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Abstract. — Given a prime p, a number field K and a finite set of places S of K, let Kg
be the maximal pro-p extension of K unramified outside S. Using the Golod-Shafarevich
criterion one can often show that Kg/K is infinite. In both the tame and wild cases we con-
struct infinite subextensions with bounded ramification using the refined Golod-Shafarevich
criterion. In the tame setting we are able to produce infinite asymptotically good extensions
in which infinitely many primes split completely, and in which every prime has Frobenius
of finite order, phenomena that had been expected by Ihara. We also achieve new records
on Martinet constants (root discriminant bounds) in the totally real and totally complex

cases.
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Given a minimal presentation () of a finitely generated pro-p group G with d generators
and r relations, the well-known criterion of Golod-Shafarevich states that if 1 — dt + rt?
vanishes on ]0,1[, then G is infinite. In fact one may replace this polynomial with
Py(t) :=1—dt + >, 7t", where ry, is the number of relations in the presentation ()
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of depth k in the Zassenhaus filtration. We may then employ the same vanishing test for
infiniteness. See §1.

While all relations in a minimal presentation have depth at least 2, it is sometimes possible
to find a presentation of a group with deep relations. Proving the group is infinite can be
more tractable under these circumstances. Alternatively, one can take quotients (cutting)
of an infinite group by deep elements and guarantee the quotient will be infinite. In the
context of pure pro-p group theory, Wilson in fact used the idea of cutting in [37].

The best uses of this refinement in number theory are probably the work on deep relations
of Galois groups of Koch [20, Chapter 12], Koch-Venkov [21], Kisilevski-Labute [19] and
Schoof [33].

Let p be a prime number, K a number field and S a finite set of finite places of K. Denote
by Kg and Gg the maximal pro-p extension of K unramified outside S and Gal(Kgs/K)
respectively. We make no assumption that S contains any primes. Indeed, S may be
empty. When Gg is infinite, we will exhibit some special infinite quotients of Gg. More
precisely, by starting with an infinite tower Kg/K, we cut (quotient) Gg in order to
produce three kind of results:

(1) We cut by Frobenii; this allows us to produce asymptotically good extensions where
the set of places that split completely is infinite. It is necessary that these Frobenii
have depth in Gg going to infinity. We also cut by large p-powers of Frobenii
to produce asymptotically good extensions in which every prime has Frobenius of
finite order. These orders are not bounded. Thara stated his expectation that such
examples could exist in [17].

(7i) We cut by powers of the generators of tame inertia groups; this allows us to improve
upon the results of Hajir-Maire [14] in the totally complex case and Martin [25] in
the totally real case concerning Martinet constants (root discriminants) in infinite
towers of number fields (also see [26]). We obtain bounds of 78.427 and 857.567 in
the totally real and totally complex cases respectively. Our improvements towards
the GRH lower bounds in the these cases are, by one metric, about 7.55% and 4.36%.
In contrast, the improvements made in [14] over [26] were, respectively, 16.27% and
6.54%;

(737) In the wild ramification context, we cut by local commutators and powers of gener-
ators of the inertia group. This forces decomposition groups above p to be abelian
and have finite inertia subgroup. The root discriminants in the corresponding tower
are then bounded. As an application, let K be a totally imaginary number field
of degree at least 12 and let Kg, be its maximal pro-p extension ramified only at
primes above p. Then, for infinitely many primes p (assuming a recent conjecture
of Gras concerning p-rational fields [8])

(a) the extension Kg,/K contains an infinite unramified tower of number fields,

(b) there exists a constant § > 0 and a sequence of p-rational number fields (L,,)
in Kg, /K such that log d,Cly,, » (log[L,, : Q])”, where Cly,, is the class group
of L,

When the class group of a number field L is not trivial, p-rationality of L implies
that the Hilbert p-class field H of L must be contained in the compositum of the
Zy-extensions of L, something that can be difficult to arrange. See [9, Chapter IV,
§3] for a good explanation.



We also study the question of the depth of the generator 7, of tame inertia in Gg. Let
T be a finite set of finite places of K, disjoint from S. Let G% be the quotient of Gg by
all the Frobenius elements of places of 7. Then we prove that given k > 0 there exists
infinitely many primes q such that for infinitely many primes p, coprime to pq, the depth
of 7, in G}g% is at least k (see Theorem 5.6).

