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Response and Uncertainty of the Parabolic Variance
PVAR to Non-Integer Exponents of the Power Law
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Abstract—Oscillator fluctuations are described as the phase or
frequency noise spectrum, or in terms of a wavelet variance as a
function of the measurement time. The spectrum is generally
approximated by the ‘power law,” i.e., a Laurent polynomial
with integer exponents of the frequency. This article extends the
domain of application of PVAR, a wavelet variance which uses
the linear regression on phase data to estimate the frequency,
and called ‘parabolic’ because such regression is equivalent
to a parabolic-shaped weight function applied to frequency
fluctuations. In turn, PVAR is relevant in that it improves on
the widely-used Modified Allan variance (MVAR) enabling the
detection of the same noise processes at the same confidence
level in a shorter measurement time. More specifically, we
provide (i) the analytical expression of the response of the PVAR
to the frequency-noise spectrum in the general case of non-
integer exponents of the frequency, and (ii) a useful approximate
expression of the statistical uncertainty.

Keywords—Allan variances; frequency stability; fractional
noise; uncertainty assessment; degrees of freedom

I. INTRODUCTION

The fluctuations of an oscillator are generally described as
the phase noise .Z(f), where f is the Fourier frequency, or as
the two-sample variance 03 (1), where 7 is the integration time.
The latter takes different flavors, the most known of which are
the Allan variance (AVAR) and the modified Allan variance
(MVAR). The concepts related to .Z () were introduced in the
1960s to describe the fast fluctuations of oscillators for radars
and frequency synthesis [[1]. By contrast, 0y2 (1) was introduced
to describe the fluctuations of Cs-beam clocks for timekeeping,
with obvious focus on slow fluctuations [2], [3]. Traditionally,
the boundary between these two choices was 7 ~ 0.1...1, or
f~1...10 Hz. The overlap was rather small, of the order of
one decade. In fact, time counters could not be easily used
at a sampling interval 79 smaller than ~ 100 ms, limited
by the slowness of the IEEE 488 BUS transferring ASCII
data. By contrast, the measurement of .Z(f) at low Fourier
frequencies was limited by the narrow dynamic range of the
double balanced mixer used as the phase-to-voltage converter
(no more than £20°), and of the analog to digital converters.
The Fast Fourier Transform analyzers were so complex and
expensive that they were avoided when possible. Interestingly,
the two-sample variance is broadly equivalent to a one-octave
filter centered at f ~ 0.45/7.
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Nowadays these limitations are gone, and the overlap in
the domain of application of .Z(f) and o7 (7) is of 6-8
decades. Digital instruments can measure .Z(f) from 0.1-
1 mHz [4], [S], [6l, [7]. This is made possible by Software
Defined Radio techniques (see [8], [9] for a general overview),
which enable phase measurements not bounded to £, and low
sampling frequency by proper decimation of high-speed data.
The CORDIC algorithm [10], [11] is the preferred choice to
calculate o(t) from the digitized I/Q stream. Counters with
picosecond resolution were available since the 1970s with
the Nutt interpolator [12], but continuous time stamps at a
sampling interval 79 =~ 100 ns [13]], [14] could be possible
only thanks to Field Programmable Gate Arrays (FPGAs).
The minimum 7 is actually greater than 7y because trivial
limitations intervene, but the practical limit is still of the order
of several us. The conclusion is that assessing the equivalence
between spectra and variances is more important than ever.

It is generally agreed that the phase noise of oscillators
is well described by the ‘power law’ or ‘polynomial law’
model, which is the extension of the regular polynomial to
the negative powers of the variable (Laurent polynomials).
While the literature is shy about exceptions, we came across
significant practical cases where the phase noise has a non-
integer slope over a few decades. In other domains of physics,
the term ‘flicker noise’ refers to a noise process whose
spectrum is of the f? type, where the exponent 3 is actually
in [—1.2,—0.8] to [—1.5, —0.5] depending on the author [15],
[16], [17]. Accordingly, we may find f? phase noise in
oscillators, and f%~2 phase noise after the phase-to-frequency
conversion known as the Leeson effect [[18]. The fractional-
order frequency control, nowadays quite popular [19], [20],
[21], is a good reason for non-integer slopes to be present
in the spectrum of a locked oscillator or laser. Non-integer
slopes also appear in other branches of frequency metrology.
For example, theoretical predictions about millisecond pulsars
suggest that the common FM noise could follow the f~7/3 law
[22], [23]]. Finally, a continuous polynomial law is necessary
in Bayesian statistical analysis, when we estimate the polyno-
mial law from the measured spectrum [24]. Interestingly, the
continuous law is needed as an intermediate step even when
estimation targets integer exponents.

