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Abstract 

The work describes the out-of-plane properties of a curved wall honeycomb structure 

evaluated using analytical models and finite elements techniques. Out-of-plane properties are 

calculated using a theoretical approach based on energy theorems and validated using a full-

scale finite element technique to simulate transverse shear tests. The effects of the curvature of 

the walls and the depth of the honeycomb cells on the out-of-plane elastic constants are 

evaluated and excellent agreement is observed between theoretical and numerical models. 

These curved cell wall honeycombs feature specific (i.e., relative density weighted) highly 

tailorable upper shear bounds that shift their maximum values with the radiuses of the curved 

cell walls at different internal cell angles. Finally, it is also shown that these honeycombs 

exhibit a particular topology with a specific upper boundary independent of the non-zero 

curvature cell wall adopted and only dependent upon the internal cell angle. 

Keyword: honeycomb, homogenization, curvature walls, elasticity moduli, auxetic, refined 
model 

NOMENCLATURE 
 
V       : Cell walls volumes. 

E3:  Young's modulus along direction 3 

G13 & G23 : Out-of-plane shear moduli 

Gs    : Shear modulus of the core material 

νs       : Poisson’s ratio of the core material. 

Es          : Young's modulus of the core material. 

γ13 & γ23   :   Shear deformations 

t 13 &  t 23 :  Shear stress  

ν23, ν32: Out-of plane Poisson’s ratios. 

l        :  Cell wall length  

q        : Cell internal angle. 

r         : radius of the curved cell wall. 

t         : Cell wall thickness. 

c : Length of the curved part 

b        : Depth of the cell 

α: curvature ratio, .  

β : Cell wall aspect ratio, . 

γ : Cell wall thickness ratio,  

( )r
la =

( )la=b

( )lt=g
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1. Introduction 

Honeycombs are discrete cellular materials that can be placed as a core between two thin 

composite skins and form sandwich structures. The modelling of their effective properties is of 

paramount importance in predicting their overall mechanical response and designing efficient 

sandwich structural components.  The modelling of the engineering constants of honeycomb 

cellular solids has been pioneered by El-Sayed et al [1], followed by Gibson and Ashby [2]. 

Kolpakov in 1985 developed an analytical homogenization approach to describe elastic 

frameworks, and was one of the first to introduce the concept of auxetic (negative Poisson’s 

ratio) honeycomb with the butterfly shape unit cell [3]. In their seminal paper Masters and 

Evans in 1996 developed models based on different deformation mechanisms acting on the cell 

ribs (bending, stretching and hinging/shear deformation) [4].  

Out-of-plane mechanical properties are especially critical to define the mechanical performance 

and structural integrity of sandwich panels [5]. Florence et al. [6] have demonstrated that 

calculating the modal density of sandwich honeycomb cylinders without taking into account 

the transverse shear deformation can lead to significant errors at high frequency. Open literature 

publications related to the transverse shear of honeycomb configurations have been available 

since the 1950’s. Other contributions to the analysis of the transverse shear in honeycomb 

structures has been given by Penzien and Didriksson [7], and also later by Ueng et al, in the 

case of superplastically formed cores [8]. The upper and lower bounds (limits) of the transverse 

shear modulus are calculated by energy methods and used by Gibson and Ashby [9]. Another 

method for obtaining two bounds is proposed by Kelsey et al. [10]. The authors used simple 

expressions by the application of the displacement and unit load method together with 

simplifying hypotheses relating to the strain and stress systems respectively in the core, the 

results found are validated by bending and transverse shear tests. Grediac [11] has investigated 

using finite element method three cell geometries in order to study the influence of the thickness 

on the shear modulus and on the homogeneity of the shear stress field. A relationship providing 

shear modulus G13 for thin honeycombs highlighting the influence of the core thickness is 

given. The transverse shear modulus of honeycombs with negative Poisson’s ratio in the plane 

has been also evaluated by Scarpa and Tomlin [12] using numerical simulations following 

Grediac’s steps. Those authors have shown that the real transverse shear modulus is an 

intermediate value, which depends on the relative density and the thickness ratio were the 

difference between the upper and lower limits is particularly significant for the negative values. 

The collapse behavior under shear and simple compression out of plane has been analyzed by 

Zhang and Ashby [13] who concluded that there is a good agreement between the numerical 
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model and the experimental results. The influence of the core geometry on the equivalent 

transverse shear stiffness in a honeycomb sandwich plate has been investigated by Shi and Tong 

[14]. Those authors concluded that the influence of the ratio between face panel and hexagon 

wall thicknesses was negligible when the depth of the core was large compared to the size of 

the hexagonal cell. 