Our work contains five sections. In §1 we recall the refined Golod-Shafarevich Theorem,
and we indicate how we use it. We then develop and apply our cutting strategy: in §2
to obtain the splitting results in the context of asymptotically good extensions; in §3 to
obtain the new root discriminant records in infinite towers of number fields; in §4 we
cut wild towers. The last section is devoted to the question of the depth of tame inertia
in GS-

Notations:

We fix a rational prime p.

— Given a Z-module M, we denote by d,M the dimension over [, of F, ® M: it is the
p-rank of M.

— We fix a number field K. By abuse, we identify prime ideals p < Ok and places v of K.
For a place v of K, we denote by K, the completion, and by U, the local units. For v
finite, we denote by 7, an uniformizer and by v the corresponding valuation.

For a prime ideal p © Ok, we put N(p) := #(0k/p) its absolute norm.

— We fix now a finite set S of finite places of K. For p € S not dividing p, one assumes
that N(p) = 1mod p. When all p € S are prime to p we call S tame. The set of all
p < Ok dividing (p) is denoted S,,.

If L/K is a finite extension, we also denote by S the set of places of L above S.

— The maximal pro-p extension of K unramified outside S is denoted Kg. Note Ky is
the maximal everywhere unramified pro-p extension of K. The Galois group of Kg/K is
denoted Gg.

— All cohomology groups of Gg have coefficients in Z/p, and we denote by d = d(Gg) and
r = r(Gg), d,H'(Gg) for i = 1,2 respectively. Hence, d(Gg) = d,(Gs/[Gs, Gs]). More
generally for a finitely generated pro-p group G, we denote by d,G := d(G) its p-rank.

1 cK .
— Set 0k p = { 0 ot}ﬁbgrwise . If K has signature (rq,73), set ax g := 2+24/11 + 12 + Ok s
where Ok g = { gK g i g . It is well-known that when S is tame: d(Gg) > ax s =
7p

1
r < d?/4. More precisely, if P(t) = 1 — dt + rt* then P(ty) < 0 for ty = d/2r €0, 5]

— For a number field L the root discriminant of L, denoted rdy, is |Disc(L)|Y/™@. If J
is an infinite algebraic extension of Q, we set rdy := limsupy, |Disc(L)[*/%@ where the
limit is taken over all number fields L. = J. In the relative setting, e.g L/K, we compute
discriminants to K and use the degree of L/K when taking roots.



1. Depth of relations and the Theorem of Golod-Shafarevich
Good references are [22, Appendice] and [20].

1.1. The Zassenhaus filtration. — Consider a finitely generated pro-p group G.
Denote by I := I the augmentation ideal of the completed algebra F,[G], ie., Ig :=
ker(F,[G] — F,). The powers I" of I are closed ideals and topologically finitely generated
over [F,.

Definition 1.1. — Given z € G, x # 1, denote by w(x) := max{n, z —1 € I"}. We
call the integer w(z) the depth or level/weight of x. Put w(1l) = oo.
Recall the Zassenhaus filtration of G:
G, ={9eGuw(g) =n}, n>1,

and that I/I* ~ G/[G,G]GP, hence, Gy = [G, G]GP. The sequence G, is a filtration of
open normal subgroups of G.
Proposition 1.2. — One has the following properties:

(i) For x € G, w(a?) = pw(z). Hence, if x € G, then 2P € Gy;

(13) For x € G, and y € Gy, one has [x,y] € Gpim;
(i13) For x,y € G, w(zy) = min(w(z),w(y)).
Proof. — See §7.4 of [20]. O

Hence w is a restricted filtration following the terminology of Lazard (see [22, Appendice
A2, Définition 2.2 page 201]). In fact, one even has:

Proposition 1.3. — The Zassenhaus filtration of a pro-p group G, is the minimal fil-
tration on G satisfying:

(1) w(G) = 1;
(1) w(z?) = pw(z);

(1ii) for allv >0, G, := {z € G,w(x) = v} are closed.

Proof. — See Lazard [22, Appendice A2, Théoreme 3.5 page 205]. n

1.2. The inequality. — Let G be a finitely generated pro-p group of p-rank d. Let
l1—-R—F-5G—1

be a minimal presentation (&) of G: here F is a free pro-p group on d generators with
its Zassenhaus filtration w.

