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Abstract
The non-locality and thus the presence of entanglement of a quantum system can be detected

using Mermin polynomials. This gives us a means to study non-locality evolution during
the execution of quantum algorithms. We first consider Grover’s quantum search algorithm,
noticing that states during the execution of the algorithm reach a maximum for an entanglement
measure when close to a predetermined state, which allows us to search for a single optimal
Mermin operator and use it to evaluate non-locality through the whole execution of Grover’s
algorithm. Then the Quantum Fourier Transform is also studied with Mermin polynomials.
A different optimal Mermin operator is searched for at each execution step, since in this case
nothing hints us at finding a predetermined state maximally violating the Mermin inequality.
The results for the Quantum Fourier Transform are compared to results from a previous study
of entanglement with Cayley hyperdeterminant. All our computations can be repeated thanks
to a structured and documented open-source code that we provide.

Keywords: Mermin polynomials, MABK violation, quantum programs, entanglement, non-
locality, Grover’s quantum search algorithm, Quantum Fourier Transform.

1 Introduction

Quantum entanglement has been identified as a key ingredient in the speed-up of quantum
algorithms [JL03], when compared to their classical counterparts. Our work is in line with
previous work on a deeper understanding of the role of entanglement in this speed-up [EJ98,
BP02, CBAK13, KM06].

We focus on Grover’s algorithm [Gro96] and the Quantum Fourier Transform (QFT) [NC10,
Chap. II-Sec. 5] which plays a key role in Shor’s algorithm [Sho94]. We choose these two examples
because they both provide quantum speed-up (quadratic for Grover’s algorithm and exponential
for the QFT) and are well understood and described in the literature [NC10]. Previous work
tackled entanglement in Grover’s algorithm and the QFT from two perspectives: quantitatively,
with the Geometric Measure of Entanglement (GME) [Shi95, BNO02, WG03], separately for
Grover’s algorithm [RBM13] and the QFT [SSB05], and qualitatively, by observing the different
entanglement SLOCC classes traversed by an execution, for both algorithms [JH19].

Instead of directly measuring entanglement we use Mermin polynomials [Mer90, ACG+16,
AL16] to demonstrate the non-locality (breaking of an upper bound holding for all classical states)
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of some states generated by these algorithms. Knowing that a state exhibits non-local properties
allows us to conclude that the state is entangled. In this respect one uses Mermin polynomials as
entanglement witnesses as suggested in [TG05, GT09]. Batle et al. [BOF+16] previously investi-
gated non-local properties during Grover’s algorithm using Mermin polynomials. However they
concluded to the absence of non-locality. In the present work we setup the Mermin polynomials
in such a way that we exhibit, on the contrary, violation of the classical inequalities in Grover’s
algorithm. Moreover our evaluation techniques are more efficient, allowing us to reach 12 qubits.
We also exhibit non-locality during the QFT in the context of Shor’s algorithm.

An initial motivation of this study is the verification of quantum programs. Turning a quantum
algorithm into an implementation for a quantum computer with scarce resources often requires
highly non-trivial optimizations, which may introduce bugs in the resulting programs. Checking
state properties is a way to gain more confidence in these implementations. In the present paper
we investigate non-locality as a property of entangled quantum states that could be checked for a
quantum algorithm and its implementations. In this respect evaluation of Mermin polynomials is
of particular interest: violation of the classical bound has a physical meaning and the evaluation
of Mermin polynomials can be implemented on a quantum computer, as it was demonstrated by
Alsina et al. [AL16].

In this paper we make two different uses of Mermin polynomials. In our study of Grover’s
algorithm we build for each number of qubits a specific Mermin polynomial which achieves
maximal violation for the quantum state of highest GME that Grover’s algorithm is meant to
approach during its execution. Doing so we will not only show that the states generated by
the algorithm violate the classical bound but also that the valuations of this specific Mermin
polynomial behave similarly to the GME. In our study of the QFT, we propose a different approach
by choosing at each step of the algorithm a Mermin polynomial whose valuation is maximal for
the given state. We show that this quantity is a local unitary invariant that can be compared to
other invariants. In the context of Shor’s algorithm for four qubits, we also obtain violation of
the Bell-like Mermin inequalities (also called MABK in the literature) during the QFT part of the
algorithm. This amount of violation is not constant during the QFT, which shows a qualitative
change of the nature of entanglement involved. This differs from the quantitative results obtained
with the Groverian’s measure of entanglement [SSB05] for which it was proved that the amount of
entanglement is nearly constant in Shor’s algorithm during the QFT. Without being contradictory
the present work illustrates the fact that non-equivalent classes of entanglement under local
unitary transformations are achieved during the QFT part of Shor’s algorithm, as it was shown
in [JH19].

The paper is organized as follows. After Section 2 presenting some background on Grover’s
algorithm, the QFT and Mermin polynomials, Section 3 presents our method and results concern-
ing the detection of entanglement in Grover’s algorithm and the QFT. In particular we exhibit
Mermin inequalities violations in both algorithms. In this section we also compare the results
obtained with the Mermin polynomials to previous results [JH19] using the Cayley hyperdeter-
minant. Finally, Section 4 documents the code developed for this evaluation, in order to make it
reusable by anyone wishing to1. In addition, Appendix A recalls known properties of the states
in Grover’s algorithm and Appendix B recalls the definition of the Cayley hyperdeterminant.

2 Background

This paper relies on pure state formalism: each considered state is a normalized vector of the
Hilbert spaceH = C2

⊗C2
⊗ · · · ⊗C2. A separable state

∣∣∣ϕ〉
is a rank-one tensor, i.e.,

∣∣∣ϕ〉
=

∣∣∣ϕ1
〉
⊗∣∣∣ϕ2

〉
⊗ · · · ⊗

∣∣∣ϕk
〉
, where

∣∣∣ϕi
〉

are single-qubit states. A tensor/state
∣∣∣ϕ〉

is said to be of rank r if there

are r rank-one tensors
∣∣∣ϕi

〉
=

∣∣∣ϕi
1

〉
⊗

∣∣∣ϕi
2

〉
⊗ · · · ⊗

∣∣∣ϕi
k

〉
, with i = 1, . . . , r, such that

∣∣∣ϕ〉
=

∑r
i=1 αi

∣∣∣ϕi
〉

with αi ∈ C, and r is minimal for this property. An entangled state is a tensor of rank higher than 1.

1The source code is available at https://quantcert.github.io/Mermin-eval.
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The remainder of this section provides necessary background to the reader, regarding Grover’s
algorithm (2.1), some properties of the states during its execution (2.2), the Quantum Fourier
Transform (2.3) and the Mermin operators (2.4).

2.1 Grover’s algorithm

We summarize here Grover’s algorithm, widely described in the literature ([Gro96, LMP03]
and [NC10, chapter 6]).

Grover’s algorithm aims to find objects satisfying a given condition in an unsorted database
of 2n objects, i.e. to solve the following problem.

Given a positive integer n, N = 2n, Ω = {0, . . . ,N − 1} and the characteristic function f : Ω→ {0, 1} of
some subset S of Ω ( f (x) = 1 iff x ∈ S), find in Ω an element of S only by applying f to some elements of
Ω.

Grover’s algorithm provides a quadratic speedup over its classical counterparts. Indeed,
assuming that each application of f is done in one step, it runs in O(

√
N) instead of O(N).

|0〉 /n

H⊗n+1 U f
D · · ·

U f
D

|1〉 · · ·

Fig. 1 Grover’s algorithm in circuit formalism

Figure 1 shows this algorithm as a circuit composed of several gates that we now describe.
H⊗n+1 is simply the Hadamard gate on each wire. When applied on the first n registers initialized
at |0〉, it computes the superposition of all states, i.e.,

H⊗n
|0〉 =

1
√

N

N−1∑
x=0

|x〉 .