A representative three-dimensional model of volume elements with appropriate periodic 

boundary conditions has been proposed by Lin et al. [15] to calculate numerically the elastic 

properties out-of plane of the hexagonal honeycombs with edges of cells having variable and 

curved thicknesses. The authors have shown that the FEA numerical results indicate that the 

out-of-plane shear modulus, the compressive and shear buckling resistance of regular hexagonal 

honeycombs are significantly affected by the distribution of solids in the edges of the cells. 

Malek and Gibson [16] studied the elastic behavior of periodic hexagonal honeycombs over a 

wide range of relative densities and cell geometries, using both analytical and numerical 

approaches. Stefan et al. [17] presented some general models of two- and three-dimensional 

finite elements allowing to study the equivalent orthotropic mechanical properties of 

honeycombs. 

Some of the above-mentioned analytical and numerical homogenization techniques have been 

used to model and design various classes of centre-symmetric honeycombs. For example, 

square stainless steel honeycombs were fabricated and analytically modelled by Cote et al. [18] 

based on a uniform deformation of the cell walls were they concluded that the shear strength of 

square honeycombs compares favorably with that of other sandwich core topologies such as 

nuclei pyramidal and wavy. The properties of a new honeycomb configuration proposed by 

Bezazi el al. [19,20] have been evaluated using an analytical model and finite elements are 

described by Lira et al. [21]. The analytical models are validated using a full-scale finite element 

technique to simulate transverse shear tests, and the different results highlight the specific 

deformation mechanism of the multi-reentrant honeycomb cell. Properties of transverse shear 

resistance of a new honeycomb with zero Poisson’s ratio (ZPR) are proposed by Lira et al. [22] 

where the cellular configuration is simulated by a series of finite element models which were 

compared to the experimental results of 3-point bending shear tests to perform a parametric 

study on the shear moduli in both directions. The shear stiffness of a honeycomb structure with 

ZPR capable of obtaining deformations in two orthogonal directions are analyzed and validated 

using finite element techniques by Gong et al. [23].  
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Among the models of homogenization found in the literature and which consider cells with 

curved walls, the model developed by Balawi and Abot [24], Meraghni et al. [25], Hohe and 

Becker [26,27]. The in-plane elasticity modulus of a curved-walled cell was studied by Balawi 

and Abot [24] using analytical and numerical means and correlated with the experimental 

results for aluminum honeycomb cells. Analytical and numerical models describing the uniaxial 

elastic properties in the plane (Young's moduli and Poisson's ratio) of a honeycomb structure 

with curved walls have been studied by Harkati et al. [28]. 

A numerical model able to predict the impact behaviour of natural fibres honeycomb cores has 

been proposed by [33]. The numerical results in that paper have been validated by comparisons 

with experimental data in terms of impact force as a function of the impactor displacement. The 

results have demonstrated the validity and the robustness of the proposed numerical model. The 

impact behavior of several sandwich composite panels configurations with polypropylene core 

has been described by Riccio et Al [34]. Delamination and indentation caused by low velocity 

impact has been evaluated in that paper in the case of several sandwich panels with varying 

polypropylene core materials. The impact resistance has also been associated to the fire 

compliance of the material cores, therefore providing a comprehensive insight on the 

multifunctional behavior of those sandwich composite panels. Petrone et al [35] have 

investigated the behaviour of two different types of polymeric cores (short flax fibre reinforced 

and continuous flax fibre reinforced) under low velocity out-of-plane impact loading. The 

Authors found a better energy absorption when honeycombs with cell walls reinforced with 

continuous fibres are present, while face skins play an important role during energy absorption 

only at low core heights. The effect of the cell shape and the foil thickness on the crushing 

behavior of honeycombs has also been investigated by Yamashita and Gotoh [36] by using an 

explicit FEM code (DYNA3D). The results show that a cyclic buckling mode takes place and 

that the crushing strength is larger for smaller branch angles. When the crushing strength is 

evaluated with respect to the net cross-section of the material part only, it attains the maximum 

value when the cell shape is a regular hexagon. In order to increase the impact resistance of 

sandwich panels, a continuum damage model has been proposed by Horrigan et al [37]. The 

model developed in that paper describes the compressive behaviour of honeycombs made from 

materials that are prone to elastic buckling. The same model has been embedded within a 

commercial finite element package to simulate soft body impacts onto a minimum gauge 

honeycomb core sandwich. 
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The aim of this work is to evaluate the out-of-plane shear properties (Voight and Reuss bounds) 

of curved cell walls honeycombs designs. The main novelties if this investigation is the 

evaluation of the five out-of-plane homogenized engineering constants of curved cell wall 

honeycombs versus the internal geometric parameters (internal angle q, depth and curvature of 

the cell walls). The comparison between the analytical and numerical models shows good 

agreement and makes it possible to highlight the specific out-of-plane deformation mechanisms 

of the honeycomb cell with curved walls. 