The response of orf () to phase noise in the case of non-
integer exponents of the power law was already solved for
the Allan Variance (AVAR) and the Modified Allan Variance
(MVAR) [25], while the Parabolic Variance (PVAR) was
introduced later [26], [27]]. In our opinion, MVAR is obsoleted
by PVAR because PVAR is suitable to the same applications,
and it enables the detection of the same noise phenomena,



in the same conditions at the same confidence level with a
smaller data record [27]], i.e., in a shorter measurement time.

This work stands on [25]] and extends the results to PVAR
providing conversion formulae, degrees of freedom and sta-
tistical uncertainty (Type A uncertainty, according to the
definitions given by the International Vocabulary of Metrology
‘VIM” [28])).

II. THE RESPONSE TO POLYNOMIAL SPECTRA
A. Basic Definitions and Tools

We consider a clock signal V{ cos[wot + ¢(t)] of nominal
frequency wp/27 and random phase o(t). It is understood
that ¢(t) is not bound to =+, and that |(¢)| <€ wp. The
associated time fluctuation x(t) = ¢(t)/wp is usually referred
to as phase time. The quantity y(t) = x(¢) is the fractional
frequency fluctuation.

According to the IEEE Standard 1139 [29]], the phase noise
is defined as .Z(f) = 25, (f), that is, half of the single-sided
Power Spectral Density (PSD) of ¢(t). For our purposes, it is
convenient to use the quantity

(WOJ/CWSw(f) ; ¢))

instead of S, (f), which provides fully equivalent information.
The associated polynomial law is usually written as

2
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where the exponent o equals —2 for random walk FM noise,
—1 for flicker FM noise, 0 for white FM noise, 1 for flicker
PM noise, and 2 for white PM noise.

From a general perspective, the two-sample variance can be

written as 1
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where E{ } is the mathematical expectation, and y; and ¥y,
are the two samples of y(¢) averaged over contiguous time
intervals of duration 7 (hereafter the integration time). Our use
of (@) differs from the general literature in that ¥, and y, are
weighted averages. The uniform average gives AVAR, the tri-
angular-weight average gives MVAR, and the parabolic-weight
average gives PVAR. Other options are possible, for example
the Hadamard and the Picimbono variances. Accordingly, (3)
is rewritten as
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where w(t) is a wavelet-like function that describes y, — ¥,

including the weight functions. The specific w(t), named

wa(t) for AVAR, wy(t) for MVAR and wp(t) for PVAR

are defined in [27, Fig. 3 and related text]. For example, the

PVAR weight function is
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T

wp(t) = (It =) 5

with ¢ € [—7,7]. This is a parabola, which we refer to as €,
the most similar Greek letter. Since y(¢) is the derivative of
x(t), Eq. @) can be rewritten as
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where w(t) is the time derivative of w(¢). Thus, it holds that

o0

in(t) = 222 (11~ 7)
for PVAR, with t € [—7,7].

In practice, the variance is calculated from a stream of N
samples x; regularly spaced by 79, which gives the measure-
ment time 7 = mTy, integer m (hereafter, the normalized
integration time). The expectation E is replaced with the
average (),, of M realizations of y, — ¥;, and o (1) is
replaced with AVAR(7) or PVAR(7)
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with M = N — 2m, since w(t) spans over 2m samples. The
main advantage of PVAR is that the weight applied to the x;
samples is equivalent to a linear regression, which features
the least-squares fit of the slope. PVAR(7) is therefore an
estimator of the variance of the slope of the x; samples over
the duration 7. For a detailed description of PVAR and its
properties see the original article [27]