Suppose that R can be generated by {p;,7 = 1,---} as a normal subgroup of F. We
denote R = (p;,i = 1,---)N. For k > 1, put

e = #{pi, w(pi) = k}

and assume each ry is finite. Usually one assumes that r, = 0 for large k, but this is not
necessary and we will not do so in Theorem 2.7. We denote by

Py(t) :=1—dt Y rit* e R[t]

k=2



a Golod-Shafarevich polynomial (in fact series) associated to this presentation (observe
that P» depends on the p;). If we have no information about the depth of the relations
of R, then we take Py (t) = 1 — dt + rt*, where r = d, H*(G) (when it is finite).

Theorem 1.4 (Vinberg [36]). — If G is finite, then
Py(t) >0, Vt€]0,1].
Proof. — Adapt the proof of [20], or see [1]. See also Anick [2]. O

Remark 1.5. — One may have partial information on the depth of the relations. For
example, assume that one has only w(py) = ay for all k. Then as 1 —dt +Zpk t% > Py(t)
(coefficient by coefficient), if 1 —dt + 3., ¢* has a root on ]0, 1], then G is infinite. When
one has to assume all relations are depth two, we obtain the Golod-Shafarevich inequality
‘r < d*/4’ that guarantees G is infinite. We say that G passes the Golod-Shafarevich test
if there exists tg €]0, 1[ such that Px(ty) < 0. Observe that if Ps(ty) = 0 then G is
infinite, but for many of our applications we need some ¢, such that P (tg) < 0. Finally,
it is known that if G passes the Golod-Shafarevich test and d > 2, then G is not analytic.

1.3. Detecting the depth of an element. — We start with a minimal presentation
(2) of G:
l1—-R—F-5G—1

One has the following result that gives a relation between the Zassenhaus filtrations wg
of F and wg of G.

Proposition 1.6. — The Zassenhaus filtration wg of G coincides with the filtration
quotient of the Zassenhaus filtration wp of F: for all g € G, wg(g) = max{wp(z), p(z) =
g}. Hence, forn > 1,

G, ~ F,R/R ~ F,/F, A R.
Proof. — See Lazard [22, Appendice 3, Théoréme 3.5, page 205]. ]

Definition 1.7 — The Frattini series of a pro-p group G is defined by ®;(G) = G and
®,.1(G) = GP[G,,, G,].

Given g € G and = € F such that p(z) = ¢g. Often, one wants to detect the depth of
reF.

Proposition 1.8. — Put p(z) = g € G such that wg(g) = wr(z). One has wp(z) = k
if and only if, g € Gi. In particular,
(i) g€ GP[G,G] = wp(x) = 2;
(11) g € GG, Gy] = wrp(x) = 3;
(ii7) g € D,(G) = wp(z) =21

Proof. — (i) Recall that G, = GP[G, G].

(ii) Consider the p-central descending series G,). Then G,y < G, for all n > 1 (see for
example §7 of [20]). Hence, if g € G(3) = G5[G, G2], then g € G3 which is equivalent to
wa(g) = 3, and then wr(z) > 3.

(7i1) Clearly ®3(G) = Gy and as @,,1(G) = (9,(G))?[P,(G), P,.(G)] < Gan. O



1.4. On some special quotients of a pro-p group G. — We study some infinite
quotients of G.

Proposition 1.9. — Take (x;)ier € G a family of elements of G with wg(x;) = 2 for all
z;. Put T := G/{x;,i e )N. Suppose that G is given by a minimal presentation () with
a Golod-Shafarevich polynomial Py(t). Then for the natural minimal presentation

1— (R, {yiie DN —TF LT —1

of ', where y; are chosen such that o(y;) = z; and wp(y;) = wa(x;), a Golod-Shafarevich
polynomial of T for this presentation is Py(t) + >, t°¢@).

Proof. — Obvious. [
Much of what we need follows from this easy proposition:

Proposition 1.10. — Let G be a finitely presented pro-p group with a minimal presen-

tation (2?) and a Golod-Shafarevich polynomial Py (t) of G (following (£?)). Suppose

that P»(ty) < 0 for some ty €]0,1[. Then for suitable k > 2 and k' = 2 we have
k/

t
Py (to) + th < 0 and Py (ty) + ; Ot <0.
— 1o
(i) Let §f € F be such that wp(f) = k. Then the group quotient F/{R,$)N ~ G/o({f)N) is

also infinite.

(17) Take a sequence (f;); € F, i = 0, such that wp(f;) = k' + . Then the group quotient
F/(R. i)Y = GJp((Gi, DY) is also infinite.