 

2. Theoretical analysis - Refined analytical model 

2.1 Honeycomb cell geometry 

The geometry of the cell shown in figure 1 can be expressed by the three walls of lengths a, l, 

and r, their thickness t and internal cell angles θ. Like other notations used in the theory of 

cellular materials  [28,29], the geometry of the unit cell is also defined by the non-dimensional 

parameters α=r/l, β=a/l and γ=t/l. The present cell can represent a convex honeycomb for r=0 

with a positive angle θ > 0, or an auxetic cell for a negative angle (θ<0).  As it will be clearer 

later, auxeticity is maintained for some specific values of the cell wall radius. 

 

Figure 1. Geometric parameters of the honeycomb cell. 
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Figure 2. Geometry of a quarter honeycomb cell. 
 

2.2 Conditions on the geometric parameters 

The geometric limits for the cell wall to avoid touching opposite sides are of the following: 

                                                                                            (1) 

                                                                                            (2) 

Those relations lead to the following sets of non-dimensional parameters: 

 

The conditions and limits on the geometrical parameters appearing in the theoretical equations 

developed are represented in figure 3. The most admissible geometric parameters range occurs 

when inequality (1) is satisfied. The larger the r/l (r/l > 0) ratio, the wider is the range of 

permissible negative internal cell angles. Note that for a zero relative curvature (r/l = 0) and an 

internal cell angle of -30 ° the value of a must be strictly greater than l. For r/l = 0.6 however, 

the value of a is reduced to 0.12 x l. This value becomes greater than 1.75 l for an angle of -60 

°, no matter the value of r/l is. 
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Figure 3. Possible ranges of the angles θ and b with different aspect r/l ratio. 

 

Five engineering constants are needed to describe the out-of-plane behaviour and a total of nine 

for a complete description of the honeycomb. The in-plane properties of this honeycomb have 

been already described elsewhere  [28,29]. 

2.3  Determination of the transverse shear moduli 

An energy approach is used to determine the effective shear moduli of the honeycom [9,10]. 

To do this, a unit shear stress is imposed on the cell, the resulting shear flux is calculated and 

the corresponding shear strains are determined. By applying the unit load method and the 

minimum complementary energy theorem, the lower limit of the shear modulus can be found. 

Likewise, when a unitary shear stress is imposed on the representative element, the 

kinematically equivalent forces in the elements of the plate are calculated and the resulting 

stresses can be therefore determined. The application of the unit displacement method and the 

minimum potential energy theorem provides the upper limit of the shear modulus. 

 

To apply the theoretical approach, the following assumptions are made: 

• The material of the cell wall is isotropic and linear elastic;  

• The thin cell walls are short, perfecty interconnected and the buckling does not occur 

• The local interaction between the core and the skins is not considered 
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• The estimation of the shear moduli is based on the core having small (0<t/l<1/15) 

ratios, a b/l (0<b/l<1/3) ratio sufficiently large to neglect the warping of the cell walls 

and a constant shear stress in each component of the unit cell; 

- the thickness of the walls is uniform for all the elements of unit cells (tl = ta = t).  

 
2.4 Effective out-of-plane shear modulus G13 

 

Let us consider a uniform shear deformation γ13 caused by a shear stress t13 applied along 

direction 1 in the face perpendicular to face 3 (Figure 4). In this case, almost all of the elastic 

deformation energy of the honeycomb cell can be considered dissipated within the shear 

deformation of the cell walls, the bending stiffness and its energies associated being 

significantly smaller [22]. 

                 

a)                                                                                            b) 
Figure 4. Half honeycomb cell:  

a) Shear strains due to shear deformation g13, b) Shear stress τ13. 
 
The minimal potential energy theorem is therefore can be written as an inequality when shearing 
along the 1-direction: 
 

                                                    (3) 

c : the length of the curved part      

 

In Eq.3 the summation is carried over the cell walls with volumes Va, Vc and Vl. The induced shear 

strains in the cell walls (see Figure 4a) are: 
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                                                                                                                     (4) 

The strain energy in the curved part c can be rewritten as: 

                            

 

                                                                                                                 (5) 

With 

 

To find an expression for the strain energy of the c segment we consider here infinitesimal 

segments of length ds = r dj  (Figure 5). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5: Geometric parameters of the curved part. 
 

The strain energy in curved walls in part c can be rewritten as: 

   

The shear strain energy inequality can be therefore written as: 
 

 

with the cell volume eaqual to: 

                                            

(6)
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                                                         (7) 

 

If we set r=0, we obtain the expression of the shear modulus of a conventional cell (see 

Gibson and Ashby [9]): 
 

                                                                                                                                                                                     (8) 

 

To find the lower bound of the effective transverse shear modulus G13, an external stress t13 is 

applied to the faces of the cell. The stress induces a shear flow in the honeycomb cell walls 

(Figure 4.b). The straight wall a is under bending deformation only and therefore ta = 0. 
 