B. Response of AVAR and PVAR to f¢
The response of a generic o7 (7) to Sy(f) is

= [P s ar. (10)
where H(f) is the transfer function, or
o) = [P a

for the a-th term of the polynomial law (2)). Using the subscript
A for AVAR, |H(f)|* becomes
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This is equivalent to [25, Eq. (14)] because we have not
introduced the usual cutoff frequency fg in (I0).
Similarly, the transfer function associated to PVAR is
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Figure 1. Continuous response of AVAR and PVAR compared to the known
responses for a € |—3,+3[. The responses of AVAR are not plotted for
« > 1 because this estimator diverges without the introduction of a high
cut-off frequency.

which is Eq. (17) of [30]. Combining Eq. (TIT) and (T4), we
derive the response of PVAR

PVAR(r, @) = 9x2°~° [oﬁ Ca—4-2%a— 3)] X

" I'(a — 5) sin(wa/2) h
(2mT)etl o
Because PVAR converges for £ from f~2 to f+2 FM noise,
we can assume that (T3) is valid for o € ]—3, +3].
Figure [I] shows AVAR and PVAR calculated from Eq. (I3)
and @, as a function of «. For integer «, the results are the
same as in [30, Table IJ.

5)

III. DEGREES OF FREEDOM OF PVAR ESTIMATES

First, we have to find a simple expression for the number
of degrees of freedom (dof) of PVAR estimates for integer
power-law noises. Since an equation has been found for a
white PM noise (see Eq. (24) in [30]), we assume that it can
be generalized for other noise types to

35
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where A(a) and B(«) are coefficients that need to be deter-
mined. From [30, Eq. (24)], we already know that A(+2) = 23
and B(+2) = —12. We determine the general A(«) and B(«)
from massive Monte-Carlo simulations, and verify the results
by comparing them to the dof computed for a continuous
power-law.

A. Determination of the Coefficients from Monte-Carlo Simu-
lations

The Monte-Carlo simulation was performed by computing
10000 sequences of frequency deviations for each a €
{-2,-1,0,41,4+2} and for different data length N €
{128,2048, 32768}, i.e. 150000 simulated sequences in total.
For a given o, N and 7, we derived the dof from the averages
and the variances of the PVAR for the corresponding set of
sequences by using the following well-known property of x?
distributions [30]]:

_E*[PVAR()]

VIPVAR(7)] ’ a7

where E[ ] and V[ ] are the mathematical expectation and the
variance of the argument. The least square fit results in
o A(=2) & 34, A(-1) = 28, A(0) ~ 27, A(+1) ~ 27,
A(+2) =23
e B(a) =~ 12 for all a.
We have then modeled A(a) by the following 3™ order
polynomial and assumed that B(«) = B is constant:

Ala) =27+ ja+ Za? — 303
B =12.

Using Eq. (T6) and (I8), we are now able to assess the dof of
all PVAR estimates regardless of the normalized integration
time m or the number of samples M.

The upper plot of Fig. [2] compares the dof obtained by
the Monte-Carlo simulations and by Eq. (I6) and (T8) for
all integer types of noise. The agreement is confirmed by
the lower plot which shows that the discrepancies are within
+10% except for the very first values of m (m = 1,2).

The model provided by (T6) and (I8) can be applied to the
classical power law, with integer o. Next, we check its validity
as an extension for real « €] — 3, 3[ by computing the dof of
PVAR.

(18)

B. Verification for Continuous Polynomial-Law Noise

The dof can be computed from Eq. (I7). The mathematical
expectation of the response of PVAR is given by (T3)), and the
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Figure 2. Above: comparison of the empirical dof (crosses) and the approx-
imations (lines) given by Eq. (I6) and (I8) for all types of noise. The lines
are drawn from point to point without interpolation and the last point is set
to 1. Below: relative difference (in %) between the empirical dof and the
approximations.



variance can be computed from (21) and (22) of [30]
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where Ry (7) is the autocorrelation function of the phase-time

x(t), i.e., Ry(T) = E{x(t)x(t +7)}. We use the following

continuous expression of R,(7) versus the power-law expo-

nent « (see [31]], [25]):

ha I'(m—-a/2+ 1) (a—-1)

2@2myere T(m + a/2)T(@/2T(1 - a/2)’
(20)

Because this expression involves the I' function with argument

of the order of m, the computations is practically limited to
N = 128 samples (notice that I'(128) ~ 3x102!3). This diffi-

Ry (mmy) =

culty is avoided using the property that I'(z) = (z—1)'(z—1)
for z > 1, and the recursive formula
I'(m—a/2+1) m—j— a2

I -a/2) 5
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where the arguments of I' are greater or equal to 1 for
€ [—2,+2]. Therefore, the autocorrelation function can be
computed for large N as
ha Ir'é—a/2+1)I'(a—-1)
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We used this equation to compute the theoretical variance of
PVAR(7) versus the continuous variable «, and we deduced
the dof from (17).