Proof — Let us start with a minimal presentation 1 — R — F % G — 1 of G.
(7). When one adds a relation of depth at least k > 2, the p-rank does not change. Take
now the following minimal presentation (') of I':

1 —>R —F T 1,

where R’ = {f, p;, )N, the p; being some generators of R as normal subgroup of F. Now, a
polynomial of Golod-Shafarevich for I and (') can be written as (thanks to Proposition
1.9) Pyi(t) = Pyp(t) + t*. But k is chosen so P (tg) < 0, then Theorem 1.4 gives that T’
is infinite.

(ii). Put I := G/o({f;,)N). First, as the elements §; are in Fj,;, with &' + 4 > 2, then
d,I' = d,G = d. As in (i), take now the following minimal presentation (') of I":

l1—>R —F—T—1,

where R’ = {pj, §i,4,7)N, the p; being some generators of R as normal subgroup of F.
Now, a polynomial of Golod-Shafarevich for I" and (&) can be written as (thanks to
Proposition 1.9):

/ / ].
Pt )+t Nt = Po(t) + tF ——,
(1) < D = Palt) +
which is negative at ¢ = to by assumption. Apply Theorem 1.4 as in (7). H

Sometimes one can say a little bit more. As usual, let d and r be the number of generators
and relations of G. Set a = 2r/d. Suppose a > 1 and put

A:{taJ 0t

a—1 a€Zsg ’



Choose now m € Zx» such that

Lemma 1.11. — Let G be a finitely presented pro-p group such that r < d*/4 and
2r/d > 1. Take X and m as above. For k > 0, take distincts elements f;, € F with
=1, Nt such that we(f;r) = m + k. Then the group quotient G/o({F;x, J,k)N)
is also infinite.

Proof. — Put I' := G/o({J;x,j, k)N). As before the new relations all have depth at least
two so d,I' = d,G = d. Take for G the polynomial Py (t) = 1 — dt + rt*>. Here, a
Golod-Shafarevich polynomial Pz of I' can be taken as

o0
P@/(t) _ Pa)(t) + Z )\m-&-ktm-i-k.
k=0

As X < 2r/d, the series converge in the neighborhood of ty = d/2r. Hence, one has:

Py (d/2r) <1 - @ + <%>

4r 1—%<07

and Theorem 1.4 applies. O]

In Galois contexts the quotients of Proposition 1.9 and Proposition 1.10 correspond to
subextensions, so we will use the term ‘cut’ to apply both to Galois groups and the
corresponding towers of fields.

2. Infinitely many splitting in Kg/K

In this section we address a question of Thara.

2.1. Wilson’s result. — Our main result, Theorem 2.7, builds on a group-theoretic
result of Wilson [37], the number-theoretic interpretation of which we give below.

Theorem 2.1. — Let K be a number field, and S be a finite set of places of K coprime
to p. Suppose that Gg passes the test of Golod-Shafarevich (which is the case if d,Gg >
ak,s). Then there exists an infinite pro-p extension K/K in Kg/K where all Frobenius
elements are torsion.

Proof. — Let Px»(t) be a Golod-Shafarevich polynomial of Gg for which Gg passes the
test. Let x1,2,... be an enumeration of all Frobenii of primes not in .S. By hypothesis
Ps(ty) = —d < 0 for some ty €]0,1[ . Using Proposition 1.2 (i) and Proposition 1.10
we can add in a relation corresponding to a suitable p-power of x; so that the new
Golod-Shafarevich polynomial with this relation imposed is Px(t) + t* and Pa(ty) +
t’gl < —6/2. Now add in a suitable relation corresponding to a power of x5 and the
new Golod-Shafarevich polynomial with this relation imposed is Py (t) + t* + t*2 and
Py(ty) + t& + t> < —6/2. Continuing on with powers of 23, x4 etc. the resulting

series, Py (t) satisfies Py () < —6/2 < 0 so the corresponding quotient of Gg, fixing K,



is infinite. By construction, the Frobenius of any unramified prime in this quotient is
torsion. 0

Remark 2.2. — For extensions for which Frobenius elements have uniformly bounded
orders see Checcoli [4].

Remark 2.3. — Note that every p-adic analytic quotient of the infinite quotient that
appears in Theorem 2.1 is finite: this is more or less obvious, due to the fact that an
infinite p-adic analytic group has an open subgroup of finite cohomological dimension
and is then torsion free (note here, we can do the same operation with Gg,).

