be detailed in section 5.2, in
the Algorithm 1. Figure 3 (on first and middle ex-
amples) outlines this ability with two examples of
solutions in a six-tank problem (N = 6). The first
solution is {1, 5, 2, 6, 3} where 4 is an absent tank
number. We identify the couples E(1, 5), E(5, 2),
E(2, 6), E(6, 3), E(3, 1) as empty moves and E(4, 4)
as a fictive one. We then can construct the move
sequences related to this solution while alternating
transport and empty moves. The transport opera-
tions, as they occur between successive tanks do not
change within the same case problem. Here, with
six-tank problem, we will always have the loaded
moves L(1, 2), L(2, 3), L(3, 4), L(4, 5), L(5, 6) and

L(6, 1). To build the move sequences, and without
loss of generality, we always begin a cycle by the
loaded move L(1, 2). By applying this method on
the first solution, we identify only one cyclic move
sequence (as depicted in Figure 3) performed by
hoist 1 (H = 1, Sh = S1). The schedule of this
move sequence is given in Figure 4.

With the same procedure, however, from the sec-
ond solution {4, 2, 5, 6, 1, 3} of Figure 3, we deduce
two cyclic move sequences respectively executed by
hoists 1 and 2 (H = 2, Sh = {S1, S2}). Indeed,
as already said, we always start by building the
move sequence of hoist 1 (H = 1) with the loaded
move L(1, 2). After alternation of loaded and un-
loaded moves, this first cyclic sequence is obtained
L(1, 2) − E(2, 5) − L(5, 6) − E(6, 1). As this se-
quence does not contain all the loaded and unloaded
moves, a second sequence can be built. The lat-
ter will begin with one of the loaded moves that
has not been used yet and that has the lowest tank
number for departure. In our case, the remaining
loaded moves after building the first move sequence
are L(2, 3), L(3, 4), L(4, 5) and L(6, 1). Then, we
begin the second sequence with the loaded move
L(2, 3) and after the alternation procedure, we get
a cyclic move sequence: L(2, 3)−E(3, 4)−L(4, 5)−
E(5, 6)−L(6, 1)−E(1, 3)−L(3, 4)−E(4, 2). As the
second move sequence obtained includes all the re-
maining loaded and unloaded moves, the decoding
procedure is closed.

It is to note that in literature, almost all previous
works used the hoist’s loaded moves to encode the
move sequences [41, 44, 22, 27, 13, 16]. However,
in [35] and [36], Manier et al. were the first to pro-
pose a different approach based on the hoists’ empty
moves. The latter is original as it enables to repre-
sent one or more cyclic move sequences Sh at a time,
whose number corresponds to the number of hoists.
The approach is then able to generate solutions
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Figure 5: Different outcomes between the loaded move and the empty move based encodings.

with variable number of hoists (H), and to deal
with the design dimension of the CHDSP. Figure 5
shows the difference on the outcome between the
loaded move based encoding and the empty move
based one. The encoded solution used to generate
the move sequences is {1, 3, 2, 4}. The principle of
loaded move generation is to consider one by one
the numbers figuring in the solution as the origin
tanks of the loaded moves of the sequence. Hence,
the scheduling of the loaded moves following the en-
coded solution is L(1, 2), L(3, 4), L(2, 3) and finally,
L(4, 1) which results in only one move sequence cor-
responding to a single hoist. The principle of empty
move generation [19], as deployed in details above,
provides the empty moves E(1, 3), E(3, 2), E(2, 4)
and E(4, 1) which results in two move sequences
corresponding to two hoists. Therefore, this exam-
ple outlines the ability of the empty move based
encoding to provide more than one move sequence,
then to deal with more than single hoist lines, com-
pared to the loaded move based one and generate
solutions with different couples (H, Sh).

4.2 Improvement Approach

The encoding approach, described above, has re-
vealed a limitation as it cannot generate all possible
solutions of the search space. This was proven based
on analysis carried out on some best solutions of
benchmarks of the literature [19]. Hence, to main-
tain the same decoding properties and at the same
time to enable the empty-move encoding approach
to generate the solutions that were not reachable
before, we suggest introducing separators to the en-
coding approach. The addition of separators to the
adopted encoding enables to increase the number
of the represented solutions. Indeed, more couples
(H,Sh) will be generated, which allows to diversify
the search space, or even complete it. In any so-
lution, a separator is encoded as the number zero
located in random positions. Accordingly, every so-

lution will contain the tank numbers i ∈ {1, . . . , N}
and some zeros, each referring to a separator (see
Figure 3, right case). The total size of the new
code is then the sum of the integer numbers i and
the number of separators. Nonetheless, the prin-
ciple of empty moves’ generation is slightly modi-
fied when applying separators. The separators are
inserted between two consecutive tank numbers in
the solution. We denote these insertion positions by
inter-tank positions. Thus, each separator divides
the solution into two parts. A separator indicates
the end of the first part and the beginning of the sec-
ond one. Then the decoding procedure indubitably
remains the same for each part. As the decoding of
one solution has to be cyclic, the decoding of each
part is cyclic too. Then, we can get a different list
of empty moves that results in a different couple
(H,Sh). Figure 3, at its right case, depicts this ad-
vantage on the same second solution {4, 2, 5, 6, 1, 3}
where a separator is inserted on the second inter-
tank position between tanks 2 and 5 (i.e. it is equiv-
alent to obtain two gathered cyclic solutions:{4, 2}
and {5, 6, 1, 3}). The separator modifies two of the
empty moves of the initial solution example (middle
case) generated without separator: the empty move
(2, 5) is replaced by (2, 4) and the empty move (3, 4)
is replaced by (3, 5). This modification of empty
moves influences the resulting couples (H,Sh). In
the above example, only one cyclic sequence move
(instead of two) is identified, that corresponds to a
single hoist (H = 1, Sh = S1). Next, we will re-
fer by empty-move based encoding approach to the
whole improved encoding approach with separators
described above. We then have noticed that the
application of separators on some given inter-tank
positions should be avoided as it does not generate
new move sequences. The situations to be evaded
are that two separators occupy:

(a) the same inter-tank position, because both are
considered as only one separator;
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Figure 6: Inter-tank positions to be avoided when applying separators

(b) the first or the last inter-tank positions;

(c) two successive inter-tank positions.

Actually, the application of a separator on one of
the situations (b) or (c) leads to obtain a segment
of solution of only one tank number {i}. This
single-tank-segment represents a single empty move
E(i, j), which, according to the cyclic decoding
method, begins and ends at the same tank num-
ber. The resulting empty move is then similar to a
fictive empty move provided by an absent tank num-
ber. Thus, in these both situations, we can meet the
same resulting empty moves as from a solution in
which number i is absent. Figure 6 escorts the last
idea with the solution example {4, 2, 5, 6, 1, 3}, con-
sidered in a six-tank problem (N = 6). On the left
side, we apply a separator on the first inter-tank po-
sition of the solution. The associated empty moves
are the same as those identified from the solution
{2, 5, 6, 1, 3} where (4, 4) is a fictive empty move.
On the middle, we show the case where a separator
is applied on the last inter-tank position. The asso-
ciated empty moves are the same as those deduced
from the solution {4, 2, 5, 6, 1} where (3, 3) must be
added as a fictive empty move. On the right side, we
have applied two separators on two successive inter-
tank positions: the second and the third ones. The
associated empty moves are the same as those iden-
tified from the solution {4, 2, 0, 6, 1, 3} with only one
applied separator on the second inter-tank position
and where (5, 5) is a fictive empty move. Therefore,
we prohibit the application of separators on these
positions to avoid repetition of a number of gener-
ated move sequences. Possible inter-tank position
is then defined as the inter-tank position that, af-
ter applying a separator, can generate different list
of empty moves and then totally different move se-
quences, that cannot be reachable without the ap-
plication of this separator.

