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Abstract 

Purpose – This paper proposes a two-dimensional (2-D) hybrid analytical model (HAM) in polar coordinates, combining a 

2-D exact subdomain (SD) technique and magnetic equivalent circuit (MEC), for magnetic field calculation in electrical 

machines at no-load and on-load conditions. 

Design/methodology/approach – In this paper, the proposed technique is applied to dual-rotor permanent-magnet 

(PM) synchronous machines. The magnetic field is computed by coupling an exact analytical model (AM), based on the formal 

resolution of Maxwell's equations applied in subdomain, in regions at unitary relative permeability with a MEC using a nodal-

mesh formulation (i.e., Kirchhoff's current law) in ferromagnetic regions. The AM and MEC are connected in both directions 

(i.e., 𝑟- and 𝜃-edges) of the (non-)periodicity direction (i.e., in the interface between teeth regions and all its adjacent regions 

as slots and/or air-gap). To provide accuracy solutions, the current density distribution in slots regions is modelled by using 

Maxwell’s equations instead to MEC and characterized by an equivalent magnetomotive force (MMF) situated in slots, teeth 

and yoke. 

Findings – It is found that whatever the iron core relative permeability, the developed HAM gives accurate results for no-

load and on-load conditions. Finite-element analysis (FEA) demonstrates excellent results of the developed technique. 

Originality/value – The main objective of this paper is to make a direct coupling between the AM and MEC in both 

directions (i.e., 𝑟- and 𝜃-edges). The current density distribution is modelled by using Maxwell’s equations instead to MEC 

and characterized by an MMF. 
Keywords: Hybrid magnetic model, exact subdomain technique, magnetic equivalent circuit, finite-element analysis. 
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I. Introduction 

Calculating the performance of electromagnetic devices with high accuracy and geometric 

detail is often necessary for industrial, automotive and domestic applications with electrical 

machines. Consideration of magnetic materials in design models (e.g. the saturation effect), as well as 

accurate knowledge of the magnetic field, are key issues of electrical machine performance evaluation 

(Dubas and Espanet, 2009). The magnetic field distribution can be evaluated by several approaches, viz., 

numerical or (semi-)analytical. The better approach is that which gives, with appropriate assumptions, a 

high precision with fast computation time. Nonlinear numerical and semi-analytical methods are wildly 

used on modeling electromagnetic devices. For the numerical methods, despite its high calculation 

accuracy, the computation time remains the major obstacle for study complication and especially for 

iterative calculations or optimization procedures. Thus, nonlinear semi-analytical models (MEC, 

Maxwell-Fourier methods) can replace numeric because these approaches have the advantage to be 

explicit, more or less accuracy, and fast. 

A coupling of FEA and MEC (i.e., reluctance or permeance network) has been proposed by (Philips, 

1992; Nedjar et al., 2012; Liu et al., 2017). This has given excellent results regarding to high accuracy 

and reducing time process. In (Sprangers et al., 2015; Sprangers et al., 2016; Djelloul-Khedda et al., 2016; 

Djelloul-Khedda et al., 2017; Ramakrishnan et al., 2017; Djelloul-Khedda et al., 2018; Djelloul-Khedda 

et al., 2019; Zhang et al., 2020), a semi-analytical approach based on multi-layer models using the 

convolution theorem (i.e. Cauchy's product theorem) has been applied to various electrical machines and 

has given excellent results, although the accuracy of the method can be low for small relative permeability 

of iron and nonlinear materials. Roubache et al., 2018a presented a contribution on the 2-D SD technique 

based on the Dubas' superposition technique (Dubas and Boughrara, 2017a, 2017b) by considering the 

finite soft-magnetic material permeability in spoke-type PM machines. This allows for any non-periodic 

subdomain. The subdomain connection is performed directly in both directions. The general solutions of 

Maxwell’s equations are deduced by applying the superposition principle by respecting the boundary 

conditions (BCs) on the various edges of subdomains. This has also been applied to switched reluctance 

machines supplied by sinusoidal waveform of current (aka, variable flux reluctance machines) (Ben-  
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Fig. 1.  Dual-rotor PM synchronous machine. Fig. 2.  Longitudinal cross section view of the proposed machine. 

 

Yahia et al., 2018a). Excellent results are obtained whatever the iron relative permeability value, which 

is constant corresponding to linear zone of the 𝐵(𝐻) curve. Nevertheless, the saturation effect in 

subdomains is global without considering 𝐵(𝐻) curve. In (Roubache et al., 2019, 2018b), the authors 

have extended the proposed model in (Dubas and Boughrara, 2017b) and (Roubache et al., 2018a) to 

elementary subdomains (E-SDs) in the rotor and/or stator regions with(out) electrical conductivities for 

full prediction of magnetic field in rotating electrical machines with the local saturation effect solving by 

the Newton-Raphson iterative algorithm. The introduction of the global or local saturation effect into the 

semi-analytical calculation requires discretizing all magnetic core materials and uses in each case of 

discretization a considerable number of harmonics with a view to avoid errors of calculation. Therefore, 

the exact SD or E-SD technique by inserting ferromagnetic regions is inappropriate for the reduction of 

computational time. HAM presented by (Ouagued et al., 2015; Laoubi et al., 2015; Ouagued et al., 2016; 

Bao et al., 2018; Wu et al., 2020; Ceylan et al., 2020) is one of a strong alternative solution to analyze 

and optimize a large range of electromagnetic devices with the global or local saturation effect. This 

approach is flexible and gives accurate results under considerable time consuming with respect to 

numerical methods or formal analytical approach. The aim of this approach is to make a direct coupling 

between the analytical solution obtained from Maxwell’s equations in simple regions (e.g., the air-gap or 

PM region) and MEC in more complex regions (e.g., slots and teeth regions). Another strong advantage 

of this approach is its flexibility against stationary and moving parts (Demenko et al., 2008; Ullah et al., 

2018). However, in all the papers dealing with HAM, the coupling between the conventional SD 

technique (without superposition technique) and (non)linear MEC is given only in 𝜃-direction. Moreover, 

the current density contributions in the magnetic field are represented by magnetomotive forces (MMFs) 

situated in the yoke, slots and teeth. Those MMFs are sources of inaccuracies in the HAM. Also, the semi-

analytical model used in the HAM cannot be coupled to the MEC in both directions (i.e., 𝑟- and 𝜃-edges). 