After H⊗n+1, the dashed box (hereafter called L) is repeated kopt =
⌊
π
4

√
N
|S|

⌋
times.

The circuit L is composed of the oracle U f and the diffusion operatorD. The gate U f computes
the classical function f . It has the following effect on states:

∀(x, y) ∈ {0, . . . ,N} × {0, 1}, U f

(
|x〉 ⊗

∣∣∣y〉) = |x〉 ⊗
∣∣∣y ⊕ f (x)

〉
.

On the circuit of Figure 1 one can show that the last register remains unchanged when applying

the U f gate. Indeed after the Hadamard gate H, this last register becomes H |1〉 =
|0〉 − |1〉
√

2
. Now

consider a state |x〉 ⊗
|0〉 − |1〉
√

2
. Then

U f

(
|x〉 ⊗

|0〉 − |1〉
√

2

)
=


|x〉 ⊗

|1〉 − |0〉
√

2
if f (x) = 1

|x〉 ⊗
|0〉 − |1〉
√

2
otherwise.

In other words,

U f

(
|x〉 ⊗

|0〉 − |1〉
√

2

)
= (−1) f (x)

(
|x〉 ⊗

|0〉 − |1〉
√

2

)
.

One says that the oracle U f marks the solutions of the problem by changing their phase to −1. To
emphasize this, we adopt the usual convention which consists of ignoring the last register and
considering that U f has the following effect:
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U f |x〉 = − |x〉 ,∀x ∈ S
U f |x〉 = |x〉 ,∀x < S

.

x0

(a)

x0

(b)

x0

(c)

x0

(d)

Fig. 2 First iteration of loop L in Grover’s algorithm: the combs represent the amplitude of each
element

The diffusion operator D = 2(|+〉 〈+|)⊗n
− I2n performs the inversion about the mean. Indeed

if
∣∣∣ϕ〉

=
∑N−1

i=0 αi |i〉 and ᾱ = 1
N

∑N−1
i=0 αi denotes the mean value of the amplitudes of

∣∣∣ϕ〉
, then

D

∣∣∣ϕ〉
=

∑N−1
i=0 α

′

i |i〉with α′i − ᾱ = ᾱ − αi.
Figure 2 provides a visualization of the effect of the beginning of the algorithm on the ampli-

tudes of
∣∣∣ϕ〉

. For readability purposes, only 4 amplitudes are represented, and only one element
is searched (S = {x0}), shown with a square instead of a bullet. The state is initialized to |0〉. The
state resulting of applying H⊗n is the superposition of all states |+〉⊗n (Figure 2a). Then the oracle
U f flips the searched element (Figure 2b), and the diffusion operator D performs the inversion
about the mean (Figures 2c and 2d).

The final measure yields the index of an element from S with high probability.

2.2 Properties of states in Grover’s algorithm

The evolution of the amplitudes of the state
∣∣∣ϕ〉

during the execution of the algorithm is well
known [NC10]. If we denote by θ the real number such that sin(θ/2) =

√
|S|/N, then after k
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iterations (i.e., after applying k times the circuit L), the state is:∣∣∣ϕk
〉

= αk

∑
x∈S

|x〉 + βk

∑
x<S

|x〉 (1)

withαk =
1
√
|S|

sin
(

2k + 1
2

θ

)
and βk =

1
√

N − |S|
cos

(
2k + 1

2
θ

)
. The sequences (αk)k and (βk)k are two

real sequences respectively increasing and decreasing when k varies between 0 and kopt =
⌊
π
4

√
N
|S|

⌋
.

An alternative representation of the evolution of the states during the execution of Grover’s
algorithm is proposed in [HJN16]. An elementary algebra calculation (See Appendix A, Proposi-
tion 2) shows that ∣∣∣ϕk

〉
= α̃k

∑
x∈S

|x〉 + β̃k |+〉
⊗n (2)

with α̃k = αk − βk and β̃k = 2n/2βk. The sequences (α̃k) and (β̃k) are respectively increasing and
decreasing on {0, . . . , kopt} (see Appendix A, Proposition 3).

In particular, if one considers the case of one searched element |x0〉, i.e. S = {x0}, then
Equation (2) becomes ∣∣∣ϕk

〉
= α̃k |x0〉 + β̃k |+〉

⊗n . (3)

|+〉⊗n

|x0〉∣∣∣ϕbkopt/2c

〉 X

Fig. 3 States path (dotted) in relation with the variety of separable states X during Grover’s
algorithm execution in the space of pure states [HJN16, Figure 2].

Figure 3 provides a graphical interpretation of Equation (3). The “curve” X represents the
variety (set defined by algebraic equations) of separable states. This figure illustrates the fact
that during the execution of Grover’s algorithm, the quantum state

∣∣∣ϕk
〉

evolves as follows: it
starts from the separable state |+〉⊗n and moves on the dotted secant line until it gets close to the
searched state |x0〉when k = kopt. All states on the secant line are entangled (rank-two tensors).

In [HJN16], it is proven that for states in superposition α |x0〉+ β |+〉
⊗n with α, β ∈ R+, the GME

is maximal when α = β. Let
∣∣∣ϕent

〉
hereafter denote the state (|x0〉 + |+〉

⊗n)/K, normalized with the
factor K. Figure 3 suggests that the search should come close to the state

∣∣∣ϕent
〉
, around the step

kopt/2. Thus, a maximum of entanglement is expected close to this pivot step.

2.3 Quantum Fourier Transform (QFT)

The quantum analogous of the Discrete Fourier Transform (DFT) is the Quantum Fourier Trans-
form (QFT). It acts linearly on quantum registers and is a key step in Shor’s algorithm, permitting
to reveal the period of the function defining the factorization problem [Sho94, NC10].

In the context of Shor’s algorithm, the QFT is used to transform a periodic state into another
one to obtain its period. The periodic state

∣∣∣ϕl,r
〉

of n qubits with shift l and period r is defined by
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∣∣∣ϕl,r
〉

=
1
√

A

A−1∑
i=0

|l + ir〉 with A =

⌈
N − l

r

⌉
and N = 2n,

for 0 ≤ l ≤ N − 1 and 1 ≤ r ≤ N − l − 1 [SSB05, Eq. 5].
For example, for the periodic 4-qubit states, with shift l = 1 and period r = 5, there are

A =
⌈

16−1
5

⌉
= 3 basis elements, so:∣∣∣ϕ1,5

〉
=

1
√

3

(
|1〉 + |6〉 + |11〉

)
=

1
√

3

(
|0001〉 + |0110〉 + |1011〉

)
.

When applied to one of the computational basis states |k〉 ∈ {|0〉 , |1〉 , . . . , |N − 1〉} (expressed
here in decimal notation), the result of the QFT can be expressed by

QFT |k〉 =
1
√

N

N−1∑
j=0

ωkj
∣∣∣ j〉 ,

where ω = e
2iπ
N is the primitive N-th root of unity. Then, for any n-qubit state

∣∣∣ψ〉
=

∑N−1
j=0 x j

∣∣∣ j〉, we
get

QFT
∣∣∣ψ〉

=

N−1∑
k=0

yk |k〉 with yk =
1
√

N

N−1∑
j=0

x j · ω
kj. (4)

The corresponding matrix is

QFTN =
1
√

N



1 1 1 1 · · · 1
1 ω1 ω2 ω3

· · · ωN−1

1 ω2 ω4 ω6
· · · ω2(N−1)

1 ω3 ω6 ω9
· · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1)
· · · ω(N−1)(N−1)


.