5 Adapted Variable Neighbor-
hood Search Algorithm

The CHDSP problem that we tackle has two di-
mensions: the design dimension where we search
the minimal number of hoists, and the scheduling
dimension where we aim to find the optimal cyclic
schedules of hoist moves and deduce the minimal
cycle period T for a given number of hoists; the
second dimension was largely studied in the litera-
ture and is known as the Cyclic Hoist Scheduling
Problem, CHSP. It has been proven to be NP-hard,
even for the single hoist case [24]. Accordingly, the
multi-hoist scheduling problem with a single track
is further complicated and makes it hugely harder
to find the optimal solution. It is the case for our
problem with a further difficulty as the number of
hoists is a variable of our problem. In fact, the
search space is already huge whereas few feasible
solutions generally exist considering the numerous
constraints to respect. Then, to be able to achieve
the best solutions, an extra challenge is to increase
the efficiency of the search procedure, in order to
reach a maximum of feasible solutions and to avoid
local minima. This problem extension is further
challenging and due to its complexity, efficient solv-
ing algorithms should have a real potential for appli-
cation. Metaheuristic algorithms are then the first
to be nominated regarding their high performance
to solve sub-optimally NP-hard problems, among
which, we have chosen the Variable Neighborhood
Search (VNS) to solve the handled CHDSP prob-
lem. VNS algorithm was introduced by Mladenovic
and Hansen [39] as a metaheuristics that proceeds
to a systematic change of the neighborhood within
a local search algorithm. This makes it a simple and
effective metaheuristics for combinatorial optimiza-
tion problems. According to them, VNS, unlike
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most of other local search methods, does not follow
a trajectory, but explores increasingly distant neigh-
borhoods of the current incumbent solution, and
jumps from there to a new one if and only if an im-
provement was made. VNS, therefore, was chosen
regarding its structural characteristics of exploring
the search space that crucially influence the perfor-
mance of heuristic or metaheuristic algorithms. Due
to the size and other characteristics of the CHDSP
search space, the VNS metaheuristics, itself was not
applied as its standard version described in [39] but
modified and adapted to potentially deal with the
specificity of the handled problem. We call it the
Adapted Variable Neighborhood Search (AVNS). It
is then applied to solve the handled bi-objective op-
timization problem CHDSP. As for each number of
hoists H, there is associated cyclic move sequences
Sh (deduced from a solution L) evaluated to have a
cycle time T , we denote a solution of the CHDSP,
as the triplet (H,Sh, T ) or (H,L, T ) or simply the
couple (H,T ).

The general solving algorithm of AVNS is shown
in Figure 7. Other procedures are needed implic-
itly either to decode solutions to identify associated
move sequences and hoist number, or to evaluate
move sequences to deduce the corresponding cy-
cle time. They are called respectively, “decoding
and identification procedure” and “evaluation pro-
cedure”. Table 1 provides the notations that will be
used throughout the next sections, where useful de-
tails will be deployed to describe all the consistent
steps and procedures of AVNS.

5.1 Initialization procedure

The variables iter, Lbest(H), Tbest(H) are first ini-
tialized. As we solve the problem for different num-
ber of hoists H, and beforehand, we do not know
how many the search will reach for the number
of hoists, we initialize Lbest(H) and Tbest(H) for
H = i = 1, . . . , N . Precisely, Lbest(H) is a matrix of
a size N and Tbest(H) is a vector of size N . Lbest(i)
are initialized as empty vectors and all Tbest(i) begin
with the value 2000 as an upper bound of the ob-
jective T . This upper bound was chosen randomly,
but a little bigger than the optima of the cycle time
T of the solutions of one hoist (H = 1), found in
the literature, for all tested instances.

We start at iter = 1. An initial solution L1 is ran-
domly generated, as follows: First, we generate ran-
domly a number N1 between 2 and N (the number
of processing tanks). Then, we iteratively build a
solution in N1 steps. At each step, we complete the
partial solution by adding a randomly selected tank

Table 1: Notation
N number of processing tanks.
i tank index, i = 1, . . . , N .
ITER maximum number of iterations of the

general solving algorithm.
iter iteration index, iter = 1, . . . , ITER.
L1 initial solution.
(Sh)1 identified move sequences from L1.
H1 identified number of hoists from L1.
T1 cycle time corresponding to L1.
Linc incumbent solution of the general

solving algorithm. It is always the ori-
gin of neighboring solutions.

Lbest(H) global best solution for the number of
hoists H.

Tbest(H) global best cycle time for the number
of hoists H.

S neighborhood size. It is the number
of neighboring solutions generated at
each iteration.

s neighborhood size index, s = 1, . . . , S.
Ntype preselected neighborhood structures

used to generate neighbor solutions,
”type” is the title given to the
transformation or the move method
adapted to create the neighbor solu-
tion (details are next afforded).

Ntype(Linc)the set of neighbor solutions obtained
with the neighborhood structure of ti-
tle ”type” from incumbent solution
Linc.

Lneigh neighbor solution.
(Sh)neigh identified move sequences from Lneigh.
Hneigh identified number of hoists from

Lneigh.
Tneigh cycle time corresponding to Lneigh.
(Lneigh)bestbest neighboring solution.
(Hneigh)bestnumber of hoists of the best neighbor

solution.
(Tneigh)bestcycle time of the best neighbor solu-

tion.
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Figure 7: The general solving approach

number, such as any number can appear only once
in the solution. After that, we integrate a random
number of zeros (separators) on randomly chosen
inter-tank positions, according to the rules defined
in Section 4.2, and illustrated in Figure 6. To obtain
this initial solution L1, we generate as many solu-
tions as necessary until we get a feasible solution
(T1 6= 0), whose number of hoists is 1 or 2 hoists
(H1 = 1 or H1 = 2). This kind of solution is judged
as a good initial solution to begin the search with
as it is forced to be feasible and with the smallest
number of hoists.
L1 is then decoded using the decoding and iden-

tification procedure (Algorithm 1), to deduce its re-
lated move sequences (Sh)1 and hoist number H1.
The identified move sequences (Sh)1 are evaluated
using the evaluation procedure, to compute the cy-
cle time T1. We get here the initial resulting so-
lution (H1, T1). Then, the initial solution becomes
both the incumbent solution Linc and the global
best solution Lbest of hoist number H1. The cycle
time T1 is assigned to the global best cycle time
Tbest of H1 and we iterate ITER times the proce-
dures 5.5, 5.6, 5.7 and 5.8.

5.2 Decoding and identification pro-
cedure

This procedure enables us to deal with the design
dimension of the CHDSP. It is needed each time

a new solution is generated. With respect to the
description given in Section 4, it identifies the as-
sociated empty moves and deduces the associated
cyclic move sequences Sh and hoist number H for
each generated solution. See Algorithm 1 for more
details.

5.3 Evaluation procedure

The evaluation procedure uses the mixed integer
linear programming model that was proposed by
Manier et al. [36]. It was designed and applied to
deal with the same problem as that undertaken in
this study. This model enables us to deal with the
scheduling dimension of the CHDSP. For each de-
coded solution, it evaluates the deduced cyclic move
sequences Sh to test if they respect all the con-
sidered constraints (stated in paragraph 3), and to
compute the minimal cycle time T , while synchro-
nizing the H move sequences. If the move sequences
respect all constraints, the corresponding solution
is said feasible and the model provides a minimized
non-zero value for the cycle time T , otherwise, the
solution is said non-feasible and the resulting cycle
time is set to null.

After both procedures 5.2 and 5.3, we get for each
generated solution the triplet (H,Sh, T ).

5.4 Preselected neighborhood struc-
tures

The implemented AVNS uses several preselected
neighborhood structures to generate rich neighbor-
hoods. A neighborhood structure is a method that
slightly perturbs a solution to give a new different
one. It acts on one or some attributes of the so-
lution to change their values or their places. The
main idea is to improve, if possible, the incum-
bent solution by performing series of transforma-
tions or moves. The new solution is the neigh-
bor solution. The transformations are then spec-
ified by the neighborhood structure. They prede-
fine a type of moves with which neighbor solutions
are generated. Neighborhood structure that limit
changes to k components of the solution is often
called k-optimal (k-opt). In this study, we have
adopted six neighborhood structures Ntype of dif-
ferent types, to be involved in the AVNS. The six
types are insertion, deletion, replacement, swap,
shift and inversion and are respectively denoted
by Ninsertion, Ndeletion, Nreplacement, Nswap, Nshift

and Ninversion. We next give further details on the
adapted neighborhood structures.
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Algorithm 1: Decoding and identification
Input: L: a solution including separators
Output: S, H: set of move sequences and the number

of hoists
begin

S ← ∅
h← 1 // 1st move sequence
k ← 2 // index of the move sequence under
construction

Sh(1)← 1 // 1st sequence performs the 1st
loaded

Sh(2)← 2 // 1st move (from tank 1 to tank 2)
while not all empty moves are identified do

// define Sh(k + 1) s.t. (Sh(k), Sh(k + 1))
is the next identified empty move:

if Sh(k) does not exist in the solution L then
Sh(k + 1)← Sh(k) // fictive empty move

else
if Sh(k) is followed by “0” in L

(separator) then
if first separator in L then

Sh(k + 1)← L(1) // close the
1st cycle

else
Ns← separator number of Sh(k)

in L
Ps← position of separator
Ns− 1 in L

Sh(k + 1)← L(Ps + 1) // close
the current cycle

else
if Sh(k) is the last tank of L then

Ps← position of the last
separator

Sh(k + 1)← L(Ps + 1) // close
the last cycle

else
Ps← the position of Sh(k) in L
Sh(k + 1)← L(Ps + 1)

if Sh(k + 1) = Sh(1) // The move sequence is
a cycle
then

S ← S ∪ Sh

if not all empty moves are identified then
h← h + 1 // next hoist h
List← tanks that have not been

affected yet as a destination of one
empty move

Sh(1)← min(List) // 1st tank of
the new sequence of hoist h

Sh(2)← Sh(1) + 1 // destination of
the 1st loaded move insured by
hoist h

k ← 2

else
// define Sh(k + 2) s.t.
(Sh(k + 1), Sh(k + 2)) is a loaded move:

if Sh(k + 1) = N // number of processing
tanks
then

Sh(k + 2)← 1 // loaded move (N, 1)
else

Sh(k + 2)← Sh(k + 1) + 1 // each
loaded move goes to the next tank

k ← k + 2 // 2: empty move plus loaded
move

H ← h
return S,H

5.4.1 Ninsertion

The insertion neighborhood structure can only be
applied if the size of the solution is different from
N . In this case, we identify the tank numbers that
are absent in the incumbent solution. Then, we
randomly choose some of them that we insert on
random positions of the incumbent solution. This
neighborhood structure is k − opt where k is equal
to the number of the tank numbers that are in-
serted. Every added tank number causes to remove
one empty move from the identified empty moves of
the incumbent solution and replace it by two new
empty moves in the list of identified empty moves
of the neighbor solution.