Let us define P,(a,m, M) = 2 From Eq. (I6), we
see that P,(a,m, M) ~ A(a) — Bm/M. The top plot of
Fig. [3 shows P, («, m, M) computed from (I9) (crosses) and
approximated from (I8) (solid lines) versus the noise power-
law « for m € {4,11,32} (we prefer to plot P,(a,m, M)
instead of v for a better visualisation). The agreement is quite
good for m = 11 and m = 16, but there is a notable difference
for m = 4 and o < —1. The lower plot of Fig. [3] shows that
this discrepancy is of ~ 20% maximum, but it remains within
+5% in most cases (all o for m > 8, and all m for @ > —1).
This agreement is satisfactory to get an acceptable assessment
of the PVAR uncertainties since the relative uncertainties are
proportional to 1/4/v: they are therefore always below 10%
and mostly within +2.5%.
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Figure 3. Above: comparison of P, («, m, M) computed from (19) (X, +, *)
and approximated by (T6) (solid lines) for N = 128 data. The blue squares
and the green circles are respectively the values obtained for m = 4 and
= 32 from the Monte-Carlo simulations. Below: Error (in %) between the
appr0x1mated values of P, (e, m, M) and the computed values.

C. The Case of the Largest Integration Time

The approximation given by Eq. (I6) and (I8) is close
enough to the empirical dof v for m < N/4. Moreover, we
know that v = 1 for m = N/2. This is enough to draw Fig.
since no interpolation is performed between the last 2 points,
ie. m = N/4 and m = N/2. On the other hand, we note
that the approximation diverges beyond N/4 (dashed lines in
the upper plot of Fig. ) , if intermediate values of m are
computed. However, it is important to assess the uncertaintiy
within this interval, particularly if NV is not a power of 2.

We fill this gap by interpolating the dof within
round (23/20N/4) < m < round (2’3/20.7\/'/2) (rounding
is necessary to ensure that m is an integer), i.e. between
my = round(1.11N/4) and ms ~ round(0.901N/2), with
the following semi-logarithmic fit

v(m) =aln(m) +b (22)
with
. u(ml) -1
* = Tamn) — 0] =
- In(my) — v(my) In(my) (24)

In(my) — In(my)

For m > ms, the dof are set to 1.

To focus on the result of the semi-logarithmic fit an enlarge-
ment of the highest 2 decades of m, i.e. m € [4096, 8192] for
N = 32768 data is shwon in the top of Fig. ] The bottom
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Figure 4. Above: comparison of the empirical dof (crosses) and the semi-
logarithmic fits (solid lines) for N/4 < m < N/2 and for random walk
FM, white FM and white PM. The dashed lines represent the approximations
given by Eq. (T6) and (T8). In this example N = 32768 samples and the
logarithmic increment of the m-values is 21/20 within [N/4, N/2]. Below:
Error (in %) between the empirical dof and the semi-logarithmic fits for all
types of noise.

plot shows the error between the fit and the dof computed
from the Monte-Carlo simulations. Most of these errors are
within +10%, except for white FM. In this case of white
FM, the error is between +5% and —20%, and up to —24%
for m = 14766. However, this fit is sufficient to ensure an
estimation of the PVAR uncertainty for the highest 7 within
~ 10% at worst.

IV. CONCLUSION

We have determined the response of PVAR for continuous
power-law noise spectra from a theoretical calculation. Us-
ing Monte-Carlo simulations, we have obtained a simplified
expression providing the dof of the PVAR estimates within
10 %. We have proven that this expression remains valid for
non-integer power-law noise types. Finally, we have shown
that a simple interpolation is efficient to fit the dof for the
highest octave of integration times. These results generalize
the use of the PVAR to process signals with a non-integer
powers in the polynomial-law spectrum. This can be used to
analyze the timing of milliseconds pulsars and to estimate the
non-integer exponent of a red noise, if it is detected.
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