In this paper, an improved hybrid analytical modeling is proposed and applied to dual-rotor PM 

synchronous machines (Golovanov et al., 2019a, 2019b). The developed 2-D HAM uses the exact SD 

technique (Dubas and Boughrara, 2017b) able to be coupled to the MEC, using a nodal-mesh formulation 

(i.e., Kirchhoff’s current law), in both directions (i.e., 𝑟- and 𝜃-edges) and permits to avoid the using of 

MMFs that represents the current densities in slots. From now on, the HAM permits to model all 

ferromagnetic regions with MEC and all non-magnetic regions (e.g., the air-gap, slots and PMs) with the 

exact SD technique. The advantage of this HAM is the introduction of local saturation effect which can 

be done easily. 

II. Model Definition and Assumptions 

The dual-rotor PM synchronous machine, represented in Fig. 1, is divided into eight regions, as shown 

on Fig. 2, viz., 

1) PMs: Region I and IV; 

https://www.emerald.com/insight/search?q=Andrzej%20Demenko
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2) Vacuum: Region II and III; 

3) 𝑄 slots with coils: Region V with the index 𝑥 = 1. . 𝑄; 

4) 𝑄 soft-material: Region VI with the index 𝑥 = 1. . 𝑄; 

5) Iron yoke: Region VII and VIII. 

This machine is modelled on a 2-D polar coordinate system. The magnetic field solution is based on 

the following simplifying assumptions: 

1) the problem is quasi-static; 

2) the magnetic vector potential in non-magnetic regions (i.e., the air-gap, slots and PMs) has only 

one component along 𝑧-axis, i.e., 𝑨 = {0; 0; 𝐴𝑧}; 
3) the electrical conductivity in all regions is supposed null; 

4) all regions are considered as isotropic; 

5) the PMs are considered to have a linear second quadrant characteristic; 

6) all regions have radial sides. 

III. Formulation of HAM 

A. Introduction 

In this paper, two approaches are presented: 

 Exact AM based on the formal resolution of Maxwell's equations applied in subdomain by 

applying the separation of variables method, the Fourier’s series, and the superposition 

technique; 

 MEC of which mesh elements can be discretized into one or several bidirectional (BD) blocks. 

The exact AM is proposed for the regions I, II III, IV and V. Using the magnetostatic Maxwell’s 

equations, the general partial differential equation (PDE) can be expressed in terms of 𝑨 with 𝜇 = 𝐶𝑠𝑡 
can be expressed by (Dubas and Boughrara, 2017a) 

∇2𝑨 = −[𝜇 𝑱 + 𝜇0 ∇ × 𝑴𝒓]                                                             (1) 

where 𝑱 is the current density (due to supply currents) vector, 𝑴𝒓 is the magnetization vector (with 𝑴𝒓 =
0 for the vacuum/iron or 𝑴𝒓 ≠ 0 for the PMs according to the magnetization direction), and 𝜇 = 𝜇0 ∙ 𝜇𝑟 

is the absolute magnetic permeability of the magnetic material in which 𝜇0 and 𝜇𝑟  are respectively the 

vacuum permeability and the relative permeability of the magnetic material (with 𝜇𝑟 = 1  for the vacuum 

or 𝜇𝑟 ≠ 1 for the PMs/iron). 

The MEC is adopted for the region VI and based on the nodal-mesh formulation (i.e., Kirchhoff's 

current law) in terms of magnetic scalar potential 𝒖. The magnetic field intensity vector 𝐻 can be related 

to the scalar magnetic potential by 

𝑯 = −∇𝒖                                                                               (2) 

The main objective of this technique is to make a direct coupling between the region VI, which has 

relative permeability different to unity, and its adjacent regions (viz., Regions II, III and V). For simplicity 

and to avoid introducing the regions VII and VIII in the system to be solved, the relative permeability of 

these regions is supposed equal to infinity. It is easy to add these regions in the HAM. 

B. Exact SD Technique 

By using (1), the general PDEs in terms of 𝑨 in various regions can be written as 

∇2𝑨 = −𝜇𝑜 ∇ × 𝑴𝒓       in Regions I and IV                                             (3a) 

∇2𝑨 = 0                            in Regions II and III                                           (3b) 

∇2𝑨 = −𝜇0 𝑱                    in Region V                                                           (3c) 
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Fig. 3.  Parallel magnetization waveforms. 

 

The magnetization vector 𝑴𝒓 of PMs can be expressed by 

𝑴𝒓 = 𝑀𝑟𝑟 𝒂𝒓 +𝑀𝑟𝜃 𝒂𝜽                                                                   (4) 

where 𝑀𝑟𝑟 and 𝑀𝑟𝜃 are respectively the radial and circumferential magnetization. The proposed electrical 

machine with a parallel magnetization (see Fig. 3) has anti-periodicity equal to 𝜋 𝑝⁄  where 𝑝 is the number 

of pole pairs. The components of 𝑴𝒓 can be specified explicitly by Fourier’s series as 

𝑀𝑟𝜃 =∑𝑀𝑟𝜃𝑠𝑛 ∙ sin(𝑛𝑝𝜃) + 𝑀𝑟𝜃𝑐𝑛 ∙ cos(𝑛𝑝𝜃)

𝑛

                                        (5𝑎) 

𝑀𝑟𝑟 =∑𝑀𝑟𝑟𝑠𝑛 ∙ sin(𝑛𝑝𝜃) + 𝑀𝑟𝑟𝑐𝑛 ∙ cos(𝑛𝑝𝜃)

𝑛

                                         (5𝑏) 

where 𝑛 is the spatial harmonic order. The expressions of 𝑀𝑟𝜃𝑠𝑛, 𝑀𝑟𝜃𝑐𝑛, 𝑀𝑟𝑟𝑠𝑛 and 𝑀𝑟𝑟𝑐𝑛 are detailed in 

Appendix A. 