2.2. Main result. —

Definition 2.4. — Let K be a number field and let L/K be a (possibly infinite) algebraic
extension. The root discriminant of K is rdk := |Disc(K)|YI&@ . The root discriminant
of L/K is lim sup; |Disc(J)[Y¥] where L o J > K and [J : K] < .

Definition 2.5. — An infinite extension L/K is called asymptotically good if its root
discriminant is finite.

Given an (possibly infinite) extension L/K, and a prime p of K, let f(p) be the residue
degree extension of p in L/K. Put 9,k = {p < Ok | p a prime ideal, f(p) < o0}.
We introduce the estimate given by Thara in [17]. See also Tsfasman-Vladut [35].

Theorem 2.6. — Let L/K be an infinite asymptotically good extension. Then (assuming
the GRH),

log N
DY logN(p)
Koo pET /K (X) N(p) -1

(For an unconditional estimate, remove the square root in the deminator.)

Theorem 2.1 produces asymptotically good extensions L/K where 7,k is maximal,
namely it consists of all primes of Ok except the finite set of ramified primes in L/K
(L/K asymptotically good implies only finitely many primes ramify). This had been
suspected by Thara in [17]. In fact we can do more.
Let

Jk = {p < Ok | p a prime ideal, f(p) = 1},
be the set of prime ideals p of K that split completely in L/K. Using Proposition 1.10,
we will exhibit an asymptotically good extension f(/ K for which %  is infinite.

Theorem 2.7. — Let K be a number field, and S be a finite set of places of K coprime
to p. Suppose that d,Gs > axs. Then there exists an infinite pro-p extension K/K in
Ks/K for which:

(i) the set A1k is infinite;

(i) the set Fix is maximal.

Proof. — Let 1 — R — F % Gg — 1 be a minimal presentation of Gg. By
hypothesis r < d?/4. Take Pz(t) = 1 — dt + rt* as a Golod-Shafarevich polynomial,
and note that Py (d/2r) = 1 — d*/4r < 0. We will apply Proposition 1.10 (i7) with
to = d/2r €]0,1] and k" as given there. We will take the quotient by infinitely many
Frobenii z; of unramified primes whose depth is at least &'+ in Gg. For i > 2, denote by



G; the image ¢(F;); Proposition 1.6 gives that G; is also the Zassenhaus filtration of Gg.
Now, for ¢ = 0, choose a prime ideal p; of Ok such that its Frobenius x; € Gg is in Gy
(in fact a conjugacy class there), and such that p; ¢ {po, - ,pi—1}. Choose y; € Fro;
such that ¢(y;) = x; so wp(y;) = k' +i. The quotient I' of Gg by the normal subgroup
generated by the Frobenius x; of the primes p;, i = 0 is

[~ Gs/Cws, i)™ ~F/(R, i, )",

Denote by L = Kg the fixed field by (z;, i = 0)N; Gal(L/K) ~ I'. By Proposition 1.10
(17), the pro-p extension L/K is infinite, and each prime p; has trivial Frobenius in L and
thus splits completely; in other words .71,k is infinite. Observe now that we can take

tk
- o 2 m o 2
P(t) =1—dt+ rt* + E t"=1—dt+rt t1 3

m>k

as a Golod-Shafarevich series for L/K; here k has been taken such that P(ty) < 0, where
1
to = d/2r €]0, 5] Now it suffices to apply Theorem 2.1 to L/K to obtain a subextension

K/K of L/K for which J x is maximal. Moreover as S, x < & i then Fg e is
infinite. ]

Remark 2.8. — Theorem 2.7 is particulary interesting in the context of Tsfasman-
Vladut [35]. See also Lebacque [23].

In Theorem 2.7 one can say a little bit more about .#7,x. For a (possibly infinite) Galois
extension L/K of a number field K, and for X > 0, put

x(X) ={pe Ax, Np) <X}, and mx(X) = |71,k (X)|

The effective version of Chebotarev’s Theorem allows us to give an upper bound for
7k (X) when the extension L/K is asymptotically good. Indeed:

Proposition 2.9. — If L/K is asymptotically good, there exists a constant B = 0 such
that for X > 2 (assuming the GRH),

T (X) < OXY2 ([K : Q]log X + log |disc(K)| + B),
where C is an absolute constant. When L/K is unramified, one can take B = 0.