In the circuit representation, the QFT can be decomposed into several one-qubit or two-qubit
operators. To obtain this decomposition three different kinds of gates are used: the Hadamard
gate, the SWAP gate and the controlled-Rk gates, defined by the matrices and circuits

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 |x〉 • •

∣∣∣y〉∣∣∣y〉 • |x〉

and

cRk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e

2iπ
2k

 |x〉 Rk∣∣∣y〉 •

The complete circuit of the QFT is provided in Figure 4, where the n-qubit SWAP operation
consists of swapping |x1〉with |xn〉, |x2〉with |xn−1〉, and so on.

Remark 1. One of the reasons that explain the exponential speed-up in Shor’s quantum algorithm, is
the complexity of the QFT which is quadratic with respect to the number of registers. By comparison,
classically, the complexity of the Fast Fourier Transform algorithm that computes the DFT of a vector with
2n entries is in O(n2n).
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|x1〉 H R2 R3
. . .

Rn

SWAP

|x2〉 • H R2
. . .

Rn−1

|x3〉 • •
. . .

...
...

...
...

...
. . . ...

|xn〉 • •
. . .

H

Fig. 4 Quantum circuit representation of the Quantum Fourier Transform for a n-qubit register

2.4 Mermin polynomials and Mermin inequalities

Entanglement variations during the execution of Grover’s algorithm have been studied either
by computing the evolution of the Geometric Measure of Entanglement [RBM13, WG03], or by
computing other measures of entanglement like the concurrence or measures based on invari-
ants [BOF+16, WG03, HJN16]. Similarly, for Shor’s algorithm and in particular to study the
variation of entanglement within the QFT, numerical computation of the Geometric Measure of
Entanglement was carried out in [SSB05]. Let us also mention [JH19] where the evolution of en-
tanglement in Grover’s and Shor’s algorithms is studied qualitatively by considering the classes
of entanglement reached during the execution of the algorithms.

The authors of [BOF+16] proposed to exhibit the non-local behavior of the states generated by
Grover’s algorithm by testing a generalization of Bell’s inequalities known as Mermin’s inequal-
ities, based on Mermin polynomials [ACG+16, CGP+02].

Definition 1 (Mermin polynomials, [ACG+16]). Let
(
a j

)
j≥1

and
(
a′j
)

j≥1
be two families of one-qubit

observables with eigenvalues in {−1,+1}. The Mermin polynomial Mn is inductively defined by:M1 = a1

∀n ≥ 2, Mn = 1
2 Mn−1 ⊗ (an + a′n) + 1

2 M′n−1 ⊗ (an − a′n)
(5)

where, in (5), M′k is obtained from Mk by interchanging operators with and without the prime symbol.

Example 1. For n = 2, the Mermin polynomial is M2 =
1
2

(a1 ⊗ a2 + a1 ⊗ a′2 + a′1 ⊗ a2 − a′1 ⊗ a′2). The
operator M2 is, up to a factor, the CHSH operator used to prove Bell’s Theorem [CHSH69].

One can note that a one-qubit observable a with eigenvalues in {−1,+1} can be written as a
normed linear combination a = αX + βY + γZ of the Pauli matrices X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and

Z =
(

1 0
0 −1

)
, with the constraint |α|2 + |β|2 + |γ|2 = 1.

Mermin’s inequalities

〈Mn〉
LR
≤ 1 and 〈Mn〉

QM
≤ 2

n−1
2 (6)

respectively formalize that the expectation value 〈Mn〉 of Mn is bounded by 1 under the hypothesis
LR of local realism, while it is bounded by 2

n−1
2 in quantum mechanics (QM).

The violation of the first Mermin inequality shows non-locality which is only possible under
the hypothesis of quantum mechanics and if the quantum state is entangled. More precisely the
maximal violation of Mermin’s inequalities occurs for GHZ-like states [Mer90, CGP+02, ACG+16],
i.e. states equivalent to |GHZ〉 = 1

√
2
(|0〉⊗n + |1〉⊗n) by local transformations.

One of the advantages of Mermin’s inequalities is that they can be tested by a physical
experiment. Recently the violation of Mermin’s inequalities was tested for n ≤ 5 qubits on a small
quantum computer [AL16].
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3 Method and results

In this section we present the main results of this study, obtained by evaluating Mermin polyno-
mials on states generated at different steps of Grover’s algorithm and the QFT. As explained in the
introduction our goal is to exhibit quantum properties of those states that can be experimentally
checked. When it violates the classical bound, a Mermin polynomial detects entanglement – a
resource that has been proved several times to appear in those algorithms. We obtain those vio-
lations in both algorithms. It is also known that the amount of violation of Mermin’s inequalities
is not in one-to-one correspondence with the quantity of entanglement involved [BGS05]. The
question of measuring the quantity of entanglement is also a difficult question, as it is known
that the notion of absolutely maximally entangled states does not exist already in the four-qubit
case [HS00]. Here we compare evaluation of Mermin polynomials to different types of entangle-
ment measures. In Grover’s algorithm one uses a specific Mermin polynomial, which is fixed
once for all the algorithm. By carefully choosing this polynomial one shows that its evaluation
behaves like the GME. In the QFT algorithm, previous work [SSB05] concluded to small varia-
tions of the GME. Here, by choosing differently which Mermin polynomial we evaluate at each
state, we show that the entanglement classes change during the QFT, as it was already observed
in [JH19].

Once two families (a j)1≤ j≤n and (a′j)1≤ j≤n of observables are chosen, one can define the Mermin

test function fMn by fMn (ϕ) =
〈
ϕ
∣∣∣Mn

∣∣∣ϕ〉
. Inequalities (6) tell that fMn (ϕ) > 1 implies that

∣∣∣ϕ〉
is non-

local. We present in this section two approaches to choose the parameters (a j)1≤ j≤n and (a′j)1≤ j≤n

of Mn to satisfy the previous inequality for some states generated by the quantum algorithm of
choice.

The first approach evaluates each state that the algorithm goes through with the same function
fMn , with a unique polynomial Mn chosen prior to state computation. This approach has the
advantage of providing a fast calculation ((a j)1≤ j≤n and (a′j)1≤ j≤n are computed only once), but
the function fMn is not a measure of entanglement, since it is not invariant by local unitary
transformations, i.e., we do not have fMn (ϕ) = fMn (g.ϕ) for all transformations g ∈ LU = U2(C)n

and all quantum states
∣∣∣ϕ〉

(
∣∣∣g.ϕ〉

is defined as such: for g = (g1, . . . , gn) and G = g1 ⊗ . . . ⊗ gn,∣∣∣g.ϕ〉
= G

∣∣∣ϕ〉
).

The second approach is to choose a different Mn for each state
∣∣∣ϕ〉

, by optimizing fMn (ϕ) for
each state traversed by the algorithm. This means that we are finding values for (a j) and (a′j) many
times for a single run. This approach was for example used in [BOF+16]. We use it in Section 3.2.1
to define a quantity µ(ϕ), invariant under the group LU of local unitary transformations (see
Proposition 1).

3.1 Grover’s algorithm properties

Hereafter we simplify the calculations by taking S = {x0}, i.e., by considering that Grover’s
algorithm is only searching for a single element x0. We want to show two properties:

1. Grover’s algorithm exhibits non-locality.

2. Parameters of the Mermin test function can be computed so that the function values increase
and then decrease for the successive states

∣∣∣ϕk
〉

in Grover’s algorithm. The maximum is
reached at an integer kmax in {bkopt/2c, dkopt/2e}.

Property 1 is in contradiction with [BOF+16], a detailed explanation is given in Remark 2. Prop-
erty 2 makes the chosen Mermin test function behave like the Geometric Measure of Entanglement.

Next section details the method we followed for finding a good Mermin polynomial estab-
lishing these properties.
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3.1.1 Method

The definition of Mermin polynomials provides degrees of freedom in the choice of (a j) j≥1 and
(a′j) j≥1 (an infinite number of parameters). We reduce that choice by imposing that the two
sequences (a j) j≥1 and (a′j) j≥1 are constant, i.e. ∀ j, a j = a and a′j = a′. This restriction strongly
reduces calculations, and it will be sufficient to achieve our objectives.