The field vectors 𝑩 = {𝐵𝑟; 𝐵𝜃; 0} and 𝑯 = {𝐻𝑟; 𝐻𝜃; 0} are coupled by the magnetic material equation 

𝑩 = 𝜇𝑚 𝑯 + 𝜇𝑜 𝑴𝒓       with 𝜇𝑚 ≅ 𝜇𝑜 in Regions I and IV                                  (6a) 

𝑩 = 𝜇0 𝑯                          in Regions II, III and V                                                       (6b) 

Using 𝑩 = ∇ × 𝑨, the components of 𝑩 can be deduced by 

𝐵𝑟 =
1

𝑟
∙
𝜕𝐴𝑧
𝜕𝜃

      &      𝐵𝜃 = −
𝜕𝐴𝑧
𝜕𝑟

                                                         (7) 

In polar coordinates (𝑟, 𝜃), (3) in terms of 𝑨 = {0; 0; 𝐴𝑧} can be rewritten as: 

 in the Region I and IV (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝐼,𝐼𝑉

𝜕𝑟2
+
1

𝑟
∙
𝜕𝐴𝑧

𝐼,𝐼𝑉

𝜕𝑟
+
1

𝑟2
∙
𝜕2𝐴𝑧

𝐼,𝐼𝑉

𝜕𝜃2
= −

𝜇0
𝑟
∙ (𝑀𝑟𝜃 −

𝜕𝑀𝑟𝑟
𝜕𝜃

)                                  (8) 

 in the Region II and III (i.e., Laplace’s equation): 

𝜕2𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼

𝜕𝑟2
+
1

𝑟

𝜕𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼

𝜕𝑟
+
1

𝑟2
𝜕2𝐴𝑧

𝐼𝐼,𝐼𝐼𝐼

𝜕𝜃2
= 0                                                      (9) 

 in the Region V (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝑉

𝜕𝑟2
+
1

𝑟
∙
𝜕𝐴𝑧

𝑉

𝜕𝑟
+
1

𝑟2
∙
𝜕2𝐴𝑧

𝑉

𝜕𝜃2
= −𝜇0 ∙ 𝐽𝑧                                                  (10) 
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Based on the separation of variables method and the Fourier series expansion, the general solution of 𝐴𝑧 
can be described as: 

 in the Region I and IV: 

𝐴𝑧
𝐼,𝐼𝑉 =

∑(𝐶3𝑛
𝐼,𝐼𝑉 ∙ 𝑟𝑛𝑝 + 𝐶4𝑛

𝐼,𝐼𝑉 ∙ 𝑟−𝑛𝑝 + 𝛤𝑠) ∙ sin(𝑛𝑝𝜃)

𝑛

+⋯

∑(𝐶5𝑛
𝐼,𝐼𝑉𝑟𝑛𝑝 + 𝐶6𝑛

𝐼,𝐼𝑉 ∙ 𝑟−𝑛𝑝 + 𝛤𝑐) ∙ cos(𝑛𝑝𝜃)

𝑛

                             (11𝑎) 

where 

𝛤𝑠 = {

𝑛𝑝𝑀𝑟𝑟𝑠𝑛 −𝑀𝑟𝜃𝑠𝑛
(𝑛𝑝)2 − 1

∙  𝑟            𝑖𝑓 𝑛𝑝 ≠ 1

𝑀𝑟𝑟𝑠1 −𝑀𝑟𝜃𝑠1
2

∙ 𝑟 ∙ ln(𝑟)      𝑖𝑓 𝑛𝑝 = 1

                                          (11𝑏) 

𝛤𝑐 = {
−
𝑛𝑝𝑀𝑟𝑟𝑐𝑛 −𝑀𝑟𝜃𝑐𝑛

(𝑛𝑝)2 − 1
∙ 𝑟          𝑖𝑓 𝑛𝑝 ≠ 1

−
𝑀𝑟𝑟𝑐1 −𝑀𝑟𝜃𝑐1

2
∙ 𝑟 ∙ ln(𝑟)  𝑖𝑓 𝑛𝑝 = 1

                                         (11𝑐) 

These regions are 2π periodic and have interfaces with other regions depending only on the 𝜃-direction. 

 in the Region II and III: 

𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼 =

∑(𝐶3𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑟𝑛𝑝 + 𝐶4𝑛

𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑟−𝑛𝑝) ∙ sin(𝑛𝑝𝜃)

𝑛

+⋯

∑(𝐶5𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑟𝑛𝑝 + 𝐶6𝑛

𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑟−𝑛𝑝) ∙ cos(𝑛𝑝𝜃)

𝑛

                                  (12) 

These regions are also 2π periodic and have interfaces with other regions depending only on the 𝜃-

direction.  

 in the Region V: 

𝐴𝑧𝑥
𝑉 =

𝐶𝑥1
𝑉 + 𝐶𝑥2

𝑉 ∙ ln(𝑟) −
1

4
∙ 𝜇𝑜 ∙ 𝐽𝑧𝑥 ∙ 𝑟

2 +⋯

∑𝐺𝑥𝑚
𝜃 ∙ cos [𝛽𝑚 ∙ (𝜃 − 𝑔𝑥 +

𝑤

2
)]

𝑚

+⋯

∑𝐺𝑥𝑣
𝑟 ∙ sin [𝜆𝑣 ∙ ln (

𝑟

𝑅3
)]

𝑣

                                         (13𝑎) 

𝐺𝑥𝑚
𝜃 = 𝐶𝑥3𝑚

𝑉 ∙ (
𝑟

𝑅4
)
𝛽𝑚

+ 𝐶𝑥4𝑚
𝑉 ∙ (

𝑟

𝑅3
)
−𝛽𝑚

                                             (13𝑏) 

𝐺𝑥𝑣
𝑟 = 𝐶𝑥5𝑣

𝑉 ∙
sinh [𝜆𝑣 ∙ (𝜃 − 𝑔𝑥 +

𝑤
2)]

sinh(𝜆𝑣 ∙ 𝑤)
+ 𝐶𝑥6𝑣

𝑉 ∙
sinh [𝜆𝑣 ∙ (𝜃 − 𝑔𝑥 −

𝑤
2)]

sinh(𝜆𝑣 ∙ 𝑤)
                (13𝑐) 

with 

𝐽𝑧𝑥 = 𝐽𝑚 ∙ [1  1  0  − 1  − 1  0  1  1  0  − 1  − 1  0]                                   (13𝑑) 

where 𝐽𝑚 is the current density peak, 𝑔𝑥 is the position of xth coils, 𝑚 and 𝑣 are the spatial harmonic orders, 
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𝛽𝑚 and 𝜆𝑣 are the spatial frequency (or periodicity) in both directions defined by 

𝛽𝑚 =
𝑚𝜋

𝑤
      &      𝜆𝑣 =

𝑣𝜋

ln(𝑅4 𝑅3⁄ )
                                                   (13𝑒) 

As can be shown in (13), the analytical solution is the superposition of two components in 𝑟- and 𝜃-

directions based on the superposition technique (Dubas and Boughrara, 2017a, 2017b; Roubache et al., 

2018a). This solution permits the coupling with the MEC of regions VI in both directions (i.e., 𝑟- and 𝜃-

edges). 

C. MEC (viz., Reluctance or Permeance Network) 

In region VI, the solution of 𝒖 can be achieved according to Kirchhoff’s laws. According to 

Fig. 4, each node (i) inside region VI is connected to four neighbouring nodes, except those 

situated between region II, region III and region V.  