Proof. — Pass to the limit Theorem 4 of [34, §2.4]. O

2.3. Norm of ideals in Kg/K. — Suppose Gg tame and infinite. Denote by G,, the
Zassenhaus filtration of Gg. Suppose moreover that r < d?/4: the pro-p group Gg is not
analytic and then G,, # G,41 for all n (see [5, Chapter 11, Theorem 11.4]).

Remark 2.10. — When Gg is tame and infinite, by the tame Fontaine-Mazur conjec-
ture |7, Conjecture (5a)] Gg must not be analytic and then G,, # G, for all n.

Definition 2.11. — Let G := Gg be tame and infinite. For a prime p ¢ S, denote by
x, the Frobenius at p in Gg. Define for i > 1,

N,, := min{N(p), z, € G,\Gp11}-



Recall pro-p extensions of a number field that are tamely ramified at a finite set of places
are always asymptotically good. One can produce some asymptotic good extensions
where the set of splitting is infinite, and in particular, by our construction, the series

Z log N,
converges.
n=2 Vv Nn

Theorem 2.12. — Assume the GRH. Let Kg/K be a pro-p and tame extension for which
d,Gg > aks. Then, considering the Zassenhaus filtration G,, of G := Gg, one has along
the tower Kg/K the estimate: for infinitely many n,

N,, » n?.
One can say more when d < r and r < d?/4, that is when 2/r < d <.

Definition 2.13. — Set G := Gg be tame and infinite, and for a prime p denote by z,
the Frobenius at p in G. Define for n > 1, and k € Z3,,

Of course, NI = N,,.

Theorem 2.14. — Assume the GRH. Let Gg be the Galois group of a tame p-tower for
which r < d?/4. Choose A and m as for Lemma 1.11. Put By, := \*™. Then for
infinitely many k,

N .= the kth smallest norm of a prime p with z, € G,\Gp41.

Proof. — Set G := Gg. Observe that here r —d > 0. For k > 0, let us choose \**™ differ-
ent prime ideals p;, = Ok (of smallest norm as possible) such that x,,, € Gyix\Grgrsr-
The element x,, , is of depth m + k. Denote by K := Ké@(yi”“)’ "% Then Lemma 1.11

implies that f{/ K is infinite: it is an asymptotically good extension where each prime p;
splits completely. Put g, := A*™™. Then by the estimation of Thara (Theorem 2.6) for
K/K, one has:

< 0,
k=0 N](gﬁk m)
which implies that N,(fj km) 5 A2KH2M for infinitely many k. O
2.4. The case of the center. — Using Proposition 1.10, one can also cut Gg by some

special commutators. As we will see, this shows the limits of our method.

Let Gg be as usual and let {a1,---,a4} be a minimal system of generator of Gg with
Zassenhaus filtration wg. Let x be a non-trivial Frobenius element in Gg. Then
wg([z,a;]) = 1+ wg(z). Hence, assuming that Gg passes the Golod-Shafarevich test
(r < d*/4), we are guaranteed that when wg(z) is large then ' := Gg/{[z,a;],i = 1,- - d)N
is also infinite.

Proposition 2.15. — The class of the Frobenius element x in I is non-trivial and is
in the center Z(I') of T.

Proof. — In T, the class of x commutes with the class of a;, for ¢ = 1,--- ,d, and thus
with every element as the a;’s topologically generate I'. That wg ([, a;]) > wg(z) implies
x is not trivial in I O

10



Now let us remark that {[z,a;],i =1,--- ,d) = ()N, hence
I':=Gg/[z,a],i=1,---,d)N - T":= Gg/{z)N.

Here for the infiniteness of I' one has to check if

(1) 1 —dt +rt? + dt*™*

has a root in |0, 1[. For the quotient I”, one has to check if

(2) 1—dt+rt* +t*

has a root in ]0,1[. Some easy algebra shows that (2) is stronger than (1): in other
words, to prove that I' is infinite it is better to use the criteria for IV. Indeed, when
(d,7) = (9,21) and k = 3, the polynomial 1 — 9¢ + 20¢*> + > has a root in |0, 1[ but
1 — 9t + 20t% + 9t* does not, so the Golod-Shafarevich test gives I is infinite and we can
only conclude that I" is infinite as it has I as a quotient. Note:

Proposition 2.16. — Suppose that all primes in S are coprime to p. The pro-p group
I is infinite if and only if I is infinite.