                                                                                                                       (9) 

 

The equilibrium forces along the 1 direction require that the applied shear force on the unit 

cell must be equal to the sum of the shear forces. 

                                                                                    (10) 

From where 

 

 

The complementary energy inequality becomes: 
 

 

 

With the expression of V given in (6), the lower bound of the effective transverse shear 

modulus G13 of the honeycomb can be finally expressed as: 
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Again, if r=0 we obtain to the lower bound of the shear modulus G13 of a conventional cell 

equation (8) (see Gibson and Ashby [9]). 

 
2.5 Effective out-of-plane shear modulus G23 
 
We now consider a shear stress t23 acting on the surface of the normal to the 3-direction and 

along direction 2 (Figure 6). The induced shear strains in the cell walls can be expressed as: 

                                                                                                                               (12) 

 

 
 

a)                                                                                            b) 
Figure 6. Half honeycomb cell:  

a) Shear strains due to shear deformation g13, b) Shear stress τ13. 
 
The theorem of minimal potential energy is expressed as the following inequality: 
 

                                                           (13) 
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                                           (15) 

 

                                                                                                                                                            (16) 

 

For shear loading in the 2-3 plane, the applied shear stress induces shear forces in the cell 

walls that should be in equilibrium with the applied shear force along the 2-direction: 

 

                                                                          (17) 

                    
 

 

 
 

 
Finally, the effective lower shear modulus as: 
 

                                           (18) 

 
Expression (16) and (18) do not depend on the depth b of the cells. If we set r=0, we return to 

the expression of the lower bound of the shear modulus G23 of a conventional honeycomb 

(Gibson and Ashby [9]).  

 

                                                                                                     (19) 

 
 
 2.6 Unit load and displacement models 
  
The upper and lower bounds of the honeycomb sandwich core shear modules can also be 

following the methodology of Kelsey et al. [10] by applying the unit displacement and load 

methods on a different topology of the elementary cell (Figure 7), together with simplifying 

assumptions about the deformations and stresses existing in the core. 

Off-the-shelf manufactured honeycomb cores possess[9]  double thickness horizontal walls and 

can be built up by repeating the unit cell shown in Figure 7[10] . 
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Figure 7. The unit-elements of Kelesy et al. [10] model. 

 
In this case t’ = 2t and the expressions of the bounds change as follows: 

 

                                                                                   (20) 

                                                                  (21) 

With 
 

 

 
 

2.7 Out-of-plane Poisson’s ratio 
 
It is assumed here that E3 >> E1 when a stress is applied along its depth length. The stress will 

result in axial deformations, while direct stresses applied in the plane will produce deformations 

dominated by the bending of the internal walls. The Poisson’s ratios can be expressed as [9,10]: 

                                                                                    (22) 
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2.8 Out-of-plane Young's Modulus E3 

 

The out-of-plane Young’s modulus of the honeycombs in the axial or 3-direction can be 

estimated by assuming that for the normal loading along the 3 direction, the deformation is 

axial. Therefore, the E3 of the honeycomb can be expressed as: 

 

                              (24) 

 

The stress acting on the area occupied by a unit cell can be simply expressed as: 
 

                                                                      (25) 

Therefore: 

 

                      (26) 

 

                       (27)
 

 

The Young's modulus E3 along the normal loading in the 3 direction simply reflects the solid 

modulus Es scaled by the area of the load-bearing section. The term in the curly brackets of 

equation (26) merely gives a more precise description of the projected area of the cell walls 

normal to the 3-direction. 
 
3. Finite element modelling 

 

A simplified finite element procedure to determine the equivalent out-of-plane engineering 

constants of this core and also for different parametric configurations (conventional and 

auxetic) is presented here. Table 1 shows the boundary conditions applied to a representative 

elementary volume (REV) (Figure 8) in order to reproduce the global behaviour of the 

honeycomb core.  
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Since the deformations vary in the normal direction to the plane and the honeycomb cell is 

periodic only in one plane, a 3D model needs to take into account the bending of the walls to 

accurately assess the equivalent transverse properties of the cell structure [14]. 

 
Table 1. Boundary conditions applied to simulate the out-of-plane engineering constants 

 

 

 
 
 

 

 

The effective stiffness of the core is determined by finding the force necessary to produce a unit 

displacement along a given direction, by determining the stress and the resulting strain and 

finally by calculating the corresponding engineering constants. This process can be used to find 

the five effective out-of-plane engineering constants namely: E3, G13, G23, n13 and n23: 

 

   (28) 

 

s3 and e3 are the normal stress and strain in 3-direction; tij, Gij and nij are shear stress, shear 

modulus and Poisson’s ratio respectively in i-j plane. The FE element model represented by 

REV is an assembly of 53 cells modeled with the commercial code Abaqus 6.10 [30]. The 

REV is composed by 63975 elastic shell elements with the reduced integration technique 

(S4R). 