Let us denote by a and a′ the two one-qubit observables that will be used to write our Mermin
polynomial. We have a = αX+βY+γZ and a′ = α′X+β′Y+γ′Z with the constraints |α|2+|β|2+|γ|2 = 1
and |α′|2 + |β′|2 + |γ′|2 = 1.

The degrees of freedom are the 6 complex numbers α, β, δ, α′, β′ and δ′ with the two normal-
ization constraints. Let A = (α, β, δ, α′, β′, δ′) be the six-tuple of these variables.

In order to satisfy Property 2, we search for a six-tuple of parameters A such that fMn reaches
its maximum for the state ϕkopt/2. We also would like this choice of A to be independent of
the states generated by the algorithm. According to the geometric interpretation presented in
Section 2.2, the state ϕkopt/2 should tend to the state

∣∣∣ϕent
〉

= 1
K (|x0〉+ |+〉

⊗n) when n tends to infinity
(the approximation improves as n increases). Moreover the state

∣∣∣ϕent
〉

is a tensor of rank two
with an overlap 〈x0|+〉

⊗n = 1/
√

2n between the states |x0〉 and |+〉⊗n which tends to 0 as n increases,
i.e., we expect the state

∣∣∣ϕent
〉

to behave like a GHZ-like state when n is large (by definition the
GHZ state is SLOCC equivalent to any non-biseparable rank-two tensor). This point is important
because GHZ-like states are the ones that maximize the violation of classical inequalities by
Mermin polynomials [Mer90, CGP+02, ACG+16]. Therefore by choosing a tuple of parameters A
maximizing fMn (ϕent) we expect to satisfy Properties 1. and 2..

We use a random walk in R6 to maximize fMn (ϕent). We operate the walk for a fixed number
of steps, starting from an arbitrary point. At each step, we choose a random direction, and move
toward it to a new point. If the value of fMn (ϕent) at that new point is higher than at the previous
one, then that point is the start point for the next step, otherwise a new point is chosen.

Once the proper coefficient for Mn found, we compute the values of each fMn (ϕk) for k in
{0, . . . , kopt} to validate Properties 1. and 2..

Example 2. When searching the state |0000〉, the highest value of fM4 (ϕent) obtained by this random walk
is for A = (−0.7,−0.3,−0.7,−0.5, 0.7,−0.5). Then, A is used to compute M4, and then fM4 (ϕk),∀k ∈
{0, . . . , kopt}.

Remark 2. Some comments are in order at this point to compare our approach with the work of [BOF+16].
First in [BOF+16] all calculations are done using the density matrices formalism instead of the vector/tensor
approach we use here. But this difference is meaningless, because we are only considering pure states, so,
every computation in the density matrix formalism can be done equivalently within the vector state
formalism. Moreover in [BOF+16] the optimization is done at each step of the algorithm with respect to the
state computed by the algorithm, while we compute the parameters only once with respect to a targeted state∣∣∣ϕent

〉
. Finally, as mentioned at the beginning of Section 3.1.1, we also restrict ourselves to two operators a

and a′ and thus all optimizations are performed on six parameters instead of 6n. This allows us to perform
the calculation for a larger number of qubits (up to 12).

3.1.2 Results

Thanks to our implementation of this method in SageMath, described in Section 4, we obtain the
values depicted in Figure 5, for n from 4 up to 12 qubits. The searched element x0 is always the
first element |0〉 of the canonical basis, but other searched elements would give similar results, by
symmetry of the problem.

The lower bound for the number n of qubits is set to 4 because for n ≤ 3 the algorithm has
no time to show any advantage, is not very reliable and doesn’t exhibit non-locality. The upper
bound is set to 12 because of technological limitations: computations for 13 qubits or more become
too expensive.

9
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Fig. 5 Violation of Mermin’s inequalities during Grover’s algorithm execution for 4 ≤ n ≤ 12
qubits

We see that the two expected properties hold for all values of n: the classical limit is violated
and the Mermin evaluation increases up to the middle of the executions, and then decreases (the
maximal values are given in Figure 6).

n 4 5 6 7 8 9 10 11 12
bkopt/2c 1 1 2 3 5 8 12 17 24
kmax 1 2 3 4 6 9 12 18 25
fMn (ϕkmax ) 1.21 1.72 2.05 2.69 3.37 4.17 4.83 6.36 7.71

Fig. 6 Maximums of fMn (ϕk) for 4 ≤ n ≤ 12 qubits

Remark 3. In [BOF+16] similar curves (Figure 3) were obtained for n ∈ {2, 4, 6, 8} qubits showing
the increasing-decreasing behavior, but the violation of Mermin’s inequalities – the non-locality – was
not established for n = 6 and n = 8, whereas it is obtained in our calculation. Recall from Remark 2
that the calculation of [BOF+16] is not exactly the same as the one performed in this paper. The curves
of [BOF+16] are obtained by maximizing fMn (ϕk) at each step of the algorithm with a larger number
of parameters. Therefore as we obtain violation of Mermin’s inequalities via a restricted calculation,
the authors of [BOF+16] should also have observed it. We suspect errors in the implementation of the
calculation of Equations (19) of [BOF+16] as we have redone this calculation for n = 6 based on Equations
(18) and (20) of [BOF+16], and we have obtained the violation of Mermin’s inequalities shown in Figure 7.
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Fig. 7 Violation of Mermin’s inequalities during Grover’s algorithm execution for 6 qubits using
[BOF+16] method
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Remark 4. The curve for n = 12 in Figure 5 should be compared to the curve of Figure 1 of [RBM13]
where the evolution of the GME of the states generated by Grover’s algorithm is given for n = 12 qubits. In
our setting it is not a surprise that both curves are similar because in all of our calculations the function fMn

is defined by the set of parameters that maximizes its value for
∣∣∣ϕent

〉
. Similar behavior for other invariants

in the context of Grover’s algorithm have also been observed in [MW02a, CBAK13, HJN16].

Figure 8 provides another argument explaining why we expected violation of Mermin’s in-
equalities in Grover’s algorithm when n increases. It can be deduced from the geometric descrip-
tion of the algorithm (Section 2.2) that the quantum state

∣∣∣ϕdkopt/2e

〉
should be close to

∣∣∣ϕent
〉

and
thus behave like it with respect to the Mermin polynomial. Despite the fact that fMn (ϕent) does
not reach the theoretical upper bound that is obtained for states LOCC equivalent to |GHZn〉, one
sees that the difference between fMn (ϕent) and the classical bound 1 increases as a function of n.
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Fig. 8 Comparison between results of the computations and theoretical Mermin boundary. The
curve with points as dots corresponds to the evaluation of fMn (ϕent) and the curve with points
as crosses corresponds to the theoretical upper bound for the violation of the Mermin inequality
defined by Mn

3.2 Quantum Fourier Transform

To exhibit non-local behavior of states generated at each step of the Quantum Fourier Transform
we restrict ourselves to periodic four-qubit states for the following reasons:

1. as explained in Section 2.3, the QFT in Shor’s algorithm is applied to periodic states [NC10];

2. as we will see in Section 3.2.2 the four-qubit case is sufficient to obtain violation of Mermin’s
inequalities;

3. we want to compare the present approach with a recent study of entanglement in Shor’s
algorithm in the four-qubit case, proposed by two of the authors of the present paper [JH19].