Proof. — Clearly #I”" = 0 = #I" = .
Let N and N’ be the kernels of the maps Gg —» I' and Gg — I". If I" is finite then KY
is a number field and K& /KY is a finitely generated tamely ramified abelian p-extension.

By class field theory such extensions are always finite so K5 /K is finite and thus T is
finite. O

This situation shows that some cuts may be not optimal.

3. The constants of Martinet

In this section we set new records for root discriminants in asymptotically good totally
complex and totally real towers.

Recall that for a number field K with [K : Q] = n, the root discriminant of K, denoted
rdy, is |disc(K)[*/". There are absolute lower bounds, improved over the years, that
include terms that go to 0 as n — oo. These lower bounds depend on the signature of
K and have been achieved by analytic methods. The best lower bounds depend on the
GRH.

The term that goes to 0 with increasing degree makes it natural to consider towers of
number fields and take the lim sup of the root discriminants. For the p-power cyclotomic
tower it is an exercise to see this limsup is co. It is also an exercise to see that root
discriminants are constant in unramified extensions. Thus the work of Golod and Sha-
farevich establishing the existence of infinite Hilbert Class Field towers also immediately
gave a rich supply infinite towers with bounded root discriminants. Recall Euler’s con-
stant 7 := lim, o ((3;_, ) —logn). The current GRH lower bounds for infinite towers
are 8me? ~ 44.763 for totally complex fields and 8me?*2 ~ 215.33 for totally real fields.
See [30] for a nice history of this work up until 1990.

It is also natural to seek explicit examples of infinite towers with small limsup of the
root discriminants. Martinet and then Hajir-Maire gave totally real and totally complex
infinite towers with small root discriminant.

11



Hajir-Maire introduced the idea of allowing tame ramification. One can show the relevant
Galois groups are infinite using the Golod-Sharafevich criterion, and the root discrim-
inants can be bounded by tame ramification theory. Here we improve their results by
using our technique of cutting towers.

3.1. Tame towers with finite ramification-exponent. — We will again use Propo-
sition 1.10. The set S will consist of p with N(p) = 1 mod p. Recall that d = d,H'(Gg) =
d,Gg is the p-rank of Gg and r = d, H?(Gg) is the minimal number of relations of Gg.

Definition 3.1. — Fix k > 1. Denote by Kgc]/K the maximal pro-p extension of K
unramified outside S and where the exponent of ramification at p € S is at most p* so

Ky = Kg. Put G .= Gal(K¥/K).

Remark 3.2. — The extension ng] /K is well-defined because inertia groups are cyclic
in the tame case.

Proposition 3.3. — Assume that r < d?/4. Put ky = [log(% —1)/log(d/2r)]. Then,
for k =log,(ko), the extension ng]/K is infinite.

Proof. — We follow the notations of Proposition 1.10. We have chosen ky so that

Pyi(t) = 1 —dt + rt* + tho is negative at t = d/2r. Take as x a generator of the in-
ertia group at p in Kg/K, cut by 27" and apply Proposition 1.10 (7). ]

Recall the root discriminant of a number field K is denoted by rdk. The interest of
extensions as above is the following:

Proposition 3.4. — In the tower Kg]/K the root discriminant is bounded by
rdy - (N(p)®ar) ' 7o,
Proof. — The result follows from the basic theory of tame ramification. m

In [13] it is shown, by taking the limit in the above Proposition, that the root discriminant
1

of Kg/K = K§/K is bounded by rdy - (N(p) ).

We can now give an answer to a central question of [12]:

Theorem 3.5. — Suppose S # & such that d,Gs > akxs. Then there exists a finite
extension L/K in Kg/K such that Ly /L is infinite.

Proof. — Observe that wlog we can assume that S = {p} contains only one prime. By

hypothesis, r < d?/4, so for large k, the extension K[gk] /K is infinite. The inertia group
at p is a quotient of Z/p*Z. By changing the base field, there exists a finite extension

L/K such that Kgﬂ /L is unramified and infinite. O

3.2. Some set up. — Let K be a number field and S a finite set of finite places of K.

Let
Vs={zxeK*|xze (K))? forvesS and v(z) =0 mod p, ¥ v}

and let Bg to be the character group of Vg/(K*)?. Recall the exact sequence
0 — Mg — H*(Gs) — @es H*(Gx, )

12



where each term on the right is just Z/pZ or 0 depending on Jk,, = 1 or 0; observe
also that when 6k , # 0, global reciprocity implies the image of the right map lies in the
hyperplane of terms that sum to zero.