5.4.2 Ndeletion

The deletion neighborhood structure can be ap-
plied whatever the size of the incumbent solution.
We first choose a random position on this solution
while avoiding separator positions. We avoid the
case that the tank number occupying this position,
after deletion, will lead to a unique tank number
in between two separators. We then delete the
tank number that occupies this position. We al-
ways delete only one random tank number from
the incumbent solution. This neighborhood struc-
ture is then 1 − opt. Every removed tank number
causes to remove two empty moves from the iden-
tified empty moves of the incumbent solution and
replace them by one new empty move in the list of
identified empty moves of the neighbor solution.

5.4.3 Nreplacement

Like the insertion structure, the replacement neigh-
borhood structure cannot be applied if the incum-
bent solution has a size of N tanks. We first iden-
tify the tank numbers that are absent in the incum-
bent solution, and randomly choose one of them.
We then replace it with one tank number of the
incumbent solution, randomly selected. We never
make a replacement with a separator. This neigh-
borhood structure does not alter the size of the in-
cumbent solution. The replacement neighborhood
structure is 1 − opt. Every changed tank number
causes to modify two empty moves from the iden-
tified empty moves of the incumbent solution. The
neighbor solution will then have two new identified
empty moves.
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5.4.4 Nswap

The swap neighborhood structure, yet, does not
have any constraint on the solution size. We be-
gin with choosing randomly two different positions
t1 and t2 on the incumbent solution. Moreover,
we never allow picking at the same time two sep-
arator positions as this case does not produce any
difference between the incumbent and the neighbor
solution. Afterward, we interchange the values at
these two positions t1 and t2. This neighborhood
structure does not alter the size of the incumbent
solution, as well. Unlike the previous structures,
the swap neighborhood is 2 − opt, because there
is perturbation of two components of the incum-
bent solution. The swapped values, cause to modify
four empty moves from the identified empty moves
of the incumbent solution. The neighbor solution,
thereby, will have four new identified empty moves.

5.4.5 Nshift

The shift neighborhood structure starts with choos-
ing randomly two positions t1 and t2 on the in-
cumbent solution. Hereafter, we circularly shift the
part of the incumbent solution delimited by the two
positions t1 and t2 (with t1 < t2). Clearly, this
neighborhood structure does not modify the size of
the incumbent solution. The shift neighborhood is
2−opt. That is, the tank number on the position t2
is removed from its position and is inserted on the
position t1. The tank numbers from the position t1
to the position t2 − 1 are just shifted each by one
position to the right and this move does not cause
to modify the empty moves identified from this part
of the solution. As a result, the shift neighborhood
is similar to a deletion-insertion neighborhood that
performs a deletion of the tank number of position
t2 before its insertion on the position t1. The re-
moval of tank number from position t2 causes to
replace two empty moves of the incumbent solution
by a new one. Its insertion on t1 causes to sub-
stitute one empty move of the incumbent solution
by two new empty moves. The neighbor solution,
hence, will have three new identified empty moves.

5.4.6 Ninversion

The inversion neighborhood structure, is like the
shift structure, can be applied whatever the size of
the solution but has an interesting effect when the
size of the tank part is important. It first chooses
two random positions t1 and t2 on the incumbent
solution. Then, it inverses the part in between so
that the last tank number on position t2 becomes

the first one of this part and occupies the position
t1, the tank number before last of position t2 − 1
becomes the second one, and so on until the first
tank number of position t1 takes the last position
t2. The size of the incumbent solution is never mod-
ified. This neighborhood structure is k − opt, as it
perturbs k components of a random size on the in-
cumbent solution, where k is equal to the part being
inverted. In cases when the decoding of the solu-
tions results in couples or arcs on which a different
orientation does not affect the cost of the move (the
move cost or distance on the arcs does not change
if the move orientation changes), this neighborhood
structure is only 2− opt. In fact, the solution part
from t1 to t2 is inverted such that it causes to mod-
ify only the orientation of the empty moves that are
identified beginning with tank number of position
t1 until tank number of position t2. The couples
of tank numbers that make up these empty moves
remain the same. Thus, only the tank numbers on
positions t1 and t2 cause to completely modify two
empty moves, as they are connected each with a
new tank number.

To ease the comprehension of these neighborhood
structures and their predefined moves, we illustrate
them using the following example of incumbent
solution Linc: {0, 7, 2, 5, 13, 8, 4, 9, 3, 10, 6, 1, 0}, in
a 13-sized-problem-case (see Figure 8). The size of
the incumbent solution is 13 with 11 tank numbers
and 2 separators, placed on the extremities of
the solution. The two absent tank numbers are
11 and 12. The figure depicts each already de-
scribed neighborhood structure Ntype where type ∈
{insertion, deletion, replacement, swap, shift, inversion}.
We show, for every neighborhood structure, how
moves are performed on the incumbent solution
Linc to obtain the neighbor solutions Lneigh. For
the insertion neighborhood structure Ninsertion,
the tank number 12 is randomly chosen from the
absent tank numbers of Linc and is randomly
inserted on the inter-tank position which lies
between the tank numbers 8 and 4, as shown on
the neighbor solution Lneigh. For the deletion
neighborhood structure Ndeletion, the random
position which lies between the tank numbers 8
and 9 is randomly chosen and the tank number
4 that occupies this position, is deleted as shown
by the corresponding Lneigh. For the replacement
neighborhood structure Nreplacement, 12 is ran-
domly chosen from the absent tank numbers of Linc

and randomly takes the place of the tank number 9
on the neighbor solution Lneigh, which lies between
tank numbers 4 and 3. For the swap neighborhood
structure Nswap, the two positions of tank numbers
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Figure 8: Illustration of the preselected neighborhood structures and their predefined moves

10 and 5 are randomly chosen and then, the tank
numbers 5 and 10 are interchanged between these
two positions. For the shift neighborhood structure
Nshift, the two positions of tank numbers 13
and 3 are randomly chosen. The tank number
3 is inserted on the position of the tank number
13, and the tank numbers between both chosen
positions (beginning from 13, 8, 4 to 9) are shifted
to the right each by one position. For the inversion
neighborhood structure Ninversion, the same two
random positions of tank numbers 13 and 3 are
randomly chosen and the part of tank numbers in
between is inverted as explained in Section 5.4.6.

5.5 Choice of a neighborhood struc-
ture

At each iteration iter of the general solving algo-
rithm AVNS, only one neighborhood structure is
selected from the six predefined structures Ntype. It
is then applied for the generation of the S-sized-set
Ntype(Linc) of neighbor solutions Lneigh. To accom-
plish this selection, we use a procedure which per-
forms a random choice of one neighborhood struc-
ture depending on the size of the tank part of the
incumbent solution Linc. In fact, the tank part is
the size of the solution without counting the num-
ber of its separators. We denote it by TP . Here,
we debrief this procedure:

• If 2 ≤ TP ≤ 4, this procedure chooses always
only the insertion structure Ninsertion to be ap-
plied.

• If this size is equal to its maximum (TP = N),

we can only apply one of the following four
structures: deletion, swap, shift or inversion.
Thus, the choice is performed randomly as fol-
lows: each structure has the probability of 1/4
to be chosen. A number prob in the interval
[1, 4] is randomly generated and depending on
its value, one neighborhood structure among
these four stated is selected. The number prob
is generated by a random function that re-
turns a random scalar integer between 1 and
the value of its attribute.

• Otherwise, if 5 ≤ TP ≤ N−1, we have no con-
straint on choice, so that, we choose randomly
one of the six predefined structures. Likewise,
each structure here has the probability of 1/6
and the number prob is randomly generated in
the interval [1, 6]. Depending on its value, one
of the six neighborhood structures is chosen.

5.6 Neighborhood generation proce-
dure

At the iteration iter, after specifying the neigh-
borhood structure to be applied, the Neighbor-
hood generation procedure generates S different so-
lutions Lneigh from the incumbent solution Linc,
with respect to the Ntype-move-mechanism. Af-
terwards, every generated neighbor solution Lneigh

goes through the decoding and identification pro-
cedure (5.2) to deduce its related hoist number
Hneigh and move sequences (Sh)neigh. Then, the
identified move sequences (Sh)neigh are evaluated
with respect to the MILP model (5.3) to ver-
ify their feasibility and to compute their cycle
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time Tneigh. Eventually, we obtain S neighbor
solutions Lneigh with their variable triplet-results
(Hneigh, (Sh)neigh, Tneigh), among which there may
be non-feasible solutions.