The FEA results indicate that the distribution of the elements in the curved walls plays an 

important role to determine the out-of-plane elastic properties of these honeycombs. 
 

3 3
3

3 3

1, 2; 3ij i
ij

ij i

j
ij

i

FbE
S u
FbG i j

S u

s
e
t
g

e
n

e

ì
= =ï

ï
ïï = = = =í
ï
ï
ï = -
ïî

  E3 , v13 , v23 G13 G23 
 
Z = 0 

U1 0 0 0 
U2 0 0 0 
U3 0 0 0 

 
Z = b 

U1 - 1 0 
U2 - 0 1 
U3 1 - - 



16 
 

 
 

a)                                                                      b) 
Figure 8. Numerical model description: a) Representative elementary volume (REV). 

b) Boundary conditions applied to simulate G13. 

 

 

The effect of the order of elements in the convergence of the results has been studied by 

considering shell elements with 4 and 8 nodes. [30]. The results were practically identical for 

the two elements for E3 and a slight difference in the case of G13 and G23, therefore, only 

elements with 4 nodes are used. 

The numerical models representing the shear stiffness have been refined specifically in the 

curved part of cell walls to represent more accurately bending effects. A comparison of the out-

of-plane shear stiffness with the one of classic hexagonal cells was first made to benchmark the 

results. An additional verification was provided by comparing directly the analytical 

expressions formulated. 

4. Results and discussions 

The curved cell walls are represented by arcs and the internal stress components are assumed 

to be constant in each member without introducing any significant error. The analytical 

expression of the upper bound was also obtained using the minimum total potential energy 

theorem, in which a stress state compatible with the boundary conditions was imposed by 

neglecting the stress in the honeycomb core. On the other hand, an estimate of the lower bound 

was obtained using the theorem of the minimum complementary energy, in which the 
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equilibrium of the components of the internal stress with boundary conditions is imposed by 

neglecting the compatibility of the stress in the core honeycomb. It should be noted that a 

difference with the analytical upper and lower bounds are 10% to 35% for the modules G13 and 

G23. This is in accordance with the work of Zhang and Ashby [13] and Chamis et al [31] based 

on detailed three-dimensional finite element models containing several cells. These results were 

based on using the same boundary conditions adopted for the cells of our model. Chamis et al 

[31] also observed a slight difference between G23 and G32, which is in perfect agreement with 

current results as with all other types of honeycomb cells. The out-of-plane stiffness turns out 

to be linearly proportional to the relative density [28]. The out-of-plane Poisson’s ratio is 

estimated at approximately zero because the out-of-plane stiffness is significantly larger than 

the in the plane one.  

 
4.1 Theoretical bounds of G23/Gs 
 

Figure 9 shows the variation of the theoretical upper and lower limits of the non-dimensional 

transverse shear modulus G23/Gs versus the internal angle of the cell 𝜃 and the relative walls 

curvature for some fixed parameters (b =a/l=1 and g =t//l =1/30). The transverse shear modulus 

G23 has an inverse relationship with the relative curvature r/l due to the effect of the bending 

deformation of the walls in the plane. It is important to note that the two G23 bounds converge 

for positive internal angles and diverge for negative angles (auxetic configurations) and that for 

the various values of r/l. 

 



18 
 

 

Figure 9.  Upper and lower theoretical nondimensional bounds G23/Gs versus curvature ratios α=r/l and internal 
cell angle θ (with a fixed b=1, g=1/30). 

 
4.2 Out-of-plane shear modulus G13/Gs variation versus geometrical honeycomb parameters 

 

Figure 10 represents the results obtained from the variation of the out-of-plane normalized shear 

modulus G13/Gs versus the cell angle θ. The upper and lower limits of G13 were determined 

analytically and numerically by FEA for three and four values of r/l curvature radius and cell 

depth b/l respectively. The transverse shear modulus G13 shows a strong increase in the field of 

negative Poisson's ratios, these variations are largely affected by the ratios r/l and b/l. The G13 

decreases with the increase of the ratios r/l and b/l. 

The increase of b/l from 1 to 10 with a fixed values of r/l = 2/30, a/l = 1 and r/l = 1/30 leads to 

a 45% drop of G13/Gs  for q =-30° and 25% for q =+30° (Figure 10-a). For the same condition 

but with r/l = 10/30 (Figure 10-c), G13/Gs decreases instead by 31% for q =-30°  and 23% for 

q =+30°. When b ≥ 10l, the shear modulus G13 is quite close to the lower limit given by equation 

(11), while for b ≤1 10l it is near to the upper bound. The shear moduli of those two cell 

configurations can therefore be chosen as limits for the equivalent transverse stiffness shear of 

the honeycomb cell. 
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The shear modulus G13 is maximized for negative cell angles q; this may be particularly 

interesting for thin shell honeycomb sandwich structures mainly used in the aerospace where 

low weight and thickness accompanied by high rigidity are recommended. 

The FEA results for the out-of-plane shear modulus G13 show an excellent agreement with the 

analytical results and reflect the strong effect of the cell depth, especially for negative cell 

angles (Figure 10). In general, G13 tends to decrease with increasing relative curved cell radiuses 

and cell depth. 

 

 

a) 
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b) 

 

c) 

Figure 10.  Non-dimensional shear modulus (G13/GS) versus internal cell angle for different depths b/l but with a 
fixed b = a/l = 1 and g = t/l =1/30 for: a) α=r/l =2/30, b) α=r/l =5/30 and c) α=r/l =10/30. 
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4.3 Variation of the out-of-plane shear modulus G23/Gs versus the cell effective geometric 

parameters 

Figure 11 shows the variation of G23/Gs versus the cell angle θ for three values of curvature 

(r/l=2, r/l =5 et r/l =10) and four cell depth values b/l. The upper and lower limits of G23 were 

determined analytically. The same trend observed for G13/Gs is recorded here, nevertheless the 

values of G23/Gs are lower. When the radius of curvature of the wall increases, the equivalent 

shear modulus G23 tends to decrease. It is clear that for a given value of  r/l, the modulus G23 

/Gs reaches its maximum for the lowest cell depth values (b/l < 3) and in the case of auxetic 

configurations, while it decreases almost parabolically with the increase of q (classical 

honeycomb). 

On the other hand, the G23 modulus of the auxetic cells is more sensitive to the b/l ratio due to 

the effect of the bending deformation of the walls in the cell plane. An 80% drop of the 

transverse modulus G23 is noticed if b/l goes from 1 to 10 with r/l = 2/30 and q = -30° (Figures 

11a). The same transverse shear modulus decreases only by 20% for q = +30° . In the case of 

r/l=10 (Figures 11c) G23 decreases by 73% and 12% when q  is equal to -30 and +30, 

respectively. The increase in G23 is important for the small depth and cell curvature radius (b/l 

and r/l) of the auxetic configuration. The lower and upper limits of G23 determined analytically 

by equations (20) and (21) are represented by the dotted lines in Figure 11 were a large 

difference difference between those is present for negative internal -q cells, specially starting 

from -10 °. The FEA-determined shear modulus G23 is relatively close to the analytical lower 

bound. The influence of the direction of the shear load shows that direction 1 is the best in term 

of shear stiffness (> 28%) for the same geometric parameters. The highest shear stiffness 

properties were achieved at low cell wall radiuses and for negative cell angles exceeding -10 °. 
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a) 

 b) 

c) 

Figure 11. Non-dimensional shear modulus (G23/GS) versus internal cell angle for different depths b/l but with a 
fixed b = a/l = 1 and g =t/l =1/30 for: a) α=r/l =2/30, b) α=r/l =5/30 and c) α=r/l =10/30. 
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All the out-of-plane modules obtained using FEA for q = 30º (Figure 11) tend to be ~10% larger 

than the analytical results when b tends to infinity (i.e., plane strain condition). This aspect has 

also been reported in [32] but only for the E2 modulus; this effect is likely due to the cell wall 

deformation along the 3-direction, since νs is not null. 

4.4 Out-of-plane shear moduli variation versus the curvature radius for different cell angles  

Figure 12 represents the evolution, in parabolic form, of the out-of-plane effective shear moduli 

G13/Gs and G23/Gs versus the curvature ratio r/l which varies between 0 to 0.6 for different cell 

angles q  (from -30° to +30° at steps of 10° ). The simulations are carried out by fixing the 

parameters b=a/l=1 and g=t/l=1/3 as constant. The analysis of the results shows that the 

maximum values of the moduli G13/Gs and G23/Gs are obtained for r/l equal to zero and the 

increase of this latter causes their decreases. In addition, increasing q   from -30 to +30 leads to 

a decrease in G13/Gs while G23/Gs increases. In other words, the maximum values of G13/Gs are 

obtained for conventional structures having +q , while for G23/Gs they are found for the auxetic 

case at -q. The increase of r/l from 0 to 0.6 leads to a decrease of G13/Gs and G23/Gs by ~83% 

and 50% respectively for an angle of q =-20°, and by 65% and ~39% for q  =+30° (Figure 12). 

For a curvature ratio r/l = 0.1, a decrease of G13/Gs and G23/Gs by ~56% and 70% respectively 

is observed between the two extreme cell angles q =-30° and q = +30°. 

 

a) 
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b) 
 

Figure 12.  out-of-plane shear modulus versus the curvature ratios α=r/l for different internal cell angle:             
a) G13/GS b) G23/GS 

 
 

4.5 Contribution of the transverse bending of the cell walls 

A single value for the transverse shear modulus as versus the cell depth can be calculated using 

an approach similar to that developed by Grediac [11] and refined by Scarpa and Tomlin [11] 

and Lira et al. [21] for auxetic centre symmetric configurations. [11,12,21], The same procedure 

is used here to deduce the out-of-plane mechanical properties of the honeycomb. The transverse 

shear modulus can be approximated by linking, through the wall cell thickness, the upper (

) and lower ( ) shear limits by equation (29) which is obtained by a non-linear fitting 

with a 97% confidence level on 989 configurations. The shear modulus  can be expressed 

by: 

                                                                                                (29) 

With functions for each relative curvature r/l. 
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                                                                       (30) 

By putting (30) in (29) one can obtain: 

                               (Figure 13a) 

  (Figure 13b) 

  (Figure 13c) 
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b) 

 

c) 

Figure 13. Relative Shear modulus G23/Gs versus b/l ratio but with a fixed b = a/l = 1 and g =t/l =1/30 and 
q=-30° and for: a) a =r/l=0 b) a =r/l=5/30 c) a =r/l=10/30. 

Figures 13 shows the variation of the G23/ Gs module versus the effective call depth b/l and for 

the three curvature radios: r/l=0, 5/30 et 10/30. A significant agreement between the FEM 

results and the approximate relationship can be observed. 

4.6 Variation of out-of-plane elasticity modulus E3/Es versus the effective geometric 
parameters 

Figure 14 shows the variation of the non-dimensional transverse Young's modulus 𝐸3/𝐸s versus 

the relative curvature α=r/l and the internal cell angle q with maintaining the two ratios b=1 
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and  g=0.05 constant, which can also represent the relative density 𝜌/𝜌s. The E3/Es modulus 

reaches its maximum when the values of α are low for negative cell angles (between -10 to -

30), it decreases parabolically with the increase of α. Moreover, the E3/Es module of the auxetic 

honeycombs is more sensitive to the α ratio. 

  
 

Figure 14.  Nondimensional Young's Modulus E3/Es versus curvature ratios α=r/l and internal cell angle θ for 

b=1, g=1/30. 

 

Figure 15 represents a comparison between the analytical results (in line) and those obtained 

by FEA (points). All results are computed by considering a variation versus θ (Figure 15a) and 

r/l (Figure 15b) and fixing b = a/l = 1 and g = t/l = 0.05. The effective modulus E3/Es of the cells 

represents the relative density and theoretically does not depend on the cell depth. For negative 

cell angles (-30 < θ < 0 °) the compressive modulus decreases considerably from 36 to 51% 

depending on r/l, while for 0 < θ <+ 30° this reduction is only from 5 to 31% (Figure 15-a). The 

evolution of E3/Es versus r/l is in parabolic form (Figure 15-b) similar to that of figure 15a. For 

the extreme curves, a drop of E3/Es by 46% is recorded when 6.6% < r/l <33% for θ equal to -

30°, this reduction is only around 14 % for θ equal to +30° (Figure 15-b). 
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a) 

 

b) 

Figure 15. Evolution of E3/ES for a fixed b=1, g=0.05 versus: 
a) Internal cell angle θ     b) Cell curvature ratios α=r/ l 

 
The out-of-plane nondimensional moduli G13/Gs, G23/Gs and E3/Es versus q show a quasi-

parabolic form and their respective reductions are ~22%, 48.5 and ~38% for -30< q < 0 (Figure 

17). For 0< q< +30 these reductions become much smaller (7.9% for G13/Gs). The 

nondimensional engineering constants G23/Gs and E3/Es have a concave behavior and reach 

their minimum at + 12° and +19° with reductions of 7.3% and 8.0% respectively, then they 

increase by 12.5% and 2.9% for + 30°. For q < 0 the geometry of the cell becomes reentrant 
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and the effective Poisson’s ratio n12 becomes negative. This involves a strong increase in the 

out-of-plane moduli G13/Gs, G23/Gs and E3/Es (Figure 16). 

 

Figure 16. Multi-axis representation of out-of-plane modulus r/l=0.3. 

4.7 Variation of (Gij/Gs) / (r / rs) versus the cell geometric parameters 

Figure 18 shows the variation of the specific nondimensional shear bounds versus the unit cell 

parameters. The curves are parametrized for 0 < r/l < 0.6 and -30° < q < 30°.  