From Chapter 11 of [20] we know

(3) dpGs = (Z Ky : Q] > oK p + <Z 0K, p) (r1 +72) + 1+ dp(Bs)

veSy ves

and there is a natural injection 113 < Bg which is an isomorphism if S contains all
primes of K dividing p (and infinity for p = 2).

Remark 3.6. — Numerically showing the injection above is not an isomorphism in ex-
plicit tame cases would likely lead to strong improvements in root discriminant bounds
in asymptotically good towers.

When S is tame software will allow us to explicitly compute d,Gg in many cases, thus
.. d,Bb S=7

d,B tly and th bound 7(Cg) < Pl .
giving d,Bg exactly and the upper bound r(Gg) { 4,Bs + |S| - 6k, S+ &

3.3. Examples and records. — For various computations of H's and ray class groups
we have used the software packages PARI/GP [32] and MAGMA [3]. We take always
p = 2 in this subsection.

3.3.1. An example of J. Martin. — In his Ph.D. thesis, [25], Martin found a degree 8
totally real number field K whose 2-class group has rank 8. Equation (3) gives that
dimBg = 16 so dim H*(Gy) = dimIII}; < dimBg = 16. The Golod-Shafarevich
polynomial is (at worst) P(t) = 1 — 8t + 16¢%. Note P(1/4) = 0 so Gy is infinite. As
Martin’s thesis is unpublished, we record his polynomial here: x® — 329725 + 147902° +
35553412t — 2445744023 — 134736175522 + 77442223502 + 149856133975 Its discriminant
is (3%-5%-72-13-29? - 53-109)% and the root discriminant is less than 913.4927.

3.3.2. The totally complex case. —

o Take K = Q(1/13,4/=3 -5 - 17). Software gives d2Gg = 4 so Equation (3) gives dyB g =
6. The Golod-Shafarevich polynomial 1 — 4t + 6¢* has no root so we cannot conclude G g
is infinite. There are two primes above 43 in K, both having norm 432, Take S to be
either of these. We write S = {py32}. Software gives that doGg = 5 so dobg = 6 and
r(Gs) <6+ 1—1=6. In this case the Golod-Shafarevich polynomial 1 — 5¢ + 6¢* has a
root in |0,1[. As dyGg =4 < 5 = dsGg, the generator of inertia 7, , € Gg has depth 1

by Proposition 1.8 (iii). We cut Gg by the relation Tp ,» Which has depth at least 4 by

Proposition 1.2. As 1 — 5¢% + 6t + ¢! has a root in ]0, 1[, the group GS is infinite, and
in this tower one has:

rd, g = rdy - (43%)70°1 < 235.9351.
S
This is not close to the record of 82.1004 in [14] .

e Take the number field K with polynomial 2'2+1382'° — 294657928 — 119127 + 14208825 —
7832725 + 14955302 — 149209423 + 854906422 — 6548187x +27239851. The field is totally
complex and software gives

l"dK < 757332, dgG@ =7 and dQB@ =13.
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The Golod-Shafarevich polynomial 1 — 7¢ + 13t% has no root so we set S to be the one
prime pg above 3. It has norm 9 and software gives doGg = doGg = 7 so 7, is of depth
at least 2 by Proposition 1.8 (i7i) and Tp29 has depth at least 4. One sees that dybg = 12
and r(Gg) < 12. As 1 — 7t + 12¢* has a root in |0, 1[, G is infinite. After cutting by 7,,
our Golod-Shafarevich polynomial 1 — 7t + 12¢2 + 4 has a root in ]0, 1] so G5! is infinite
and

1.

rdyp = dic - (9)7 (1-2) < 82.9940.
This is quite close to the record of 82.1004 of [14].

¢ In this example we establish a new record by cutting the old one. Consider the totally
complex number field K of degree 12 in [14] with polynomial z'? + 339z1° — 197522 —
218873520 + 284236829x* + 440134950622 + 15622982921. Let H be the Hilbert Class
Field of K. Software yields that Gal(H/K) ~ (Z/2)% so

dyGg =6, By =6+ 1y =646 = 12 and r(Ggy) < 12.

The polynomial 1 — 6t + 12t is always positive so we cannot conclude that the maximal
pro-2 quotient of Gy is infinite. