In-progress study of microcell-stabilized lasers using dual-frequency sub-Doppler spectroscopy

A.Gusching¹, M. Petersen¹, N. Passilly¹, I. Ryger¹, D. Brazhnikov^{2,3}, M. Abdel Hafiz¹ and R. Boudot¹ ¹FEMTO-ST, CNRS, UBFC, Besançon, France ²Institute of Laser Physics SB RAS, 15B Lavrentyev Avenue, 630090 Novosibirsk, Russia ³Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia e-mail: anthony.gusching@femto-st.fr

Summary

We report the in-progress development and frequency metrology characterization of two table-top Cs microcell-stabilized lasers (one DFB laser and one ECDL laser) using a dual-frequency sub-Doppler spectroscopy technique. The impact of key experimental parameters was studied to optimize the short-term stability. The current Allan deviation of the laser beatnote is $1.5 \ 10^{-12}$ at 1 s. The latter is in good agreement with the systems' noise budget and is currently limited by the intermodulation effect from the DFB setup. The measurement of a relevant number of frequency shifts is also in progress to estimate main contributions to the lasers' mid-term frequency stability budget. Encouraging results of about 2 10^{-13} at 100 s and at the level of 10^{-12} at 10^4 s were obtained. Latest results will be presented at the conference.

Motivation

In recent years, significant efforts were pushed towards the development of new-generation microcellbased optical clocks. Recently, the photonic integration of a microcell-based optical clock using the 778 nm Rb two-photon transition was demonstrated with stability performances of 4 10⁻¹² $\tau^{-1/2}$ until 1000 s [1] (with τ the integration time), later improved at 2.9 10⁻¹² $\tau^{-1/2}$ using a 35 cm³ micro-optics breadboard [2]. In this paper, we propose an alternative approach for laser frequency stabilization with a vapor microcell using the dual-frequency sub-Doppler spectroscopy (DFSDS) technique [3,4,5]. While our previous studies were focused onto the in-depth understanding of physics mechanisms involved in the DFSDS approach, no detailed frequency metrology characterization of such systems has been reported yet.

Results

Two table-top microcell-stabilized lasers were implemented (see figure 1). A beatnote of 30 MHz can be obtained between these two lasers by tuning AOMs embedded in each setup. Each setup (one with a DFB laser, one with an ECDL) uses a diode laser, an external fibered Mach-Zehnder electro-optic modulator (EOM) modulated at 4.596 GHz and an acousto-optic modulator (AOM) for total laser power stabilization. The output beam is sent into a buffer-gas free Cs vapor MEMS cell and reflected back at the cell output in order to create two orthogonally-polarized counter-propagating dual-frequency beams. The cell is temperature-stabilized at about 62.5°C and surrounded by a mu-metal magnetic shield. The light is detected through a cube at the cell input with a photodiode. An error signal is extracted from the sub-Doppler resonance and is used to correct the laser frequency.

The short term stability of the laser beatnote is $1.5 \ 10^{-12}$ at 1 s. The latter is currently limited by the intermodulation effect from the DFB setup. Allan deviation results of about 2 10^{-13} at 100 s and at the level of 10^{-12} at 10^4 s were obtained. Latest results will be presented at the conference.

[1] Z. Newmann et al., Architecture for the photonic integration of an optical atomic clock, Optica 6, 5, 680 (2019).

^[2] V. Maurice et al., Miniaturized optical frequency reference for next-generation portable optical clocks, Optics Express 28, 17, 24708 (2020).

^[3] M. Abdel Hafiz et al., Doppler-free spectroscopy on the Cs D1 line with a dual-frequency laser, Opt. Lett. 41, 2982 (2016).

^[4] M. Abdel Hafiz et al., High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field, New Journ. Phys. 19, 073028 (2017).

^[5] D. Brazhnikov et al., Dual-frequency sub-Doppler spectroscopy: Extended theoretical model and microcell-based experiments, Phys. Rev. A 99, 062508 (2019).

Fig. 1: (top) Experimental setup.