3.2.1 Method

When we apply the QFT to periodic states we have no a priori geometric information about the
type of states that will be generated. In fact it depends on two initial parameters that define the
periodic state

∣∣∣ϕl,r
〉
: its shift l and its period r. Therefore there are no reasons for restricting the

choice of parameters in the calculation of fMn (ϕl,r). For the four-qubit case this implies that our
optimization will be carried over the 24 parameters defining M4, hereafter denoted α1, . . . , α24
(such that a1 = α1X + α2Y + α3Z, . . . , a4 = α10X + α11Y + α12Z, a′1 = α13X + α14Y + α15Z, . . . , and
a′4 = α22X + α23Y + α24Z), and this, for each state generated, in opposition to Section 3.1.

For k ≥ 0, let
∣∣∣ϕl,r

〉
k

denote the state reached after the first k gates in the QFT (Figure 9)

initialized with the periodic state
∣∣∣ϕl,r

〉
with shift l and period r.

11
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〉

Fig. 9 Quantum circuit representation of the Quantum Fourier Transform for a 4-qubit register

We are interested by the evolution of the function q defined for k ≥ 0 by

q(k) = max
α1,...,α24

fM4

(
ϕl,r

k

)
. (7)

In [JH19] two of the authors of the present paper have studied the evolution of entanglement
for periodic four-qubit states through QFT by computing the absolute value of an algebraic
invariant called the Cayley hyperdeterminant and denoted by ∆2222. This polynomial of degree
24 in 16 variables is a well-known invariant in quantum information theory and its absolute
value is known to be a measure of entanglement [MW02b, LT03, OS06, GW14]. We provide the
definition of ∆2222 in Appendix B.

Surprisingly, the two approaches, which are of different natures – an algebraic definition
for the hyperdeterminant and an operator-based construction for Mermin evaluation – would
sometimes present similar behavior (see Figure 10).

0 2 4 6 8 10 12
0

2

4

6
·10−10

0

k

|∆
22

22
|

0 2 4 6 8 10 12
1

1.5

2

2.5

3

1

k

q̃(
k)

Fig. 10 Comparison of entanglement evaluation through the QFT for periodic state (l, r) = (9, 1)
using the measures given by the absolute value of the hyperdeterminant and the Mermin evalu-
ation

In [JH19] it was observed that the evolution of entanglement for four-qubit periodic states
through QFT shows three different behaviors with respect to ∆2222.

• Case 1. The polynomial ∆2222 is nonzero when evaluated on
∣∣∣ϕl,r

〉
and does not vanish during

the transformation. In terms of four-qubit classification [VDDMV02] it means that the
transformed states remain in the so-called Gabcd class. This happens for (l, r) ∈ {(1, 3), (2, 3)}.

• Case 2. The polynomial ∆2222 is zero for the periodic state
∣∣∣ϕl,r

〉
and is nonzero during the

QFT. This happens for (l, r) ∈ {(0, 3), (0, 5), (2, 1), (3, 1), (3, 3), (4, 1), (4, 3), (5, 1), (5, 3), (6, 1), (6, 3),
(7, 1), (9, 1)(10, 1), (11, 1), (12, 1)}.

• Case 3. The polynomial ∆2222 is zero for the periodic state
∣∣∣ϕl,r

〉
and it remains equal to zero

all along the QFT for all the other (l, r) configurations (with 0 ≤ l ≤ N−1 and 1 ≤ r ≤ N−l−1).
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Before presenting the results let us point out that now the calculated quantity is invariant
under local unitary transformations, i.e. under the group LU = U2(C)n.

Proposition 1. Let
∣∣∣ϕ〉
∈ (C2)⊗n be a n-qubit state and (ai) and (a′i ) be families of one-qubit observables

that define a Mermin polynomial Mn according to Definition 1. Let

µ(ϕ) = max
ai,ai′

〈
ϕ
∣∣∣Mn

∣∣∣ϕ〉
. (8)

Then µ(ϕ) is LU-invariant.

Proof. First one recalls that a one-qubit observable A such that Sp(A) = {−1, 1} can always be
written as A = αX + βY + γZ with α, β, γ ∈ R and α2 + β2 + γ2 = 1. For the action g.A = g†Ag on A
by conjugation with a unitary matrix g ∈ U2(C), one has g.A = Ã = α̃X + β̃Y + γ̃Z with α̃, β̃, γ̃ reals
such that α̃2 + β̃2 + γ̃2 = 1. Indeed Ã is also a one-qubit observable such that Sp(Ã) = {−1, 1}.

Let us denote by λ = (α1, β1, γ1, α′1, β
′

1, γ
′

1, . . . , αn, βn, γn, α′n, β
′
n, γ

′
n) a tuple of 6n parameters that

define a Mermin polynomial Mn(λ). Then

µ(ϕ) = max
λ∈R6n,α2

i +β2
i +γ2

i =1,α′2i +β′2i +γ′2i =1

〈
ϕ
∣∣∣Mn(λ)

∣∣∣ϕ〉
exists, because it is the maximum of a degree n polynomial in (at most) 6n variables under the
constraints α2

i + β2
i + γ2

i = 1 and α′2i + β′2i + γ′2i = 1. Let us denote by λ′ a tuple of parameters that
maximizes

〈
ϕ
∣∣∣Mn(λ)

∣∣∣ϕ〉
, i.e.,

µ(ϕ) =
〈
ϕ
∣∣∣Mn(λ′)

∣∣∣ϕ〉
.

Let
∣∣∣ψ〉

be a n-qubit state LU-equivalent to
∣∣∣ϕ〉

. Thus there exists g = (g1, . . . , gn) ∈ LU such that∣∣∣ψ〉
=

∣∣∣g.ϕ〉
= G

∣∣∣ϕ〉
with G = g1 ⊗ . . . ⊗ gn. Then

〈
ϕ
∣∣∣Mn(λ′)

∣∣∣ϕ〉
=

(〈
ϕ
∣∣∣ G†

)
G Mn(λ′) G†

(
G

∣∣∣ϕ〉)
=〈

ψ
∣∣∣Mn(λ′′)

∣∣∣ψ〉
for some tuple of parameters λ′′. Therefore

µ(ϕ) ≤ µ(ψ).

But
∣∣∣ϕ〉

= G†
∣∣∣ψ〉

also holds, so a similar reasoning provides the inequality µ(ϕ) ≥ µ(ψ) and thus
the equality.

In the next section we plot and analyze different curves of the approximation q̃ of q in the
four-qubit case for different choices of (l, r).

3.2.2 Results

In order to compute the values of the function q defined by (7), we optimize its parameters to
approximate it and denote by q̃ the approximation resulting from this optimization. Curves of
q̃(k) are shown on Figures 11, 12 and 13, for k ∈ {0, . . . , 11} and for different choices of shift l and
period r, respectively in Cases 1, 2 and 3.

Let us start with general comments.

• All examples in Figures 11, 12 and 13 present violations of the Mermin inequality, and the
amount of violation evolves during the algorithm. This contrasts with [SSB05] where the
authors found almost no evolution of the GME during the QFT. Those statements are not
contradictory as entanglement and non-locality are not the same resource but it shows that
the Mermin polynomials detect variations of the nature of the states that are not measured
by the GME.

• The sets {0, 1}, {4, 5}, {7, 8} and {9, 10, 11} for k correspond to states before and after gates of the
QFT that do not modify entanglement (Hadamard, SWAP). That explains why the function
is constant on those intervals, as it was already the case for the curves k 7→ |∆2222(ϕl,r

k )|
in [JH19].

13



0 2 4 6 8 10 12
1

1.5

2

2.5

3

1

k

q̃(
k)

(a) (l, r) = (1, 3)
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(b) (l, r) = (2, 3)

Fig. 11 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input∣∣∣ϕ(l,r)
〉

in Case 1 from [JH19]

• States corresponding to Cases 1 and 2 of [JH19] violate the classical bound during the
execution of the QFT. Only some states corresponding to Case 3 produce constant curves
with some of them equal to the classical bound (not drawn). It is for instance the case
for (l, r) = (2, 4) which is a separable state that remains separable during the algorithm.
Figure 13 illustrates different possible behaviors of the states in Case 3. These variations
were not detected in [JH19] by the evaluation of |∆2222|.
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(b) (l, r) = (5, 3)

0 2 4 6 8 10 12
1

1.5

2

2.5

3

1

k

q̃(
k)

(c) (l, r) = (11, 1)
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(d) (l, r) = (9, 1)

Fig. 12 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input∣∣∣ϕ(l,r)
〉

in Case 2 from [JH19]

The amount of violation of non-locality measured during the QFT is not connected to the
change of SLOCC classes computed in [JH19] for the same algorithm and input state. Indeed,
states in the same SLOCC class reach different values of the maximal violation of the Mermin
inequality. For instance, if one considers the periodic states

∣∣∣ϕl,r
〉

for (l, r) = (2, 2) and (l, r) = (0, 11)
(Figures 13a and 13b), it is shown in [JH19] that these two states are SLOCC equivalent (i.e. can
be inter-converted by a reversible local operation), but their evolution during the QFT is quite
different. The value of q̃(k) fluctuates around 1.10 for (l, r) = (2, 2), whereas it is in the interval
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(c) (l, r) = (0, 15)
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Fig. 13 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input∣∣∣ϕ(l,r)
〉

in Case 3 from [JH19]

[1.65, 2.18] for (l, r) = (0, 11).
Similarly the cases (l, r) = (0, 15) and (1, 1) (Figures 13c and 13d) correspond to two states

SLOCC equivalent to |GHZ4〉 at the beginning of the algorithm. It is clear for (l, r) = (0, 15)
because

∣∣∣ϕ0,15
〉

= |GHZ4〉 and q̃(k) reaches the maximal possible value at the beginning of the

algorithm. The maximal violation of Mermin inequality for four qubits is 2
√

2 ≈ 2.81 (2
n−1

2 for
n = 4), but this value is nowhere to be approached for (l, r) = (1, 1) where the value of q̃(k) is close
to 1 at all steps of the run. In fact the state

∣∣∣ϕ1,1
〉

=

√
16
15
|++++〉 −

1
√

15
|0000〉 (9)

is a state on the secant line joining |++++〉 and |0000〉, as described in Section 2.2. This state is
indeed SLOCC equivalent to |GHZ4〉 but it is closer to a separable state if one considers the GME.

4 Implementation

This section explains the code developed for this article and relates it to the notations from
Section 2. This code can be found at https://quantcert.github.io/Mermin-eval. It uses the
open-source mathematics software system SageMath2 based on Python. The code is a module
named mermin_eval, and usage examples can be found in the GitHub repository. Note that all
the results of this article have been double checked, by first being obtained on Maple3 and then
only being generalized on SageMath.

The code is provided and presented for several reasons: so the readers can see how we obtained
the results presented in Section 3.1.2, and they can reproduce our computations by running the

2http://www.sagemath.org
3https://www.maplesoft.com/
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code. But the code can also be extended to other evaluation methods of Grover’s algorithm, or
adapted to other quantum algorithms, since it is structured in several well-documented functions.

This section is divided in two parts: we first explain the code used for Grover’s algorithm in
Section 4.1, and then the code used for the Quantum Fourier Transform in Section 4.2.

4.1 Grover’s algorithm implementation

For Grover’s algorithm, the main function grover is reproduced in Listing 1. The parameter
target_state_vector is the searched state |x0〉. The function first executes an implementation
grover_run of Grover’s algorithm, detailed in Section 4.1.1, and stores in the list end_loop_states
the states after each iteration of the loop L. Then but independently, a call to the function
grover_optimize (Section 4.1.2) optimizes Mermin operator. The result is stored in the matrix
M_opt. Finally both these results are used to evaluate entanglement after each iteration of Lwith
a call to the function grover_evaluate (Section 4.1.3), also responsible of printing the evaluations
at each step.

def grover(target_state_vector):
end_loop_states = grover_run(target_state_vector)

M_opt = grover_optimize(target_state_vector)

grover_evaluate(end_loop_states, M_opt)

Listing 1: Main function for Grover’s entanglement study

4.1.1 Execution

The function grover_run given in Listing 2 takes as input the target state and returns a list of
states composed of the states at the end of each loop iteration.

def grover_run(target_state_vector):
layers, k_opt = grover_layers_kopt(target_state_vector)
N = len(target_state_vector)
V0 = vector([0, 1] + [0]*(2*N-2))

states = run(layers, V0)
end_loop_states = states[0]
for i in range(k_opt):
end_loop_states.append(states[2*i+1])

return end_loop_states

Listing 2: Function running Grover’s algorithm

This function operates in two steps. The first step is to build the circuit for Grover’s algorithm,
which is achieved by the function grover_layers_kopt. The circuit format is a list of layers:
each layer being a list of matrices (all the operations performed at a given time) and each matrix
representing an operation performed on one or more wires. For example, if H is the Hadamard
matrix, I2 and I4 are the identity matrix (in dimensions 2 and 4) and X is the first Pauli operator,
then the circuit in Figure 14 is represented by the list [[H,I4], [X,X,I2], [I4,H], [H,H,H]].

The next step is to run the circuit, which is achieved by run that returns the list of the states
after each layer. The function run takes as input the circuit (layers) and the initial state (V0). This
function both allows us to separate syntax and semantics, and is reusable in any future context
involving circuits.
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Fig. 14 Example for the circuit formalism in grover_ent

The for-loop then filters out all the intermediate states which are not at the end of a loop
iteration. For example, if we consider Grover’s algorithm on three qubits shown in Figure 15, we
would have the first state

∣∣∣ϕ0
〉
, and the states

∣∣∣ϕ3
〉

and
∣∣∣ϕ5

〉
in end_loop_states.

|0〉

H⊗n+1 U f
D

U f
D|0〉

|0〉

|1〉 ∣∣∣ϕ0
〉

|ϕ1〉 |ϕ2〉

∣∣∣ϕ3
〉

|ϕ4〉

∣∣∣ϕ5
〉

Fig. 15 End loop counting example

This implementation of the simulation of Grover’s algorithm has its limits though. It is
computationally expensive to multiply matrices beyond a certain number of qubits. To push
it a little further, we used another implementation for Grover’s algorithm, less versatile but
more efficient. This method is presented in Listing 3. In this case, two important differences
are first that there is no more use for the ancilla qubit (the last wire in the circuit definition of
Grover’s algorithm, see Figure 1), which divides by two the number of elements in a state vector,
and second that almost no matrix multiplication is used. Indeed, the loop is now handled by
functions operating directly on the state vector. The first function is oracle_artificial, and it
only flips the correct coefficient in the running state (this is the behavior explained in Section 2.1).
The second function diffusion_artificial performs the inversion about the mean.

def grover_run(target_state_vector):
N = len(target_state_vector)
n = log(N)/log(2)
k_opt = round((pi/4)*sqrt(N))
H = matrix(field, [[1, 1],

[1, -1]])/sqrt(2)
hadamard_layer = kronecker_power(H, n)

V0 = vector([1]+[0]*(N-1))

V = hadamard_layer * V0
end_loop_states = [V]

for k in range(k_opt):
V = oracle_artificial(target_state_vector, V)
V = diffusion_artificial(V)
end_loop_states.append(V)

return end_loop_states

Listing 3: Optimized implementation of Grover’s algorithm
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4.1.2 Optimization

The grover_optimize function shown in Listing 4 computes an approximation of an optimal
Mermin operator, as explained in Section 3.1.1. The Mermin operator Mn is an implicit function
of (α, β, δ, α′, β′, δ′), here implemented as (a,b,c,m,p,q). Because of this, optimizing the Mermin
operator is finding the optimal (α, β, δ, α′, β′, δ′) for our Mermin evaluation.

def grover_optimize(target_state):
n = log(len(target_state))/log(2)
plus = vector([1,1])/sqrt(2)
plus_n = kronecker_power(plus, n)
phi = (target_state + plus_n).normalized()

def M_phi(a,b,c,m,p,q):
return M_eval(a,b,c,m,p,q, phi)

(a,b,c,m,p,q),v = optimize(M_phi, (1,1,1,1,1,1), 5, 10**(-2), 10**2)

return M_from_coef(n,a,b,c,m,p,q)

Listing 4: Optimization function for Grover’s algorithm

To optimize the Mermin operator, first the state
∣∣∣ϕent

〉
= (|x0〉 + |+〉⊗n)/K (with K the normal-

izing factor) is computed and stored in phi, then fMn represented by M_eval is used to define
fMn (

∣∣∣ϕent
〉
) as M_phi. Note that in the mathematical notations, fMn (

∣∣∣ϕent
〉
) is an implicit function of

(α, β, δ, α′, β′, δ′). This implicit relation is made explicit as M_phi is a function of (a,b,c,m,p,q).
The optimize function takes as input a function (here M_phi), a first point to start the opti-

mization from (here (1,1,1,1,1,1)), the step sizes bounds and a maximal number of iterations
on a single step (here 102). The random walk starts with a step size of 5 and ends with a step size
of 10−2.

The optimization function proceeds with a random walk. It iterates until it finds a local
maximum (for all points p in a neighborhood around the point found popt, their evaluation by the
function given as the first parameter is less than the evaluation of the point found f (p) ≤ f (popt)).
To find this optimum, the process starts from an arbitrary point (given as an argument) and at
each step, an exploration of the space is done around the current point until the evaluation on the
argument function increases. If an increase cannot be found before the fixed maximal number of
iterations, the step size is reduced, otherwise the same step is repeated with the same step size.
The function ends when the step size reaches the fixed minimal size of the steps.

Remark 5. This optimization can be expensive, so to speed up the calculation, a memoization step is
hidden here: if (a,b,c,m,p,q) has already been computed for target_state, this result has been stored
on disk at this point and is now loaded.

4.1.3 Evaluation

The function grover_evaluate shown in the Listing 5 is the simplest of the three: it computes
fMn (

∣∣∣ϕk
〉
) =

〈
ϕk

∣∣∣Mn

∣∣∣ϕk
〉

for each
∣∣∣ϕk

〉
in the end_loop_states list with Mn here being M_opt, and

prints them.

def grover_evaluate(end_loop_states, M_opt):
for state in end_loop_states:
print((state.transpose().conjugate()*M_opt*state))

Listing 5: Evaluation function for Grover’s algorithm
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To overview the code as a whole, we can exhibit the link with Figure 5. For this figure, each
graph has been obtained by using a code line such as in Listing 6 (where string_to_ket is a
function used to convert a string of a specific format into a vector, in this case the vector |0000〉).
So, for four qubits, we set the target state as |0000〉, for five qubits as |00000〉, and so on. This is
enough for symmetry reasons (searching for |1001〉 instead of |0000〉 yields similar results).

>>> grover(string_to_ket("0000"))
0.173154027401573
1.01189404012534
-0.469906068136016

Listing 6: Mermin evaluation in Grover’s algorithm example

4.2 Quantum Fourier Transform implementation

For the QFT, the main function qft is reproduced in Listing 7. The parameter state is the state
ran through the QFT, generally a periodic state

∣∣∣ϕl,r
〉

generated by the function periodic_state
(Listing 8). The function qft first calls an implementation qft_run of the QFT, detailed in
Section 4.2.1, and stores the computed states in the list states. Then the states are directly
evaluated. The important difference compared to Grover’s algorithm implementation is the fact
that we are not using a separate optimization step, the optimization process is included in the
evaluation process: each evaluation requires an optimization. The evaluation process is thus
performed by the function qft_evaluate (Section 4.2.2), printing the evaluation as well.

def qft_main(state):
states = qft_run(state)
return qft_evaluate(states)

Listing 7: Main function for QFT entanglement study

def periodic_state(l,r,nWires):
N = 2**nWires
result = vector(N)
for i in range(ceil((N-l)/r)):
result[l+i*r] = 1

return result.normalized()

Listing 8: Function used to generate the periodic state
∣∣∣ϕl,r

〉

4.2.1 Execution

The function qft_run (Listing 9) uses the same circuit format as grover_run presented in Sec-
tion 4.1.1. This circuit is built by qft_layers (Listing 10) and run by run. In this case however,
the states do not need to be filtered, resulting in an almost trivial qft_run function.

def qft_run(state):
layers = qft_layers(state)
states, _ = run(layers, state)
return states

Listing 9: Function running the QFT
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The qft_layers function uses two functions not detailed here. swap returns a matrix corre-
sponding to the swap of two wires wire1 and wire2 and the identity on the other wires concerned.
The R method returns the controlled rotation of angle e

2iπ
2k , with the rotation being performed on

the wire target controlled by the wire control. The two matrices built by these functions have
a size of 2**size. With these two functions, qft_layers builds the circuit for the QFT using R on
the whole width of the circuit when a rotation is needed and using swap only at the end to build
the global swap (in fact, swap is also used in R and that is the reason why this implementation of
swap on two wires has been chosen instead of a more general arbitrary permutation gate).

def qft_layers(state):
def swap(wire1,wire2,size):
...

def R(k,target,control,size):
...

H = matrix(field, [[1, 1],
[1, -1]])/sqrt(2)

I2 = matrix.identity(field, 2)
nWires = log(len(state))/log(2)
layers = []

for wire in range(nWires):
layers.append([I2]*wire + [H] + [I2]*(nWires-wire-1))
for k in range(2, nWires-(wire-1)):
layers.append([R(k, wire, k+(wire-1), nWires)])

global_swap = matrix.identity(field, 2**nWires)
for wire in range(nWires/2):
global_swap *= swap(wire, nWires-1-wire, nWires)

layers.append([global_swap])

return layers

Listing 10: Function building the circuit of the QFT

4.2.2 Evaluation

In this case again, the evaluation is conceptually simpler than in Grover’s algorithm. Indeed,
since the optimization needs to be performed for each evaluation, the result printed at each step is
simply the optimal point reached by the optimize function (the same as described in Section 4.1.2).
In this case, a notable difference in the usage of optimize is the presence of 3*n*2 coefficients. This
is explained by the fact that, this time, we do not want a trend for the evaluation’s evolution and
a "good enough" Mn. This means that we do not stand satisfied by the constant an = αX + βY + δZ
but we have α, β and δ variable as explained in 3.2.1 (where they become (αi)1≤i≤6n).

Because of this, the function M_func (Listing 11) we optimize is now calling M_eval_all instead
of M_eval. The difference is that M_eval took only 3 × 2 coefficients to compute Mn with fixed
ai = αX + βY + δZ and a′i = α′X + β′Y + δ′Z, whereas this time the coefficients of ai and a′i are
variable, thus M_eval_all takes as arguments two lists of triples _a_coefs and _a_prime_coefs
(each triple encoding one ai or a′i ). The function coefficients_packing reshapes as two lists of
triples the flat list of reals that M_func requires as input.
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def qft_evaluate(states):
n = log(len(states[0]))/log(2)
for state in states:
rho = matrix(state).transpose()*matrix(state)

def M_func(_a_a_prime_coefs):
_a_coefs, _a_prime_coefs = coefficients_packing(_a_a_prime_coefs)
return M_eval_all(n, _a_coefs, _a_prime_coefs, rho)

_,value = optimize(M_func, [1]*3*n*2, 5, 10**(-2), 10**2)

print value

Listing 11: Evaluation function for the QFT

4.3 Implementation recap

Finally, to conclude this section, we recall the functions reusable in a general context, the run
function can be used for general purpose quantum circuit simulation and the Mermin evaluation
process can be used for arbitrary state entanglement evaluation. An issue previously mentioned
was the correctness between the process and the simulation, and here this issue is tackled by
structured and clear code. This structure also helps the code to be more modular, for instance, if
the user wants to change the optimization method for more speed or precision, it can be easily
achieved.

Remark 6. Note that the actual implemented functions have additional parameters that are ignored here
for simplicity’s sake. For example, each function has a verbose mode, to display more information about its
run.

5 Conclusion

In this paper, we have shown that both Grover’s algorithm and the QFT generate states that vi-
olate Mermin’s inequalities. We provided, for different settings, curves measuring the evolution
of the non-local behavior of the states through the algorithms. Evaluation of Mermin polynomi-
als detects entanglement when it violates the classical bound and we compared our numerical
results on non-locality evolution with the evolution of values obtained from several measures
of entanglement for the same algorithms. Understanding the connection between entanglement
and non-local properties of quantum states is a difficult question and we did not intend to provide
new theoretical perspectives on this subject. Instead our goal was more to focus on an opera-
tional level by studying how specific properties of quantum states generated by those algorithms
behave.

This work is a step towards contributions in quantum program verification, by checking state
properties, such as entanglement or violation of classical Bell inequality, or temporal properties,
such as the increase or decrease of a quantity related to non-locality, during the execution of a
quantum program. In the present work we check properties during the execution of the program,
for a fixed number of qubits. A promising possibility is to check properties statically, without
executing the program and once for all numbers of qubits. A theoretical foundation for this
static verification is the quantum Hoare logic [Yin11], an adaptation of the Hoare logic [Hoa69]
to quantum programs. Mermin polynomials studied in this paper seem promising to check
properties during program execution, since Mermin evaluation corresponds to an experimental
measurement that could be performed on a quantum computer (see for instance [AL16] for
examples of Mermin evaluation on a 5-qubit computer).
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A Explicit states for Grover’s algorithm

Proposition 2. [HJN16, Observation 1] The state
∣∣∣ϕk

〉
after k iterations of Grover’s algorithm can be

written as follows: ∣∣∣ϕk
〉

= α̃k

∑
x∈S

|x〉 + β̃k |+〉
⊗n (10)

with α̃k =
cos

(
2k+1

2 θ
)

√
|S|

−

sin
(

2k+1
2 θ

)
√

N − |S|
and β̃k = 2n/2

sin
(

2k+1
2 θ

)
√

N − |S|
.

Proof. With
∣∣∣ϕ0

〉
= |+〉⊗n, we can write:∣∣∣ϕk

〉
= Lk

∣∣∣ϕ0
〉

=
ak
√
|S|

∑
x∈S

|x〉 +
bk

√
N − |S|

∑
x<S

|x〉

where L is the loop (oracle and diffusion operator) in Grover’s algorithm.
The oracle is a reflection about (

∑
x∈S |x〉)⊥ =

∑
x<S |x〉 and the diffusion operator is a reflection

about |+〉⊗n. The composition of these two symmetries is a rotation whose angle θ is the double
of the angle between

∑
x<S |x〉 and |+〉⊗n. So,

|+〉⊗n = 1
√
|S|

sin
(
θ
2

)∑
x∈S |x〉 +

1
√

N−|S|
cos

(
θ
2

)∑
x<S |x〉

1
√

N

(∑
x∈S |x〉 +

∑
x<S |x〉

)
= 1

√
|S|

sin
(
θ
2

)∑
x∈S |x〉 +

1
√

N−|S|
cos

(
θ
2

)∑
x<S |x〉

1
√

N

∑
x∈S |x〉 = 1

√
|S|

sin
(
θ
2

)∑
x∈S |x〉

1
√

N
= 1

√
|S|

sin
(
θ
2

)
sin

(
θ
2

)
=

√
|S|
N .

The fact that L is a rotation of angle θ gives ak = sin (θk) and bk = cos (θk) with θk = kθ + θ/2.
Equation (1) then comes from αk = 1

√
|S|

sin
(

2k+1
2 θ

)
and βk = 1

√
N−|S|

cos
(

2k+1
2 θ

)
.

With this, we can now take α̃k = αk − βk and β̃k = 2n/2βk which gives us∣∣∣ϕk
〉

= αk
∑

x∈S |x〉 + βk
∑

x<S |x〉
= (αk − βk)

∑
x∈S |x〉 + βk

∑N−1
x=0 |x〉

= α̃k
∑

x∈S |x〉 + β̃k |+〉
⊗n

since |+〉⊗n =
(

1
√

2

)n ∑N−1
x=0 |x〉.

Proposition 3. In Proposition 2, α̃k increases for k between 0 and π
4

√
N
|S| −

1
2 and β̃k decreases on the same

interval.

Proof. The optimal number of iterations of the loop L in Grover’s algorithm is the smallest value
kopt of k such that ak = 1, i.e., θkopt = π/2. With |S| � N, sin (θ/2) =

√
|S|/N gives θ ≈ 2

√
|S|/N and

θk ≈ (2k + 1)
√
|S|/N. Finally (2kopt + 1)

√
|S|/N optimally approximates π/2 if kopt =

⌊
π
4

√
N
|S| −

1
2

⌉
=⌊

π
4

√
N
|S|

⌋
.

Moreover, ak = sin (θk) and αk = 1
√
|S|

ak are increasing and bk = cos (θk) and βk = 1
√

N−|S|
bk are

decreasing for k from 0 to
(
π
4

√
N
|S| −

1
2

)
. From the expressions α̃k = αk − βk and β̃k = 2n/2βk, we get

the result of the proposition.
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B Cayley hyperdeterminant ∆2222

Let
∣∣∣ϕ〉

=
∑

i, j,k,l∈{0,1} ai, j,k,l

∣∣∣i jkl
〉

be a four-qubit state. The algebra of polynomial invariants for the
four-qubit Hilbert space can be generated by the four polynomials H, L, M and D defined as
follows [LT03]:

H = a0000a1111 − a1000a0111 − a0100a1011 + a1100a0011

−a0010a1101 + a1010a0101 + a0110a1001 − a1110a0001

is an invariant of degree 2.

L =

∣∣∣∣∣∣∣∣∣∣
a0000 a0010 a0001 a0011
a1000 a1010 a1001 a1011
a0100 a0110 a0101 a0111
a1100 a1110 a1101 a1111

∣∣∣∣∣∣∣∣∣∣ and M =

∣∣∣∣∣∣∣∣∣∣
a0000 a0001 a0100 a0101
a1000 a1001 a1100 a1101
a0010 a0011 a0110 a0111
a1010 a1011 a1110 a1111

∣∣∣∣∣∣∣∣∣∣
are two invariants of degree 4.

Consider the partial derivative

bxt := det
(
∂2A
∂yi∂z j

)
of the quadrilinear form A =

∑
i, j,k,l∈{0,1} ai, j,k,lxiy jzktl with respect to the variables y and z. This

quadratic form with variables x and t can be interpreted as a bilinear form on the three-dimensional
space Sym2(C2), i.e., there is a 3 × 3 matrix Bxt satisfying

bxt = [x2
0, x0x1, x2

1] Bxt

 t2
0

t0t1
t2
1

 .
Then D = det(Bxt) is an invariant of degree 6.

Let’s introduce the invariant polynomials

U = H2
− 4(L −M), V = 12(HD − 2LM),

S =
1
12

(U2
− 2V) and T =

1
216

(U3
− 3UV + 216D2).

Then the Cayley hyperdeterminant is [LT03]:

∆2222 = S3
− 27T2.
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