SCIENCES & NON-LOCALITY AND ENTANGLEMENT DETECTION WITH MERMIN POLYNOMIALS FOR GROVER'S ALGORITHM AND QUANTUM FOURIER TRANSFORM

Henri de Boutray, Hamza Jaffali, Frédéric Holweck, Alain Giorgetti & Pierre-Alain Masson

Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS, Besançon, France Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Besançon, France

 $\bullet\, {\rm Search}$ of an item $|{\bf x}_0\rangle$ in a list, based on an oracle

• Complexity: $\mathcal{O}(\sqrt{2^n})$ (against $\mathcal{O}(2^n)$ for classical search algorithms)

Generally performed on periodic states defined by: $|\varphi^{l,r}\rangle = \frac{1}{\sqrt{A}} \sum_{i=0}^{A-1} |l+ir\rangle$ • Quantum analogue of the discrete Fourier transform

• Complexity: $\mathcal{O}(n^2)$ (against $\mathcal{O}(n2^n)$)

Mermin's polynomials

 $\int M_1 = a_1$

femto-st

 $(\forall n \ge 2, \ M_n = \frac{1}{2}M_{n-1} \otimes (a_n + a'_n) + \frac{1}{2}M'_{n-1} \otimes (a_n - a'_n)$

 (a_i) and (a'_i) are one-qubit observables with eigenvalues in $\{-1, 1\}$

 $\langle \varphi | M_n | \varphi \rangle > 1$ implies that $| \varphi \rangle$ is non-local.

Example: With $(a_1, a_2, a'_1, a'_2) = (Z, X, (Z + X)/\sqrt{2}, (Z - X)/\sqrt{2}),$ M_2 corresponds to the operator used for Bell inequalities.

Grover's algorithm evaluation

Proposition ([JH19]):

• The states in Grover's algorithm are $|\varphi_k\rangle = \alpha_k |\mathbf{x_0}\rangle + \beta_k |+\rangle^{\otimes n}$, with $(\alpha_0, \beta_0) = (0, 1)$ and $(\alpha_{k_{opt}}, \beta_{k_{opt}}) \approx (1, 0)$.

• For k close to $k_{opt}/2$, $|\varphi_k\rangle$ comes close to a state $|\varphi_{ent}\rangle = (|\mathbf{x}_0\rangle + |+\rangle^{\otimes n})/K$ maximizing $\langle \varphi | M_n | \varphi \rangle$.

Evaluation method: find M_n such that $\langle \varphi_{ent} | M_n | \varphi_{ent} \rangle$ is maximal.

Computing $\langle \varphi_k | M_n | \varphi_k \rangle$ for every k with this M_n **positively** answers the following question:

"Is Grover's algorithm using entanglement to achieve quantum speedup?".

QFT evaluation

 $q: |\varphi\rangle \mapsto \max_{M_n} \langle \varphi | M_n | \varphi \rangle$ is a measure of entanglement. *Evaluation method:* for each state $|\varphi_k\rangle$, find $\widetilde{M_n}$ such that $\langle \varphi_k | \widetilde{M_n} | \varphi_k \rangle$ is maximal.

The corresponding experimental approximation \tilde{q} of q allows us to distinguish between three types of QFT runs in our experiments with n = 4:

Entangled states and variable measure (here for (l, r) = (9, 1)).

Entangled states and constant measure (here for (l, r) = (2, 2)).

Separable states (here for

 $\begin{array}{c} 0.8 & \hline 0 & 2 & 4 & 6 & 8 & 10 & 12 \\ & & & \\ & & & \\ \end{array}$ One can also check some key points such as the fact that entanglement evaluation doesn't change during LOCC operations (*H* gates in this case).

References

 $\widetilde{q}(k)$

 $\widetilde{q}(k)$

 $0.\bar{8}$

[dJH⁺20] H. de Boutray, H. Jaffali, F. Holweck, A. Giorgetti, and P.-A. Masson. Non-locality and Entanglement Detection with Mermin polynomials for Grover's algorithm and Quantum Fourier Transform. *Submitted in September 2020*, previous version at arXiv:2001.05192.

[JH19] H. Jaffali and F. Holweck. Quantum Entanglement involved in Grover's and Shor's algorithms: The four-qubit case. *Quantum Information Processing*, 18(5):133, May 2019.

Contact: henri.de_boutray@univ-fcomte.fr

This work is supported by the French Investissements d'Avenir program, project ISITE-BFC (contract ANR-15-IDEX-03), and by the EIPHI Graduate School (contract ANR-17-EURE-0002). The computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.