5.7 Election procedure

This procedure gets the resulting variables
Hneigh, Tneigh related to the generated neighbor
solutions Lneigh and compares them to elect the
best neighbor solution (Lneigh)best of the iteration
iter. At the beginning, we exclude all the non-
feasible neighbor solutions and we keep only the
feasible ones (Tneigh 6= 0). Next, we nominate the
best neighbor solution based on the two objective
variables H and T . As the tackled problem is
bi-objective, we prioritize one objective over the
other one during the election operation. Hence,
two actions are possible here: either determine the
neighbor solutions with the minimal cycle time
(Tneigh)best (we can find more than one neighbor
solution with the same cycle time) and if there
are many, we nominate the one with the minimal
number of hoists (Hneigh)best, or identify the
neighbor solutions with the minimal number of
hoists (Hneigh)best and if there are several, we
nominate the one of them with the minimal cycle
time (Tneigh)best. It was obvious, and even shown
with some first simulations, that the first choice
is not the perfect one. When we prioritize the
minimization of the cycle time, we will often get
the neighbor solutions with the minimal cycle
times whose number of hoists H are obviously not
among the minimal ones i.e. the more the number
of hoists of a production line increases, the more
the cycle time value decreases. When this election
option gets repeated over the iterations, we get
further from the neighborhoods of solutions of
minimal number of hoists. Accordingly, we have
assumed to apply the second election option, which
privileges first the minimization of the number of
hoists H, to determine the best neighbor solution
during the election procedure.

In other respects, in very rare cases, there may
not have any feasible solution within a gener-
ated neighborhood.Thus, in this case, we randomly
elect one of the neighbor solutions that have the
minimal number of hoists (Hneigh)best to be the
best neighbor solution (Lneigh)best, even though
(Tneigh)best = 0. This case has a positive impact on
the diversification of the search space of solutions of
minimal number of hoists that are the more difficult
to achieve.

5.8 Update procedure

Given the adopted encoding method, any pertur-
bation of a solution may change the value of the
two objectives (H,T ) and leads to a totally differ-
ent solution. Thus, throughout the optimization
procedure, each possible number of hoists will have
an improvement scheme, i.e., we will improve the
cycle time T for every possible hoist number. Each
time a new solution (H,T ) is accepted, we will com-
pare its cycle time T to the best cycle time that has
been registered for the hoist number H. That is,
comparison must always occur between cycle times
of the same number of hoists.

Here, two tests are applied on (Lneigh)best: if it
is already feasible and (Tneigh)best is lower than
the global best cycle time Tbest ever found for
hoist number H = (Hneigh)best, then Tbest(H)
gets the value of the new best neighbor cycle time
(Tneigh)best and likewise, Lbest(H) gets the best
neighbor solution elected (Lneigh)best. After that,
the incumbent solution Linc gets the best neigh-
boring solution (Lneigh)best and the algorithm loops
with the procedure 5.5 until it reaches the last iter-
ation ITER.

The last step means that the algorithm always
moves to the new best neighbor solution (Lneigh)best
even if there is no further improvement of the cy-
cle time, because the new best neighbor solutions
will have different and random number of hoists. In
fact, we test if there is an improvement of the best
cycle time Tbest registered for H = (Hneigh)best. If
an improvement exists, this means that a new im-
proved value of T , (Tneigh)best, is found for Tbest of
H = (Hneigh)best. Then, we assign (Tneigh)best to
Tbest((Hneigh)best) and the corresponding new im-
proved solution (Lneigh)best to the last best solution
Lbest((Hneigh)best) registered for H = (Hneigh)best.

As the incumbent solution may have a number
of hoists Hinc different from (Hneigh)best, then the
cycle time of the best neighbor solution (Tneigh)best
may also belong to a different number of hoists than
Hinc. Thus, the comparison between the cycle time
of incumbent solution Tinc and (Tneigh)best is not
logic here. That is why we do not define or use nei-
ther Hinc nor Tinc and on each iteration, we move to
the new best neighbor solution without need of im-
provement of Tinc. This also means that we change
on each iteration the incumbent solution Linc by
the best generated neighbor solution (Lneigh)best.
However, in general cases, when any meta-heuristic
based on local search is applied, there are two possi-
ble actions that can be performed at each iteration:
either accept a move to the new elected best neigh-
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bor solution only if an improvement of the incum-
bent solution exists, or accept a move even if there
is no improvement. The first case is known as a ”de-
scent method” while the second one is a ”descent-
ascent method”. Moreover, if at each iteration of
the algorithm, there is only one generated neigh-
bor solution (unique size neighborhood, S = 1),
we will always judge the first explored solution in
the neighborhood, which is known as ”the first-
improvement” method. However, when all neighbor
solutions are generated among which we select the
best one regarding the objectives to optimize, we
are then applying the ”best-improvement” method.
Yet, when the problem is NP-hard, its complexity
growths exponentially with the increase of its size.
It becomes then harder and time costly to generate
all possible solutions in each considered neighbor-
hood. In these cases, it remains possible and more
logical to generate a given number of neighbor solu-
tions at each iteration of the algorithm, from which
we select the best one. The neighborhood will then
have a defined size. Consequently, according to the
latter definitions of possible search strategies, we de-
duce that our applied AVNS is a descent-ascent,
best improvement search method. In addition,
a stopping criterion in meta-heuristic algorithms
can be either a maximum number of iterations, a
maximum number of iterations after last improve-
ment, or a maximum allowed computing time. In
our case, we have chosen to iterate the main steps
for a given maximum number of iterations ITER.

6 AVNS algorithm with back-
track

In order to further improve the outcome of the
AVNS algorithm, we have also tested it with an in-
tegrated backtrack procedure. The latter has only
interfered into the procedure 5.1 for initialization
and mainly the update procedure 5.8 of the AVNS.
All the other procedures have not been altered. The
principle of this backtrack procedure is to return
back on some already visited solutions that we judge
promising for one or more reasons. The new algo-
rithm is called the AVNSBT. Figure 9 depicts the
slight change in the structure of the AVNS with the
introduced backtrack steps with a zoom on the up-
date procedure. To implement this procedure, we
need to define the two following new variables:

Threshold : a number of iterations after which the
backtrack is performed (Threshold should be
a divisor of ITER).

Lthreshold(Hthreshold) : a threshold solution be-
longing to the hoist number Hthreshold to
which the search procedure returns back every
Threshold iterations.

The threshold solution Lthreshold is the best solu-
tion that has ever been registered for a given num-
ber of hoists, Hthreshold. When we consider more
than one hoist number for the backtrack proce-
dure, the threshold solution is then the best solution
that has ever been registered for the hoist number
that has the oldest improvement. The backtrack
procedure occurs as follows (see Figure 9). First,
we initialize the Threshold variable in the initial-
ization step. Then, throughout the iterations, al-
though always assign the best neighboring solution
(Lneigh)best to the incumbent solution Linc (proce-
dure 5.8 of AVNS), a test is performed beforehand:
If the search has gone through Threshold iterations
(ITER is divisible by Threshold), then the incum-
bent solution Linc must return back to the threshold
solution Lhreshold, otherwise, the incumbent solu-
tion gets the best neighboring solution (Lneigh)best.

7 Computational Experiments

Our general solving algorithm, AVNS, was imple-
mented in Matlab (R2016a) and runned on an
Intel(R) Core(TM) i5-6500 CPU with 3.20 GHz.
The MILP was solved thanks to the ”Hybrid Tool-
box” [5] which is a MATLAB/Simulink toolbox
used for modeling, simulating, and verifying hybrid
dynamical systems.

7.1 Benchmark problems

The AVNS was tested on three benchmark prob-
lems taken from the literature. The first one, well-
known, is the benchmark of Phillips and Unger [41]
that we denote by ”P&U”. This benchmark was
mainly used to adjust the different parameters of
the algorithm This first benchmark is a 13-sized-
problem-case where tank 1 is an associated loading-
unloading station. The related data are presented in
the appendix (Table A1 gives the empty move times
di,j defined in seconds and shows per tank number,
the lower and upper bounds mi and Mi of each
processing task and transport travel time ri). The
second and the third benchmarks were proposed
by Manier [33] and labelled ”ligne1” and ”ligne2”.
The ”ligne1” example is also a 13-sized-problem-
case with tank 1 as associated loading-unloading
station. This problem example includes a circula-
tion constraint that was explained by Shapiro [44]:
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Figure 9: The AVNS algorithm with backtrack

The same carrier unloaded in a cycle, is loaded
again to get in the line at the next cycle. As the
MILP formulation used here to evaluate the solu-
tions does not take into account this constraint,
we were obliged to slightly modify the data, pro-
vided also in Manier and Lamrous [36]: rather than
mi(tank 1, loading operation)= 180s and mi(tank
1, unloading operation)= 180s, we put mi(tank 1,
loading operation)= 180 + 180 = 360s as a sum of
the two minimal times and mi (tank 1, unloading
operation)= 0s to oblige considering that the two
minimal times correspond to the same carrier. The
”ligne2” example is a 15-sized-problem-case with
dissociated loading-unloading stations (loading sta-
tion is tank 1 and the unloading one is tank 15).
Here, every unloaded carrier must be returned by
a hoist to the loading station. The data related to
benchmarks ”ligne1” and ”ligne2” are provided in
the appendix with Tables A2 and A3. These two
benchmarks were tested to validate the parameter
set already chosen at the first step and to prove
the efficiency of the proposed algorithm AVNS on
solving different benchmarks.

Table 2: Benchmarked results for ”P&U” example

number optimal of ”M&L”
of hoists the literature results

(H) T ∗
best Tbest Tmean

1 521 665 673.8
2 251 332 346
3 — 196 205.8
4 — 210 226.4
5 — 151 159.4
6 — — —
7 — 151 151

7.2 First results and parameter ad-
justment

The results depicted in this section belong to tests
that have been carried on ”P&U” benchmark. We
have compared the results of our AVNS to the best
results obtained on this benchmark. In the follow-
ing tables, T ∗best represents the optimal cycle time
of the literature, without considering the collision
constraints.

In the literature, only best cycle time on that
benchmark exits for one or two hoists (H = 1
or H = 2), denoted resp. T ∗best(1) and T ∗best(2).
T ∗best(1) has been proven optimal by Shapiro and
Nuttle [44] (T ∗best(1) = 521 s). The second one has
been provided by Lei and Wang [25] (T ∗best(2) =
251 s) by using a heuristic approach. Their resolu-
tion is collision free by solving the single hoist prob-
lem respectively on two parts of contiguous stations.
The result is the minimum common cycle (MCC)
of two hoists. In the best of our knowledge, it does
not exist any optimal resolution for the CHSP for
H > 2. On the other hand, Manier and Lamrous
have proposed a fundamental basis of comparison
for our work as we tackled is the same problem with
the same three criteria [36]. Recall that the objec-
tive of this study (see Section 4) is to improve the
CHSP problem using the empty-move based encod-
ing initially proposed in [35] and [36]. Their results
are denoted by ”M&L” in the following. Table 2
presents the last results from the literature. For
”M&L” results, we exhibit the best cycle time Tbest

with their solving method and the mean best cycle
time Tmean for H = 1, ..., 7.

First, main parameters of the method have to be
adjusted one after the other. First the two choices
explained in Section 5 are determined by calcula-
tion. The first belongs to the election procedure, the
best neighbor solution based on the two variables H
and T is nominated and applied to the second elec-
tion option. The latter privileges the minimization
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Table 3: Influence of the first and second election
options on results for ”P&U” benchmark

H
T -option H-option

Tbest Tmean Tbest Tmean

1 1202 1361.6 733 775.6
2 434 498.2 324 359.1
3 214 223.7 204 209.9
4 151 158.7 151 165
5 151 151 151 151
6 151 151 151 151.8
7 151 151 201 290.8

of the number of hoists H rather than the cycle time
T , to find the best neighbor solution. Therefore,
Table 3 gives the results of the AVNS with the two
election procedure options, minimizing T and H,
respectively denoted by T − option and H-option.
Both best and mean found cycle times (resp. Tbest

and Tmean) over five runs are also presented using
a maximum number of iterations ITER = 10 000
and a neighborhood size S = 20. One can remark
that the second election option H-option outper-
forms the first one, mainly on smallest number of
hoists, not only on best cycle time Tbest but also,
on the mean best cycle time Tmean. The H-option
is less performing with H = 7 and on Tmean with
H = 4, 6 and 7. This result is explained by the
fact that the research is oriented towards minimiz-
ing the number of hoists, and can be improved with
other parameter values, mainly when the number of
iterations increases.

The second choice, motivated by numerical re-
sults, is to change the current solution Linc by
(Lneigh)best every iteration of the algorithm, even
if Tinc is not improved (see Section 5.8). Table 4
shows the results of AVNS in two cases: the first
option (T -improvement-option) by replacing Linc

with (Lneigh)best if Tbest(hneigh)best is improved and
by (Lneigh)best in all cases with the second option
(T -no-improvement-option). The first option sup-
ports the intensification of the search (in-depth re-
search) whereas the second reinforces the diversi-
fication of the search (multiple hollow research).
Likewise, the best found cycle time Tbest and the
mean best cycle time Tmean over 5 tests with the
same AVNS set of parameters are shown. When the
T -non-improvement-option is applied in the AVNS,
the results are much better on Tbest and Tmean.
When H is increasing (e.g., H = 7) Tbest is a little
bigger than when using T -improvement-option (as
we apply the H-option here). Nonetheless, with a
larger number of iterations (ITER > 10 000), the
algorithm has reached optimal values even for the

Table 4: Influence of the incumbent solution change
options on results for ”P&U” benchmark

H
T -improvement-option T -non-improvement-option
Tbest Tmean Tbest Tmean

1 776 1014 733 775.6
2 338 453.4 324 359.1
3 210 236.4 204 209.9
4 163 171.5 151 165
5 151 156.9 151 151
6 151 153.6 151 151.8
7 151 899.6 201 290.8

highest number of hoists. So more than intensi-
fication, a high level of diversification is manda-
tory to access to the best solutions. Morover, the
multiple-hollow research seems to be the suitable
search strategy for our problem. In the following
the two best elected options (i.e., H-option and T -
non-improvement-option) are kept in the AVNS.

Let’s now show the influence of the number of
iterations on the results. To do that all other pa-
rameters remain constant (S = 20) and ITER takes
the values 100, 1000, 10 000, 100 000 and 1 000 000.
Table 5 summarizes these findings with Tbest and
Tmean over five tests, except for ITER = 1 000 000
with only two tests because of too large computa-
tion times. The last line of that table provides the
mean CPU time (in seconds) over the test repe-
titions for each class of ITER. Recall that each
Tbest(H) begins with the value 2000 as an upper
bound. These results show that the bigger the
number of iterations, the better the cycle time for
each the number of hoists H, not only the best one
over the different tests Tbest but also, the mean
best Tmean. Except for ITER = 1 000 000, the
Tbest is not better than Tbest of ITER = 100 000.
That can be explained by the lack of test repeti-
tions for ITER = 1 000 000. The small improve-
ment of Tmean for ITER = 1 000 000 compared
to Tmean for ITER = 100 000 can be a result of
the growth of the number of iterations but also
the lack of the test repetitions. Figure 10 plots
these results with Tbest and Tmean for the differ-
ent numbers of hoists over the five proposed values
of ITER and reveals that ITER = 100 000 either
outperforms the other tested values or is as per-
forming as ITER = 1 000 000. As for the CPU
time, it also growths with the number of iterations
ITER. As a result, as the improvement is not sig-
nificant comparing the results for ITER = 100 000
and 1 000 000. The second one needs more com-
putational time (that becomes unacceptable). So,
we decide to choose the 100 000 as the best ITER
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Table 5: Influence of the number of iterations ITER on results for ”P&U” benchmark

H
ITER 100 1000 10000 100000 1000000

Tbest Tmean Tbest Tmean Tbest Tmean Tbest Tmean Tbest Tmean

1 1147 1191 918 981.8 733 775.6 563 715.6 697 715
2 479 534.2 358 409.6 323.5 359.1 253 282.2 264 266.8
3 223 305.9 215 249.5 204 209.9 183 197.5 192 194.5
4 178 236.9 164 191 151 165 151 157.9 151 151
5 160 917.3 152.5 174.8 151 151 151 151 151 151
6 170 1634 162 255 151 151.8 151 151 151 151
7 2000 2000 215 1643 201 290.8 151 151 151 151

CPU time (s) — 9.336 — 93.176 — 1038.55 — 10237.5 — 123560

Figure 10: Tbest and Tmean under the five tested
values of ITER on ”P&U” benchmark

value. Its mean CPU time is equivalent to 2.8h
per test. Until now, this is an acceptable computa-
tional time regarding the great size of the research
space due to the problem complexity. Moreover, the
CHDSP we tackle in this paper is considered in an
offline context. It means that the problem is solved
once when a layout or reconfiguration of an electro-
plating facility is required. So, the CPU time is not
a critical factor for us.

The neighborhood size S is another determinant
parameter to adjust for the smooth running of
AVNS. Tests were conducted successively with val-
ues 10, 15, 20, 25, 30, 40 for S without changing
the other parameters (ITER = 100 000, with the
two already elected options). Table 6 provides the
obtained results (Tbest and Tmean) over 10 runs for
every test class. The last line gives the mean CPU
time (in seconds). The two values of 2 000 mean
that there were no explored solutions corresponding
to neighborhood size S = 40 and number of hoists

Figure 11: Tbest and Tmean under the six tested
values of S on ”P&U” benchmark

H = 7. One can remarks that the best results are
obtained with a size S = 20 for Tbest and Tmean.
Figure 11 plots the same results and confirms that
S = 20 assures the best cycle times. Indeed, the
larger is the size S, the higher is the CPU time, be-
cause more neighbor solutions are generated at each
iteration. The cycle times do not get better from
S = 20 because of the randomness of the search.
Hence, S = 20 is considered the appropriate value
when considering both the quality of solutions and
the CPU times.

Thanks to the previous adjustment phase, S = 20
and ITER = 100 000 is the best choices for H-
option and T -non-improvement-option as parame-
ters for AVNS. Moreover, the algorithm has been
improved to lead even better results. Indeed, the
research of new solutions in the iterative process of
the algorithm gave a significant number of solutions
that had been explored yet because of the usage of a
circular shift neighborhood structure (Nshift). As a
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Table 6: Influence of the neighborhood size S on the results for ”P&U” benchmark

H
S 10 15 20 25 30 40

Tbest Tmean Tbest Tmean Tbest Tmean Tbest Tmean Tbest Tmean Tbest Tmean

1 718 750 689 754.8 563 723.2 718 755.1 718 736.5 718 736.3
2 310 352.2 253 330.3 253 299.7 254 312.2 270 320.7 282 324.6
3 205 213.4 207.5 214 196 202.4 200 208.6 200 210.7 205 209.4
4 162.5 171.7 151 170.3 151 163.9 165 175.6 164 173.5 165 175.2
5 151 152.1 151 152.9 151 151.6 151 161 151 168.6 151 165.6
6 151 151 151 153.3 151 153.2 151 168.7 151 176.7 164 375.7
7 151 157.3 151 159.5 151 156 151 565.5 165.33 1278 2000 2000

CPU time (s) — 4289.02 — 6197.56 — 8497.57 — 9691.96 — 11791.78 — 15461.14

Table 7: Results of the AVNS on ”P&U” benchmark
after deletion of the shift neighborhood structure

H
With Nshift without Nshift

Tbest Tmean Tbest Tmean

1 563 723.2 521 701.5
2 253 299.7 251 257.3
3 196 202.4 185.3 191.6
4 151 163.9 151 151.7
5 151 151.6 151 151
6 151 153.2 151 151
7 151 156 151 151

result, the circular decoding step generated already
explored move sequences. Table 7 clearly exhibits
better results when using this new version of AVNS
over ten test repetitions.

7.3 Comparison with benchmarked
results

Here, we should compare the obtained results to
those of past researches to evaluate the performance
of our proposed AVNS. We begin with ”P&U”
benchmark results. Table 8 gathers the best AVNS
results on this benchmark together with optimal
results of the literature T ∗best and ”M&L” results.
It also provides the gaps between the best cycle
times Tbest and the mean best cycle times Tmean

of both ”M&L” and AVNS, denoted by gapbest and
gapmean, such as:

gapbest(H) = 100

(
Tbest ”M&L”(H)− Tbest AV NS(H)

Tbest ”M&L”(H)

)
(1)

gapmean(H) = 100

(
Tmean ”M&L”(H)− Tmean AV NS(H)

Tmean ”M&L”(H)

)
(2)

Interestingly, these results indicate that AVNS
was able to find the optimal cycle times given in
literature T ∗best(1) = 521 s and T ∗best(2) = 251 s for

one and two hoists. Moreover, it outperforms the
”M&L” algorithm on the best cycle time Tbest with
a positive mean gap of 13.26% and on the mean
best cycle time Tmean with a positive mean gap
of 11.06%. Important improvement has only con-
cerned the results of the small number of hoists
(1 ≤ H ≤ 4), because for 5 ≤ H ≤ 7, ”M&L”
has already found the best results. Indeed, for the
smaller number of hoists, the hoists still are the crit-
ical resources of the line as the throughput of the
line depends on the efficiency of the hoists. But, for
bigger numbers of hoists, the tanks become the crit-
ical resources of the line instead of the hoists, and
because they influence the cycle time with their re-
strictive soaking-time bounds, the critical tank of
the line will be the one that has the biggest mini-
mal soaking time. In the case of ”P&U”’instance,
the bottleneck resource is tank number 2 (see ap-
pendix in Table A1). It has the biggest minimal
soaking time mi = 150. The cycle time then stag-
nates at T = 151 even if H increases. ”M&L” found
the best cycle time Tbest = 151 for number of hoists
H ≥ 5, whereas, AVNS provides the same best cy-
cle time for number of hoists H ≥ 4. AVNS was
only less performing on the mean best cycle time
Tmean(1) of hoist number H = 1. This can be ex-
plained by the fact that the solutions with one hoist
(H = 1) are not abundant in a huge research space
and the separator based decoding has increased the
size of this space. Hence, AVNS should be further
improved to overcome this shortage so that to be
able to reach more solutions for one hoist. How-
ever, AVNS was clearly able to improve the results
compared to those of ”M&L” and to reach the op-
timal solutions. This positive outcome proves the
advantage of the separator based encoding on ex-
ploring the huge search space and upholds the pos-
itive effect of the encoding improvement approach
proposed in this study. It enabled to discover more
zones of the search that were not achievable with
the empty move based encoding without separa-
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Table 8: Results with both variants of AVNS for the all the tested benchmarks

Benchmark
OPT ”M&L” AVNS AVNSBT

(H) T ∗
best Tbest Tmean Tbest Tmean gapbest gapmean Tbest Tmean gapbest gapmean

”P&U”

1 521 665 673.8 521 706.6 21.65 -4.86 521 656.2 0 7.13
2 251 332 346 251 255.9 24.39 26.04 251 252.2 0 1.44
3 — 196 205.8 185.3 191.1 5.45 7.14 182 189.5 1.78 0.83
4 — 210 226.4 151 152.1 28.09 32.81 151 151.7 0 0.26
5 — 151 159.4 151 151 0 5.26 151 151 0 0
6 — — — 151 151 — — 151 151 0 0
7 — 151 151 151 151 0 0 151 151 0 0

mean 13.26 11.06 0.25 1.38

”ligne1”

1 425 452 677 428 498.2 5.31 26.41 425 480.4 0.7 3.57
2 — 361 402 361 361 0 10.19 361 361 0 0
3 — 361 361 361 361 0 0 361 361 0 0
4 — 361 361 361 361 0 0 361 361 0 0
5 — 361 361 361 361 0 0 361 361 0 0
6 — 361 361 361 361 0 0 361 361 0 0
7 — 361 361 361 361 0 0 361 361 0 0

mean 0.75 5.22 0.1 0.51

”ligne2”

1 712 858 1294 712 772.4 17.01 40.31 712 731.1 0 5.34
2 — 661 662 661 661 0 0.15 661 661 0 0
3 — 661 661 661 661 0 0 661 661 0 0
4 — 661 661 661 661 0 0 661 661 0 0
5 — 661 661 661 661 0 0 661 661 0 0
6 — 661 661 661 661 0 0 661 661 0 0
7 — 678 678 661 661 2.50 2.50 661 661 0 0

mean 2.79 6.13 0 0.76

tors. That also proves the high performance of the
AVNS algorithm to reach the optimal solutions and
to provide better results for the different numbers
of hoists. For this benchmark, we provide in Fig-
ure 12 a schedule scheme of an optimal solution for
two hoists.

The AVNS algorithm was also tested on two other
benchmarks ”ligne1” and ”ligne2” to validate the
parameter set already chosen with ”P&U” bench-
mark. In the literature, for these two benchmarks,
we only find the best cycle time Tbest for the cyclic
hoist scheduling problem (CHSP) with only one
hoist (H = 1). We denote it by T ∗best(1). We
also compare our results to ”M&L” results for these
two benchmarks. Hence, we present in Table 8 the
last mentioned results for benchmarks ”ligne1” and
”ligne2” together with results got from the AVNS.
We still exhibit results in best cycle time Tbest and
mean best cycle time Tmean, for the number of
hoists H where 1 ≤ H ≤ 7. We also provide the
two gaps gapbest and gapmean computed by Equa-
tions eq1 and (2).

On whole, Table 8 presents better results got
from AVNS. For benchmark ”ligne1”, AVNS im-
proves the results obtained by ”M&L” approach on
the best cycle time Tbest by a positive mean gap
of 0.75% and on the mean best cycle time Tmean

by a positive mean gap of 5.22%. Yet, we observe
improvement only for one and two hoists, as for
number of hoists higher than 2, ”M&L” has already
detected the best results. In fact, when the num-
ber of hoists exceeds one, the best cycle time Tbest

stagnates. From H = 2 hoists, the critical resource
for benchmark ”ligne1” is tank 1 with m1 = 360
(see appendix in Table A2). And then, for H ≥ 2,
the best cycle time is Tbest = 361. For one hoist,
AVNS was able to reach a solution with a best
cycle time Tbest = 428 s, so close to the optimal
T ∗best(1) = 425 s (gap 0.7 %). For this benchmark,
we provide in Figure 13 a schedule scheme of an
optimal solution for two hoists.

As for benchmark ”ligne2”, AVNS outperforms
the ”M&L” algorithm on the best cycle time Tbest

with a positive mean gap of 2.79% and on the mean
best cycle time Tmean with a positive mean gap of
6.13%. Improvement can be observed for 1, 2 and
7 hoists. For 3 ≤ H ≤ 6, ”M&L” has already found
the best results. Indeed, Tbest stagnates from num-
ber of hoists H = 2, as tank 14 becomes the critical
resource of ”ligne2”, with m14 = 660 (see see ap-
pendix in Table A3) and the best cycle time for
H ≥ 2 is Tbest = 661. AVNS improves the results
for one hoist on the best cycle time Tbest with a pos-
itive gap equal to 17.01% and on the mean best cy-
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Figure 12: An optimal cyclic 2-hoist schedule of a solution of cycle time T=251s from ”P&U” benchmark

Figure 13: An optimal cyclic 2-hoist schedule of a solution of cycle time T=361s from ”ligne1” benchmark
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cle time Tmean with a positive gap equal to 40.31%.
Indeed, it was able to detect the solution of the op-
timal cycle time of the literature T ∗best(1) = 712 s.

Accordingly, we can first confirm the positive ef-
fect of the original encoding approach that was pro-
posed in this study. Indeed, this empty move based
encoding improved with separators has enabled to
reach more areas in the search space that were not
detectable with the encoding of solutions without
separators. The new encoding has added more var-
ied solutions to the search space, that is, it has made
them visible. Therefore, it has enhanced the results
by making possible to reach better solutions, even
optimal ones. At the same time, it has made harder
the search procedure because the number of solu-
tions has been multiplied. Thus, that required an
efficient algorithm to perform the search and avoid
falling into local minima. From that point, we can
second confirm the choice of the parameter set al-
ready fixed with ”P&U” benchmark, as AVNS with
these adjusted parameters was able to bring im-
provement on the results for the three tested bench-
marks. As a consequence, the obtained results show
the efficiency of AVNS in providing better results
and even the optimal ones for different number of
hoists. That indicates that AVNS was robustly con-
structed, either for the choice of parameter values
and options or for its ordered steps and procedures.

7.4 Better version algorithm
AVNSBT

Hereafter, we will show the further performance
of the AVNS algorithm with the integrated back-
track procedure. For the benchmark ”P&U”, the
AVNSBT provided the best results with a threshold
of 100 iterations (Threshold = 100) where the back-
track has considered the best registered solutions of
1 and 2 hoists (Lthreshold(1) and Lthreshold(2) as
Hthreshold ∈ {1, 2}). For benchmarks ”ligne1” and
”ligne2”, the best tested threshold is also 100 iter-
ations and the backtrack has only considered the
best registered solutions for 1 hoist (Lthreshold(1)
as Hthreshold = 1). Then, we gather in Table 8, on
right side, the obtained results for the three tested
benchmarks. We also provide the gap between the
best cycle times Tbest of both AVNS and AVNSBT
and the gap between the mean best cycle times
Tmean, denoted also by gapbest and gapmean.

It is clear from the results that AVNSBT algo-
rithm somewhat outperforms the AVNS algorithm.
This first confirms the earnest effect of the inte-
grated backtrack procedure to improve the outcome
of the AVNS. Amelioration has mainly concerned

the results of one hoist. Indeed, the gap between
the mean best cycle times of AVNS and AVNSTB,
gapmean, for H = 1 is of 7.13% for the benchmark
”P&U”, 3.57% for benchmark ”ligne1” and 5.34%
for benchmark ”ligne2”. Moreover, the improve-
ment has mostly affected the results of ”P&U” ex-
ample, with a positive gapmean for 1 to 4 hoists. As
for the best cycle times, AVNSBT has only make
improvement on Tbest for hoist number H = 3 for
”P&U” example and for hoist number H = 1 for
”ligne1”, where AVNSBT reaches the optimal solu-
tion. Otherwise, most AVNSBT upgrade has af-
fected the mean cycle times Tmean which means
that the backtrack procedure has enhanced the ro-
bustness of the AVNS algorithm. It enabled to
reach more best solutions than AVNS. However, it
cannot further boost the best cycle times whose
optimal values were already reached by AVNS.
Therefore, AVNSBT has proved its effectiveness to
reach better solutions. It interestingly remedies the
AVNS shortage to reach better solutions for one
hoist. As a consequence, AVNS, with the new sep-
arator based encoding and the well set parameters,
was able to cope with the browsing challenge of the
huge search space in order to reach so promising so-
lutions. Together with its backtrack procedure, it
was able to optimize the search to further enhance
the findings, mainly the algorithm robustness.

7.5 Further experiments

In the previous two paragraphs, we have shown the
advantage of separator based encoding over the en-
coding without separators, while comparing both
variants of AVNS with ”M&L” approach. We have
also shown the advantage of the backtrack proce-
dure, added in our AVNS. As we previously ex-
plained, the difference between our AVNS and the
”M&L” approach relies on both the encoding pro-
cedure and the solving method. To confirm the in-
terest of our AVNS, we have modified the Genetic
Algorithm (GA) proposed in ”M&L”, in which we
have implemented the same empty-move based en-
coding with separators [19]. We call it SGA. Hence,
we compare the performance of the last version
of AVNS algorithm (AVNSBT) and the SGA ap-
proach.

Moreover, in order to better highlight the inter-
est of our solving method, we have extended our
tests to five additional benchmarks. Apart from
”P&U”, ”ligne1” and ”ligne2”, we have considered
the benchmarks used in Leung et al. [27]. These are
”Mini-Phil”, and 4 instances taken from Shapiro et
al. [44] and modified by Leung et al. [27], as they
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do not consider the duplicated tanks in the origi-
nal instances. We denote them ”BO1-v2”, ”BO2-
v2”, ”Copper-v2” and ”Zinc-v2”. ”Mini-Phil” is the
same problem of ”P&U” but truncated to the first
eight tanks.

In Table 9 and Table 10, we show the results
obtained with algorithms SGA and AVNSBT, re-
spectively for the benchmarks ”P&U”, ”ligne1” and
”ligne2”, and for the five new considered instances
”Mini-Phil”, ”BO1-v2”, ”BO2-v2”, ”Copper-v2”
and ”Zinc-v2”. We also provide gapbest which is the
gap between the best cycle times Tbest of both SGA
and AVNSBT, and gapmean which is the gap be-
tween the mean best cycle times Tmean of SGA and
AVNSBT. Note that in Table 10, we give the op-
tima over one hoist found in [27], and the Tbest(H)
for the SGA algorithm begin with the value 4000 as
an upper bound.

Compared with the ”M&L” results in Table 8,
we can first observe in Table 9 that SGA finds the
optimal cycle time with a single hoist for the bench-
marks ”P&U” and ”ligne2”, which were not reach-
able by ”M&L”. Nevertheless, the mean cycle time
Tmean remains slightly better with the initial Ge-
netic Algorithm, at least for 1 and 2 hoists.

Evaluating the results of AVNSBT, we can ob-
serve that it was able to find the optimal solu-
tions with one hoist (H = 1) for 6 out of the 8
tested benchmarks (for all of them except ”Mini-
Phil” and ”BO1-v2”). For these two last instances,
the gaps with the optimal cycle time are respec-
tively 21% and 11.25%. For two hoists (H = 2),
our algorithm AVNSBT finds the optimal solutions
for all the benchmarks, except ”BO1-v2” for which
Tbest=275.65s (3.67% from T ∗best). For H ≥ 3 and
for the 5 last benchmarks, the values of Tbest are
the same for all the numbers of hoists: for instance
”Mini-Phil”, Tbest=151s is the same value found on
the original benchmark ”P&U” for H = 4, which
means that for ”Mini-Phil” and with more than 2
hoists, the transportation resources are no longer
the critical resources of the line, but the tanks; it is
the same for the other benchmarks, as soon as the
cycle time practically reaches the biggest minimal
soaking time (240 s for ”BO1 and 2”, 1800 s for
”Copper-v2” and 1680 s for ”Zinc-v2”), as previ-
ously explained. Note that for instance ”BO1-v2”,
we have not referenced optimal values for H ≥ 3,
but we observe that the value of Tbest=247.3s stag-
nates. It probably also means that the tanks are the
critical resources of the line. Hence, all these results
show the performance of our proposed algorithm
and outline its ability to solve problems of differ-
ent sizes. As for the mean best cycle times Tmean,

AVNSBT finds the same Tbest for most of the bench-
marks and hoists’number (including with H = 1
for ”Copper-v2” and ”Zinc-v2”), and near Tbest for
other ones, which shows again the robustness of
our algorithm over the tested instances. Even if it
does not find the optimal solutions for benchmarks
”Mini-Phil” and ”BO1-v2” for H = 1 or 2, it was
able to keep its stability over the tests for all the
number of hoists as the Tmean is either equal or
near to the best values Tbest. For the cases where it
does not find the optimal solutions, it is almost the
case for one hoist, and this can be explained by two
facts: the first obvious one is because we employ an
approximate solving method, and the second one is
because the solutions for one hoist are so rare in a
search space all the bigger as it gathers solutions for
different numbers of hoists.

Comparing now the results of AVNSBT over
those of SGA for the eight tested instances, as it
can be seen in Tables 9 and 10, we obtain better
results mainly on the lowest number of hoists. It is
also obvious from the positive gaps that AVNSBT
enhances the results over the eight benchmarks. In-
deed, gapbest varies from 0 to 42.68% for one hoist
(H = 1), with a mean improvement of 13.64%,
whereas gapmean varies from 1.83% to 53.44%, with
a mean improvement of 29.3%. Improvements are
more important for the mean cycle times Tmean and
that is an element which shows the robustness of
our algorithm AVNSBT. It is able to discover more
better quality solutions than SGA. Improvements
over the best cycle times Tbest outline the ability of
AVNSBT to reach more the best solutions over the
search space and show that the search trajectory is
well guided.

Overall, even if SGA was able to detect some-
times the best solution for a given number of hoists,
it was not able to keep the same level of performance
over the executions of the algorithm, the challenge
on which AVNSBT has proven the aptitude. In-
deed, AVNSBT has shown its ability to reach a big-
ger number of near-optimal solutions over the runs
and over the tested benchmarks.

8 Conclusion

In this paper, we have studied the cyclic hoist
scheduling problem within multi-hoist electroplat-
ing lines with both dimensions of design and
scheduling. Almost all previous researches have as-
sumed that the design of the line is already done
and the number of hoists has been fixed. How-
ever, in our study, we consider the size of the mate-
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Table 9: Comparison between AVNSBT and SGA for the first set of instances

Bench-
OPT SGA AVNSBT

mark H T ∗
best Tbest Tmean Tbest Tmean gapbest gapmean

P&U

1 521 521 1024 521 656.2 0 35.91
2 251 264 360 251 252.2 4.92 29.94
3 — 192.33 231.5 182 189.5 5.37 18.14
4 — 163 207 151 151.7 7.36 26.71
5 — 151.33 154.14 151 151 0.21 2.03
6 — 151 — 151 151 0 —
7 — 151 151 151 151 0 0

mean 2.55 16.10

ligne1

1 425 492 1032 425 480.4 13.61 53.44
2 — 361 404 361 361 0 10.64
3 — 361 361 361 361 0 0
4 — 361 361 361 361 0 0
5 — 361 361 361 361 0 0
6 — 361 361 361 361 0 0
7 — 361 361 361 361 0 0

mean 1.94 9.15

ligne2

1 712 712 1332 712 731.1 0 45.11
2 — 661 662 661 661 0 0.15
3 — 661 661 661 661 0 0
4 — 661 661 661 661 0 0
5 — 661 661 661 661 0 0
6 — 661 661 661 661 0 0
7 — 661 661 661 661 0 0

mean 0 6.46

rial handling resources as a decision variable. The
dual problem is called the Cyclic Hoist Design and
Scheduling Problem (CHDSP). The optimization
objective, hence, is to determine an optimal cyclic
schedule for each possible number of hoists that
minimizes the cycle time and thus maximizes the
line throughput rate. We have proposed an origi-
nal empty-move based encoding method with sep-
arators. It both assigns a number of hoists to the
line and generates their move sequences. We have
used the mixed integer linear programming model
developed in [36] to evaluate the move sequences
to check their feasibility and to compute the sched-
uled move times together with the cycle time. We
have developed an AVNS, which is a rich and struc-
tured solving algorithm based on variable neighbor-
hood search, and we have adapted it to solve effi-
ciently the bi-objective problem. It affords decision-
makers a decision support system to enable them to
choose the number of material handling resources
required for the production line, while regarding in-
vestment costs as well as productivity objectives.
The proposed AVNS was then highly performing
and provided valued results compared to previous
ones, reaching the optimal solutions for most cases.
Enhanced with a backtrack procedure, it allowed to
reach even better solutions and further optimized

the search, which confirms its robustness.
Many outlooks of this work can be suggested. We

could further improve the AVNS performance so
that it reaches more solutions for one hoist. Like-
wise, we could implement the search procedure in
parallel environment so that the search in each pos-
sible number of hoists goes separately and simulta-
neously. That would have an advantage on the com-
putational times. As for theoretic basis, we would
complete our approach by studying the collision free
constraints, as we deal with the multi-hoist case.
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Appendices

See Table A1 for data belonging to ”P&U” bench-
mark, Table A2 for data belonging to ”ligne1”
benchmark and Table A3 for data belonging to
”ligne2” benchmark.
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Table A1: ”P&U” benchmark data (empty move times di,j from tank i (line i) to tank j (column j), mi,
Mi and ri)

di,j 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 11 14 16 14 19 22 24 26 29 6 8 10
2 11 0 2 5 2 8 10 13 15 17 10 3 1
3 14 2 0 2 0 5 8 10 13 15 12 6 3
4 16 5 2 0 2 3 5 8 10 13 15 8 6
5 14 2 0 2 0 5 8 10 13 15 12 6 3
6 19 8 5 3 5 0 3 5 7 10 18 11 9
7 22 10 8 5 8 3 0 2 5 7 20 14 11
8 24 13 10 8 10 5 2 0 2 5 23 16 14
9 26 15 13 10 13 7 5 2 0 2 25 19 16
10 29 17 15 13 15 10 7 5 2 0 27 21 19
11 6 10 12 15 12 18 20 23 25 27 0 7 9
12 8 3 6 8 6 11 14 16 19 21 7 0 2
13 10 1 3 6 3 9 11 14 16 19 9 2 0
mi 120 150 90 120 90 30 60 60 45 130 120 90 30
Mi ∞ 200 120 180 125 40 120 120 75 ∞ ∞ 120 60
ri 31 22 22 22 25 23 22 22 22 47 27 22 30

Table A2: ”ligne1” benchmark data (empty move times di,j from tank i (line i) to tank j (column j), mi,
Mi and ri)

di,j 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 13 12 11 10 9 9 8 8 6 6 5 5
2 13 0 4 5 6 7 7 8 9 10 10 11 12
3 12 4 0 4 5 6 6 7 8 9 9 10 11
4 11 5 4 0 4 5 6 6 7 8 9 10 10
5 10 6 5 4 0 4 5 6 6 7 8 9 9
6 9 7 6 5 4 0 4 5 5 6 7 8 8
7 9 7 6 6 5 4 0 4 4 5 6 7 8
8 8 8 7 6 6 5 4 0 4 4 5 6 7
9 8 9 8 7 6 5 4 4 0 5 5 6 7
10 6 10 9 8 7 6 5 4 5 0 4 5 5
11 6 10 9 9 8 7 6 5 5 4 0 4 5
12 5 11 10 10 9 8 7 6 6 5 4 0 4
13 5 12 11 10 9 8 8 7 7 5 5 4 0
mi 360 60 30 120 180 30 30 60 60 300 60 60 120
Mi ∞ 120 90 240 240 90 90 120 120 420 120 120 180
ri 23 29 19 24 19 19 24 24 20 24 24 19 30

Table A3: ”ligne2” benchmark data (empty move times di,j from tank i (line i) to tank j (column j), mi,
Mi and ri)

di,j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 5 5 6 8 9 10 12 13 15 16 18 19 21 25
2 5 0 4 5 7 8 9 11 12 14 15 16 18 19 23
3 5 4 0 4 6 7 7 10 11 12 14 15 17 18 22
4 6 5 4 0 5 6 6 8 9 11 13 14 15 17 21
5 8 7 6 5 0 4 5 7 8 10 11 12 14 15 20
6 9 8 7 6 4 0 4 6 7 8 10 11 13 14 18
7 10 9 7 6 5 4 0 5 6 7 9 10 12 13 17
8 12 11 10 8 7 6 5 0 4 6 7 8 10 11 16
9 13 12 11 9 8 7 6 4 0 5 6 7 9 10 14
10 15 14 12 11 10 8 7 6 5 0 5 5 7 8 13
11 16 15 14 13 11 10 9 7 6 5 0 4 6 7 11
12 18 16 15 14 12 11 10 8 7 5 4 0 5 6 10
13 19 18 17 15 14 13 12 10 9 7 6 5 0 5 9
14 21 19 18 17 15 14 13 11 10 8 7 6 5 0 8
15 25 23 22 21 20 18 17 16 14 13 11 10 9 8 0
mi 300 180 60 60 180 60 30 60 60 180 60 60 60 660 240
Mi ∞ 300 120 120 240 120 120 120 120 300 180 120 150 720 ∞
ri 15 24 14 25 29 19 20 24 20 25 19 20 25 18 35
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