When the radius of the cell wall is zero the bound G13 (G13upper/ Lower/Gs) / (r / rs) shows – as 

expected - a parabolic variation versus the internal cell angle, with a maximum at q=0o (Figure 

17a). Quite interestingly, the (G13upper /Gs) / (r / rs) ratio decreases with increasing r/l ratios and 

shifts the peak value towards positive internal cell angles. One can notice the presence of an 

internal angle of q = 16.88°, for which the nondimensional specific upper bound is the same no 

matter which radius of curvature is adopted in the cell. Non-zero radiuses of curvature also tend 

to generate honeycombs with higher nondimensional specific upper bounds within positive 

internal cell angles. This type of behavior is not specifically observed for the nondimensional 

specific lower bounds (G13Lower /Gs) / (r / rs) (Figure 17b), with only ~ 2% maximum 

differences between positive and negative internal cell angles configurations that depend on the 

various nondimensional curvatures of the cell walls. 

The specific (G23
Upper/Gs) bound shows a different bevavior, which is expected for these special 

orthotropic architected materials. When the radius of curvature is zero the distribution of the specific 

The nondimensional specific upper bound modulus is symmetric with a minimum on to the 

q=0o internal cell angle (Figure 18c). Non-zero radiuses of curvature shift the minimum 
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towards positive internal cell angles, and auxetic configurations tend to possess higher specific 

nondimensional trasverse shear stiffnesses. Quite interestingly, the specific nondimensional 

bound associated to (G23Lower/Gs) increases monotonically with the internal cell angle, while the 

sensitivity versus the cell wall radiuses is more pronounced for positive values of qo (Figure 

17d). 

 

           

a)                                                                                     b) 

    

c)                                                                                       d) 

Figure 17. Variation of the ratio (Gij/Gs) / (r / rs) versus the effective geometric parameters for  

a) (G13
upper/Gs) / (r / rs)                 b) (G13

Lower/Gs) / (r / rs) 

c) (G23
upper/Gs) / (r / rs)                            d) (G23

Lower/Gs) / (r / rs)   
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5. Conclusion 

This work has shown the behavior of the out-of-plane engineering elastic constants of 

honeycomb configurations with curved cell walls. The work has described a series of analytical 

and numerical models parametrized versus the internal geometric features of the lattice 

materials. The numerical results of this investigation confirm the validity of all the models 

proposed. These models can be used for design purposes and also provide corrective factors to 

assess the performance against conventional honeycombs. The results show that the shear 

modulus G13 is maximized for negative cell angles q; this is particularly advantageous for 

structures where low weight and thickness accompanied by high stiffness. For a given curvature 

ratio r/l, the modulus G23/Gs reaches its maximum for the lowest values of the cell depth and 

for auxetic configurations, while it decreases parabolically with the increase of q. 

The use of 3D representative finite element elementary volume highlights the influence of the 

cell honeycomb depth. The nondimensional G23/Gs modulus b/l decreases exponentially with 

the depth ratio and stabilizes in the vicinity of the lower limit from b/l equal to 10. This is also 

consistent with what observed in other honeycombs with different topologies. 

The nondimensional E3/Es modulus reaches its maximum when the values of α are low for 

negative cell angles (between -30 to -10). The nondimensional transverse modulus also depends 

on the relative density only, regardless of the depth of the cell. The E3/Es modulus decreases 

sharply for cell angles between -30o to 0o and then the reduction becomes less pronounced. A 

45 % drop of the nondimensional E3/Es modulus was notice when r/l pass from 2/30 to 10/30 

for q = -30 to 0 with fixed values of b=1 and g=0.05. The modulus drops by 21% only for q = 

+30. 

Some very interesting conclusions can be drawn by looking at the nondimensional specific 

transverse shear bounds versus internal cell angles and radiuses of cell wall curvature. Specific 

lower bounds for G23 and G13 show similar sensivities to honeycombs with no radius of cell 

wall curvature versus the internal cell angle. The r/l ratio affects the scaling of the specific lower 

bound values either across the whole internal cell angles range, or only for positive q values. 

On the contrary, the specific upper bounds appear to be much more sensitive to both internal 

cell angles and especially the cell walls radiuses, with the latter shifting the maximum and 

minimum values towards positive q angles. It is also possible to identify an internal cell angle 

that provides a specific nondimensional upper modulus independent of the cell wall radius used. 
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Upper shear moduli are typical of very thin honeycombs; compounded with the specific in-

plane elastic properties of the curved cell honeycombs, these data could be useful to design thin 

sandwich panels with high specific stiffness yet significantly tailorable mechanical cores. 
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