For this case, the magnetic flux 𝜑 can be written as: 

∑ 𝜑𝑥,𝑖𝑗
𝑗=𝑎,𝑏,𝑐,𝑑

= 0                                                                      (14) 

𝑢𝑥,𝑖 − 𝑢𝑥,𝑗 =
𝜑𝑥,𝑖𝑗

𝑃𝑥,𝑖𝑗
                                                                    (15) 

and then, 

𝑢𝑥,𝑖 ∑ 𝑃𝑥,𝑖𝑗
𝑗=𝑎,𝑏,𝑐,𝑑

− ∑ 𝑃𝑥,𝑖𝑗 ∙ 𝑢𝑥,𝑗
𝑗=𝑎,𝑏,𝑐,𝑑

= 0                                                (16) 

𝑃𝑥,𝑖𝑗 =
1

ℜ𝑥,𝑖𝑗
= 𝜇0 ∙ 𝜇𝑟 ∙

𝑆𝑥,𝑖𝑗

𝐿
                                                           (17) 

where 𝐿, 𝑆𝑥,𝑖𝑗 and 𝜇𝑟 are respectively, active length, section and relative permeability of the reluctance 

element ℜ. 

Using (2), the components of 𝑯 can be deduced by 

𝐻𝑟 = −
𝜕𝑢

𝜕𝑟
      &     𝐻𝜃 = −

1

𝑟
∙
𝜕𝑢

𝜕𝜃
                                                       (18) 

Since (18) are applicable for the analytical solutions of Maxwell’s equations. These equations should be 

 

  

Fig. 4.  2-D Reluctance elements ℜ, magnetic potential 𝑢 

and magnetic flux 𝜑. 

Fig. 5.  Uniform mesh of the region VI discretized into 

several BD blocks. 
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rewritten using numerical differentiation defined as the limit of a difference quotient as: 

𝐻𝑟(𝑟) = lim
∆𝑟→0

(−
∆𝑢

∆𝑟
)    &   𝐻𝜃(𝜃) = lim

∆𝜃→0
(−

1

𝑟
∙
∆𝑢

∆𝜃
)                                     (19) 

The difference quotient 𝐻𝑟(𝑟) and 𝐻𝜃(𝜃) is a derivative approximation. This gets better as ∆𝑟 and ∆𝜃 

gets smaller. 

IV. Boundary Conditions and Linear Systems 

To give the final solution of the equations system, the BCs should be defined by equalizing potential 

vector magnetic, radial component of 𝑩 and circumferential component of 𝑯 in the 𝑟- and 𝜃-direction. 

On the 𝜃-direction: 

 At 𝑟 = 𝑅1: 

𝐻𝜃
𝐼 (𝑅1, 𝜃) = 0      ∀𝜃                                                                   (20) 

 At 𝑟 = 𝑅2: 

𝐴𝑧
𝐼 (𝑅2, 𝜃) = 𝐴𝑧

𝐼𝐼(𝑅2, 𝜃)      ∀𝜃                                                           (21) 

𝐻𝜃
𝐼 (𝑅2, 𝜃) = 𝐻𝜃

𝐼𝐼(𝑅2, 𝜃)      ∀𝜃                                                          (22) 

 At 𝑟 = 𝑅3: 

𝑃𝑥,𝑐𝑖(𝑢𝑥,𝑐 − 𝑢𝑥,𝑖) = 𝐿𝑅3 ∙ ∫ 𝐵𝑟
𝐼𝐼(𝑅3, 𝜃) ∙ 𝑑𝜃

𝜃𝑥,𝑗+Δ𝜃

𝜃𝑥,𝑗

                                       (23) 

(𝐴𝑧
𝐼𝐼(𝑅3, 𝜃) = 𝐴𝑧𝑥

𝑉 (𝑅3, 𝜃))|
𝑔𝑥−

𝑤
2
≤𝜃≤𝑔𝑥+

𝑤
2                                                  (24) 

𝐻𝜃
𝐼𝐼(𝑅3, 𝜃) = ∑(𝐻𝜃𝑥

𝑉 (𝑅3, 𝜃)|
𝑔𝑥−

𝑤
2
≤𝜃≤𝑔𝑥+

𝑤
2 + 𝐻𝜃𝑥

𝑉𝐼(𝑅3, 𝜃)|
𝑔𝑥+

𝑤
2
≤𝜃≤𝑔𝑥+1−

𝑤
2)

𝑄

𝑥=1

                 (25) 

In order to satisfy (25), the magnetic flux intensity 𝐻𝜃𝑥
𝑉𝐼(𝑟, 𝜃) by applying (19) should be written as: 

𝐻𝜃𝑥
𝑉𝐼(𝑟, 𝜃) = − ∑ ∑

1

𝑟
∙ (
𝑢𝑥,𝑐+1 − 𝑢𝑥,𝑐

∆𝜃
) × [ℎ𝜃𝑥𝑠𝑣

𝑉𝐼 ∙ sin(𝑣𝑝𝜃) + ℎ𝜃𝑥𝑐𝑣
𝑉𝐼 ∙ cos(𝑣𝑝𝜃)]

𝑣

𝑁𝐶−1

𝑐=1

        (26) 

where 𝑁𝐶 is the number of reluctance rows, and ℎ𝜃𝑥𝑠𝑣
𝑉𝐼  & ℎ𝜃𝑥𝑐𝑣

𝑉𝐼  are the Fourier constants. 

 At 𝑟 = 𝑅4: 

𝑃𝑥,𝑖𝑑(𝑢𝑥,𝑖 − 𝑢𝑥,𝑑) = 𝐿𝑅4 ∙ ∫ 𝐵𝑟
𝐼𝐼𝐼(𝑅4, 𝜃) ∙ 𝑑𝜃

𝜃𝑥,𝑗+Δ𝜃

𝜃𝑥,𝑗

                                       (27) 

(𝐴𝑧
𝐼𝐼𝐼(𝑅4, 𝜃) = 𝐴𝑧𝑥

𝑉 (𝑅4, 𝜃))|
𝑔𝑥−

𝑤
2
≤𝜃≤𝑔𝑥+

𝑤
2                                                 (28) 

𝐻𝜃
𝐼𝐼𝐼(𝑅4, 𝜃) = ∑(𝐻𝜃𝑥

𝑉 (𝑅4, 𝜃)|
𝑔𝑥−

𝑤
2
≤𝜃≤𝑔𝑥+

𝑤
2 + 𝐻𝜃𝑥

𝑉𝐼(𝑅4, 𝜃)|
𝑔𝑥+

𝑤
2
≤𝜃≤𝑔𝑥+1−

𝑤
2)

𝑄

𝑥=1

                (29) 

 At 𝑟 = 𝑅5: 

𝐴𝑧
𝐼𝐼𝐼(𝑅5, 𝜃) = 𝐴𝑧

𝐼𝑉(𝑅5, 𝜃)      ∀𝜃                                                          (30) 

𝐻𝜃
𝐼𝐼𝐼(𝑅5, 𝜃) = 𝐻𝜃

𝐼𝑉(𝑅5, 𝜃)      ∀𝜃                                                          (31) 
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Fig. 6. Proposed BCs between: blue colour region VI and region V, and red colour region VI and regions II & III. 

 

 At 𝑟 = 𝑅6: 

𝐻𝜃
𝐼𝑉(𝑅6, 𝜃) = 0      ∀𝜃                                                                  (32) 

On the 𝑟-direction, viz., on the edges of the region V and the region VI: 

 for 𝜃 = 𝑔𝑥 +𝑤 2⁄ : 

𝑃𝑥,𝑎𝑖(𝑢𝑥,𝑎 − 𝑢𝑥,𝑖) = 𝐿∫ 𝐵𝜃𝑥
𝑉 (𝑟, 𝑔𝑥 +

𝑤

2
) ∙ 𝑑𝑟

𝑟𝑘+ΔR

𝑟𝑘

                                      (33) 

𝐻𝑟𝑥
𝑉 (𝑟, 𝑔𝑥 +

𝑤

2
) = 𝐻𝑟𝑥

𝑉𝐼(𝑟)                                                             (34) 

In order to satisfy (34), the magnetic flux intensity 𝐻𝑟𝑥
𝑉𝐼(𝑟) by applying (19) should be written as: 

𝐻𝑟𝑥
𝑉𝐼(𝑟) = − ∑ ∑(

𝑢𝑥,𝑎+1 − 𝑢𝑥,𝑎
∆𝑟

)

𝑣

×

𝑁𝐿−1

𝑎=1

ℎ𝑟𝑥𝑣
𝑉𝐼 ∙ sin [𝜆𝑣 ∙ ln (

𝑟

𝑅3
)]                           (35) 

where 𝑁𝐿 is the number of reluctance columns, and ℎ𝑟𝑥𝑣
𝑉𝐼  is the Fourier constant. 

 for 𝜃 = 𝑔𝑥 −𝑤 2⁄ : 

𝑃𝑥−1,𝑖𝑏(𝑢𝑥−1,𝑖 − 𝑢𝑥−1,𝑏) = 𝐿 ∙ ∫ 𝐵𝜃𝑥
𝑉 (𝑟, 𝑔𝑥 −

𝑤

2
) ∙ 𝑑𝑟

𝑟𝑘+𝛥𝑅

𝑟𝑘

                               (36) 

𝐻𝑟𝑥
𝑉 (𝑟, 𝑔𝑥 −

𝑤

2
) = 𝐻𝑟(𝑥−1)

𝑉𝐼 (𝑟)                                                          (37) 

Again, to satisfy (37), the magnetic flux intensity 𝐻𝑟𝑥
𝑉𝐼(𝑟) in the left side of the region V should be written 

as (35) by changing the variable 𝑎 by 𝑏 (see Fig. 5). 

For simplicity’s sake, the proposed machine can be modelled for half of the period. For this case, anti-

periodic BCs are proposed at 𝜃 = 𝜃1 and 𝜃 = 𝜃2: 

𝑃𝑄,𝑖𝑏(𝑢𝑄,𝑖 − 𝑢𝑄,𝑏) = −𝐿 ∙ ∫ 𝐵𝜃1
𝑉 (𝑟, 𝑔1 −

𝑤

2
) ∙ 𝑑𝑟

𝑟𝑘+𝛥𝑅

𝑟𝑘

                                    (38) 

https://context.reverso.net/traduction/anglais-francais/to+satisfy
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𝐻𝑟𝑄
𝑉 (𝑟, 𝑔𝑄 −

𝑤

2
) = −𝐻𝑟1

𝑉𝐼(𝑟)                                                            (39) 

Fig. 6 shows a regular discretization of the region VI. Since there are no nodes in the corners in this 

region, a direct coupling between both models is done by respecting the interface indicated by blue and 

red colour. 

It can be seen that all BCs are defined and the correlation of Fourier constants can be found as detailed 

in Appendix B. Thus, the system of linear algebraic equations can be written as: 

[𝐴] ∙ [𝑋] = [𝑏]                                                                        (40) 

where [𝐴] (𝑁 × 𝑁) is the topological matrix, [𝑏](𝑁 × 1) is the vector contain all flux source parameters 

and [𝑋](𝑁 × 1) is the vector contain all unknow Fourier constants to be determined, in which 𝑁 =
12𝑛ℎ + (2 + 4𝑁ℎ + 𝑁𝐿(𝑁𝐶 + 2) + 2𝑁𝐶)𝑄 with 𝑁ℎ and 𝑛ℎ being respectively the number of 

harmonics in the slot and tooth region and in other regions. 

V. Comparison of Hybrid Analytical and Finite-Element Calculations 

Figs. 7 ~ 10 present a comparison between HAM and finite elements analysis FEA obtained from 

FEMM software (Meeker, 2010) for the open-circuit magnetic flux distribution with a parallel 

magnetization pattern and for the armature reaction magnetic flux distribution in the middle of the region 

II with different values of iron relative permeability (i.e., region VI). The proposed electrical machine 

parameters are shown in Table I. These results have been calculated under an acceptable number of 

discretization of the region VI (𝑁𝐶 = 30 and 𝑁𝐿 = 15). Excellent agreement is achieved between both 

models. 

 

   

Fig. 7.  Comparison of HAM and FEA predicted for the open circuit magnetic flux density distribution with a parallel 

magnetization pattern in the middle of region II for 𝜇𝑟 = 1,000 in the region VI. 

 

   

Fig. 8.  Comparison of HAM and FEA predicted for the open circuit magnetic flux density distribution with a parallel 

magnetization pattern in the middle of region II for 𝜇𝑟 = 2 in the region VI. 
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Fig. 9.  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of region II for 

𝜇𝑟 = 1,000 in the region VI. 

 

   

Fig. 10.  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of region II for 

𝜇𝑟 = 2 in the region VI. 

 

Figs 11 and 12 show respectively the magnetic flux density distribution in the middle of slots and teeth 

under open circuit or armature reaction conditions. To avoid errors calculation, the mesh discretization in 

teeth regions should be selected fine (𝑁𝐶 = 51 and 𝑁𝐿 = 51) unlike to the previous case where (𝑁𝐶 = 30 

and 𝑁𝐿 = 15). Excellent agreement is achieved between HAM and FEA whatever relative permeability 

values. The computational time is increased and equal about 4 times. 

Table II shows the time consumption for flux density calculation by a different approach, such as the 

HAM, SD and FEA techniques. Regarding SD technique, the HAM, proposed for this paper, in teeth regions 

is substituted by analytical model such indicated in (Roubache et al., 2018a) and (Ben Yahia et al., 2018a). 

 

   

Fig. 11.  Comparison of HAM and FEA predicted for the open circuit magnetic flux density distribution with a parallel 

magnetization pattern in the middle of region V and VI. 
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Fig. 12.  Comparison of HAM and FEA predicted of the armature magnetic flux density distribution in the middle of region V 

and VI. 

 

 
                                                    HAM                                                                         FEA 

(a) 

 

   

                                                    HAM                                                                         FEA 

(b) 

 

Fig. 13.  Magnetic flux density ‖𝐵‖ distribution calculated by HAM and compared to FEA under no-load condition for: (a) 

𝜇𝑟 = 1,000  and (b) 𝜇𝑟 = 2. 

 

Figs. 13 and 14 show the magnetic flux density distribution in all parts of an electrical machine 

calculated by HAM and compared to FEA with different values of relative permeability of iron. The 

relative permeability of region VII and region VIII (see Fig. 2) are supposed equal to infinity. 
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                                                    HAM                                                                         FEA 

(a) 

  

                                                    HAM                                                                         FEA 

(b) 

 

Fig. 14.  Magnetic flux density ‖𝐵‖ distribution calculated by HAM and compared to FEA under armature reaction current 

condition for: (a) 𝜇𝑟 = 1,000  and (b) 𝜇𝑟 = 2. 

 

VI. Conclusion 

In this paper, a 2-D HAM in polar coordinates has been proposed for the dual-rotor PM synchronous 

machines. The developed model is based on the exact AM by applying superposition technique able to 

be coupled to MEC in both directions (i.e., 𝑟- and 𝜃-edges). The current densities in slots have been 

substituted by local Maxwell’s equations in the slot regions to avoid using MMF situated in slots, teeth 

and yoke as adopted by all authors in hybrid models. Excellent results have been obtained and verified 

by FEA for any relative permeability value of iron core. Whatever load conditions, this approach can 

greatly help to optimize precisely performances machine especially with the local saturation effect which 

will be proposed in a future contribution. 
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APPENDIX A 

Parallel magnetization expressions in (5) are defined by: 

 for the radial component: 

𝑀𝑟𝑟𝑠𝑛 = 𝑚𝑟𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ cos(𝑛𝑝 ∙ 𝜏)                                           (𝐴01) 

𝑀𝑟𝑟𝑐𝑛 = 𝑚𝑟𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ sin(𝑛𝑝 ∙ 𝜏)                                            (𝐴02) 

 for the circumferential component: 

𝑀𝑟𝜃𝑠𝑛 = −𝑚𝜃𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ sin(𝑛𝑝 ∙ 𝜏)                                         (𝐴03) 

𝑀𝑟𝜃𝑐𝑛 = 𝑚𝜃𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ cos(𝑛𝑝 ∙ 𝜏)                                            (𝐴04) 

where 𝐵𝑟𝑚 is the remanent flux density of PMs, 𝜏 is the angular position of PMs, and 

𝑚𝑟𝑛 =
4

𝜋
∙ ∫ cos (

𝜃

𝑝
) ∙ cos(𝑛𝜃) ∙ 𝑑𝜃

𝛽𝜋
2

0

=

{
  
 

  
 
𝑝

𝜋
∙ sin (

𝛽𝜋

𝑝
) + 𝛽                                                              if 𝑛𝑝 = 1

2𝑝

𝜋
∙ {
sin [(𝑛𝑝 − 1) ∙

𝛽𝜋
2𝑝
]

(𝑛𝑝 − 1)
+
sin [(𝑛𝑝 + 1) ∙

𝛽𝜋
2𝑝
]

(𝑛𝑝 + 1)
}   if 𝑛𝑝 ≠ 1

     (𝐴05) 

 

and 

𝑚𝜃𝑛 =
4

𝜋
∙ ∫ sin (

𝜃

𝑝
) ∙ sin(𝑛𝜃) ∙ 𝑑𝜃

𝛽𝜋
2

0

=

{
  
 

  
 −

𝑝

𝜋
∙ sin (

𝛽𝜋

𝑝
) + 𝛽                                                          if 𝑛𝑝 = 1

2𝑝

𝜋
∙ {
sin [(𝑛𝑝 − 1) ∙

𝛽𝜋
2𝑝
]

(𝑛𝑝 − 1)
−
sin [(𝑛𝑝 + 1) ∙

𝛽𝜋
2𝑝
]

(𝑛𝑝 + 1)
}   if 𝑛𝑝 ≠ 1

     (𝐴06) 

with 𝛽 is the PM pole-arc to pole-pitch ratio. 

 

APPENDIX B 

From (20), we have: 

𝑛𝑝 ∙ (𝐶3𝑛
𝐼 ∙ 𝑅1

𝑛𝑝−1
− 𝐶4𝑛

𝐼 ∙ 𝑅1
−𝑛𝑝−1

) = −
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅1

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑠𝑛                          (𝐵01) 

𝑛𝑝 ∙ (𝐶5𝑛
𝐼 ∙ 𝑅1

𝑛𝑝−1
− 𝐶6𝑛

𝐼 ∙ 𝑅1
−𝑛𝑝−1

) = −
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅1

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑐𝑛                          (𝐵02) 

From (21), we have: 

𝐶3𝑛
𝐼 ∙ 𝑅2

𝑛𝑝
+ 𝐶4𝑛

𝐼 ∙ 𝑅2
−𝑛𝑝

− 𝐶3𝑛
𝐼𝐼 ∙ 𝑅2

𝑛𝑝
− 𝐶4𝑛

𝐼𝐼 ∙ 𝑅2
−𝑛𝑝

= −𝛤𝑠|𝑟=𝑅2                            (𝐵03) 

 

𝐶5𝑛
𝐼 ∙ 𝑅2

𝑛𝑝
+ 𝐶6𝑛

𝐼 ∙ 𝑅2
−𝑛𝑝

− 𝐶5𝑛
𝐼𝐼 ∙ 𝑅2

𝑛𝑝
− 𝐶6𝑛

𝐼𝐼 ∙ 𝑅2
−𝑛𝑝

= −𝛤𝑐|𝑟=𝑅2                            (𝐵04) 
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From (22), we have: 

𝑛𝑝 ∙ (𝐶3𝑛
𝐼 ∙ 𝑅2

𝑛𝑝−1
− 𝐶4𝑛

𝐼 ∙ 𝑅2
−𝑛𝑝−1

− 𝐶3𝑛
𝐼𝐼 ∙ 𝑅2

𝑛𝑝−1
+ 𝐶4𝑛

𝐼𝐼 ∙ 𝑅2
−𝑛𝑝−1

) = −
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅2

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑠𝑛    (𝐵05) 

𝑛𝑝 ∙ (𝐶5𝑛
𝐼 ∙ 𝑅2

𝑛𝑝−1
− 𝐶6𝑛

𝐼 ∙ 𝑅2
−𝑛𝑝−1

− 𝐶5𝑛
𝐼𝐼 ∙ 𝑅2

𝑛𝑝−1
+ 𝐶6𝑛

𝐼𝐼 ∙ 𝑅2
−𝑛𝑝−1

) = −
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅2

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑐𝑛   (𝐵06) 

Development of (24) gives: 

𝐶𝑥1
𝑉 + 𝐶𝑥2

𝑉 ∙ ln(𝑅3) −
1

4
𝜇𝑜 ∙ 𝐽𝑧𝑥 ∙ 𝑅3

2 =
1

𝑤
∙ ∫ 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃                         (𝐵07) 

𝐶𝑥3𝑚
𝑉 ∙ (

𝑅3
𝑅4
)
𝛽𝑚

+ 𝐶𝑥4𝑚
𝑉 =

2

𝑤
∙ ∫ 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ cos [𝛽𝑚 ∙ (𝜃 − 𝑔𝑥 +
𝑤

2
)] ∙ 𝑑𝜃            (𝐵08) 

From (25), we have: 

−𝜇0𝑛𝑝 ∙ (𝐶3𝑛
𝐼𝐼 ∙ 𝑅3

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝐼 ∙ 𝑅3
−𝑛𝑝−1

) =

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉 (𝑅3, 𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ sin(𝑛𝑝𝜃) ∙ 𝑑𝜃 +

𝑄

𝑥=1

…

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉𝐼(𝑅3, 𝜃) ∙

𝑔𝑥+1−
𝑤
2

𝑔𝑥+
𝑤
2

sin(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

     (𝐵09) 

 

−𝜇0𝑛𝑝 ∙ (𝐶5𝑛
𝐼𝐼 ∙ 𝑅3

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝐼 ∙ 𝑅3
−𝑛𝑝−1

) =

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉 (𝑅3, 𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ cos(𝑛𝑝𝜃) ∙ 𝑑𝜃 +

𝑄

𝑥=1

…

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉𝐼(𝑅3, 𝜃) ∙

𝑔𝑥+1−
𝑤
2

𝑔𝑥+
𝑤
2

cos(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

     (𝐵10) 

 

where the Fourier constants of (26) can be written as: 

ℎ𝜃𝑥𝑠𝑣
𝑉𝐼 =

2𝑝

𝜋
∙ ∫ sin(𝑣𝑝𝜃)

𝜃𝑥,𝑗+∆𝜃

𝜃𝑥,𝑗

∙ 𝑑𝜃                                                  (𝐵11) 

ℎ𝜃𝑥𝑐𝑣
𝑉𝐼 =

2𝑝

𝜋
∙ ∫ cos(𝑣𝑝𝜃) ∙

𝜃𝑥,𝑗+∆𝜃

𝜃𝑥,𝑗

𝑑𝜃                                                  (𝐵12) 

Development of (28) gives: 
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𝐶𝑥1
𝑉 + 𝐶𝑥2

𝑉 ∙ ln(𝑅4) −
1

4
𝜇𝑜 ∙ 𝐽𝑧𝑥 ∙ 𝑅4

2 =
1

𝑤
∙ ∫ 𝐴𝑧

𝐼𝐼𝐼(𝑅3, 𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃                        (𝐵13) 

𝐶𝑥3𝑚
𝑉 + 𝐶𝑥4𝑚

𝑉 ∙ (
𝑅4
𝑅3
)
−𝛽𝑚

=
2

𝑤
∫ 𝐴𝑧

𝐼𝐼𝐼(𝑅3, 𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

cos [𝛽𝑚 ∙ (𝜃 − 𝑔𝑥 +
𝑤

2
)] ∙ 𝑑𝜃           (𝐵14) 

From (29), we have: 

−𝜇0𝑛𝑝 ∙ (𝐶3𝑛
𝐼𝐼𝐼 ∙ 𝑅4

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝐼𝐼 ∙ 𝑅4
−𝑛𝑝−1

) =

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉 (𝑅4, 𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ sin(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

+⋯

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉𝐼(𝑅4, 𝜃) ∙

𝑔𝑥+1−
𝑤
2

𝑔𝑥+
𝑤
2

sin(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

     (𝐵15) 

−𝜇0𝑛𝑝 ∙ (𝐶5𝑛
𝐼𝐼𝐼 ∙ 𝑅4

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝐼𝐼 ∙ 𝑅4
−𝑛𝑝−1

) =

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉 (𝑅4, 𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ cos(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

+⋯

1

𝜋
∙∑ ∫ 𝐻𝜃𝑥

𝑉𝐼(𝑅4, 𝜃) ∙

𝑔𝑥+1−
𝑤
2

𝑔𝑥+
𝑤
2

cos(𝑛𝑝𝜃) ∙ 𝑑𝜃

𝑄

𝑥=1

     (𝐵16) 

From (30), we have: 

𝐶3𝑛
𝐼𝑉 ∙ 𝑅5

𝑛𝑝
+ 𝐶4𝑛

𝐼𝑉 ∙ 𝑅5
−𝑛𝑝

− 𝐶3𝑛
𝐼𝐼𝐼 ∙ 𝑅5

𝑛𝑝
− 𝐶4𝑛

𝐼𝐼𝐼 ∙ 𝑅5
−𝑛𝑝

= −𝛤𝑠|𝑟=𝑅5                            (𝐵17) 

𝐶5𝑛
𝐼𝑉 ∙ 𝑅5

𝑛𝑝
+ 𝐶6𝑛

𝐼𝑉 ∙ 𝑅5
−𝑛𝑝

− 𝐶5𝑛
𝐼𝐼𝐼 ∙ 𝑅5

𝑛𝑝
− 𝐶6𝑛

𝐼𝐼𝐼 ∙ 𝑅5
−𝑛𝑝

= −𝛤𝑐|𝑟=𝑅5                            (𝐵18) 

From (31), we have: 

𝑛𝑝 ∙ (𝐶3𝑛
𝐼𝑉 ∙ 𝑅5

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝑉 ∙ 𝑅5
−𝑛𝑝−1

− 𝐶3𝑛
𝐼𝐼𝐼 ∙ 𝑅5

𝑛𝑝−1
+ 𝐶4𝑛

𝐼𝐼𝐼 ∙ 𝑅5
−𝑛𝑝−1

) = −
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅5

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑠𝑛  (𝐵19) 

𝑛𝑝 ∙ (𝐶5𝑛
𝐼𝑉 ∙ 𝑅5

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝑉 ∙ 𝑅5
−𝑛𝑝−1

− 𝐶5𝑛
𝐼𝐼𝐼 ∙ 𝑅5

𝑛𝑝−1
+ 𝐶6𝑛

𝐼𝐼𝐼 ∙ 𝑅5
−𝑛𝑝−1

) = −
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅5

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑐𝑛  (𝐵20) 

From (32), we have: 

𝑛𝑝 ∙ (𝐶3𝑛
𝐼𝑉 ∙ 𝑅6

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝑉 ∙ 𝑅6
−𝑛𝑝−1

) = −
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅6

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑠𝑛                          (𝐵21) 

𝑛𝑝 ∙ (𝐶5𝑛
𝐼𝑉 ∙ 𝑅6

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝑉 ∙ 𝑅6
−𝑛𝑝−1

) = −
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅6

+
1

𝜇0
∙ 𝑀𝑟𝜃𝑐𝑛                          (𝐵22) 

From (34) and (35), we have: 

𝜆𝑣 ∙ (𝐶𝑥5𝑣
𝑉 ∙ cosh(𝜆𝑣 ∙ 𝑤) + 𝐶𝑥6𝑣

𝑉 )

sinh(𝜆𝑣 ∙ 𝑤)
= − ∑ 𝑟𝑎+1 ∙ 𝜇0 ∙ (

𝑢𝑥,𝑎+1 − 𝑢𝑥,𝑎
∆𝑟

) ∙ ℎ𝑟𝑥𝑣
𝑉𝐼

𝑁𝐿−1

𝑎=1

            (𝐵23) 
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where 

ℎ𝑟𝑥𝑣
𝑉𝐼 =

2

ln (
𝑅4
𝑅3
)
∙ ∫

1

𝑟

𝑟𝑘+𝛥𝑅

𝑟𝑘

∙ sin [𝜆𝑣 ∙  ln (
𝑟

𝑅3
)] ∙ 𝑑𝑟                                       (𝐵24) 

From (37), we have: 

𝜆𝑣 ∙ (𝐶𝑥6𝑣
𝑉 ∙ cosh(𝜆𝑣 ∙ 𝑤) + 𝐶𝑥5𝑣

𝑉 )

sinh(𝜆𝑣 ∙ 𝑤)
= − ∑ 𝑟𝑏+1 ∙ 𝜇0 ∙ (

𝑢𝑥,𝑏+1 − 𝑢𝑥,𝑏
∆𝑟

) ∙ ℎ𝑟𝑥𝑣
𝑉𝐼

𝑁𝐿−1

𝑏=1

             (𝐵25) 

 

Some integral functions are defined as: 

 1st integral: 

∫ sin(𝑛𝑝𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃 =
2 sin (𝑛𝑝 ∙

𝑤
2)

∙ sin(𝑛𝑝 ∙ 𝑔𝑥)

𝑛𝑝
                            (𝐵26) 

 2nd integral: 

∫ cos(𝑛𝑝𝜃)

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

∙ 𝑑𝜃 =
2 sin (𝑛𝑝 ∙

𝑤
2)
∙ cos(𝑛𝑝 ∙ 𝑔𝑥)

𝑛𝑝
                            (𝐵27) 

 3rd integral: 

∫ sin(𝑛𝑝𝜃) ∙ cos [𝛽𝑚 ∙ (𝜃 − 𝑔𝑥 +
𝑤

2
)] ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃 = 

{
 
 

 
 

(𝑛𝑝)2

(𝛽𝑚)
2 − (𝑛𝑝)2

∙ {cos [𝑛𝑝 ∙ (𝑔𝑥 +
𝑤

2
)] (−1)𝑚 − cos [𝑛𝑝 ∙ (𝑔𝑥 −

𝑤

2
)]}    if 𝛽𝑚 ≠ 𝑛𝑝   (𝐵28𝑎)

𝑚𝜋

2𝑛𝑝
∙ cos (𝑛𝑝𝑔𝑥 − (𝑚 + 1) ∙

𝜋

2
)                                                                        if 𝛽𝑚 = 𝑛𝑝   (𝐵28𝑏)

 

 4th integral: 

∫ cos(𝑛𝑝𝜃) ∙ cos [𝛽𝑚 ∙ (𝜃 − 𝑔𝑥 +
𝑤

2
)]

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃 = 

{
 
 

 
 

(𝑛𝑝)2

(𝛽𝑚)
2 − (𝑛𝑝)2

∙ {sin [𝑛𝑝 ∙ (𝑔𝑥 +
𝑤

2
)] (−1)𝑚 − sin [𝑛𝑝 (𝑔𝑥 −

𝑤

2
)]}                  if 𝛽𝑚 ≠ 𝑛𝑝   (𝐵29𝑎)

𝑚𝜋

2𝑛𝑝
∙ cos (𝑛𝑝𝑔𝑥 −𝑚 ∙

𝜋

2
)                                                                                              if 𝛽𝑚 = 𝑛𝑝   (𝐵29𝑏)

 

 5th integral: 
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∫ sin(𝑛𝑝𝜃) ∙ sin(𝑛𝑝𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃 = 

1

4𝑛𝑝
∙ {2𝑛𝑝𝑤 − sin [2𝑛𝑝 ∙ (𝑔𝑥 +

𝑤

2
)] + sin [2𝑛𝑝 ∙ (𝑔𝑥 −

𝑤

2
)]}                         (𝐵30) 

 6th integral: 

∫ cos(𝑛𝑝𝜃) ∙ cos(𝑛𝑝𝜃) ∙

𝑔𝑥+
𝑤
2

𝑔𝑥−
𝑤
2

𝑑𝜃 = 

1

4𝑛𝑝
∙ {2𝑛𝑝𝑤 + sin [2𝑛𝑝 ∙ (𝑔𝑥 +

𝑤

2
)] − sin [2𝑛𝑝 ∙ (𝑔𝑥 −

𝑤

2
)]}                                 (𝐵31) 

 

 


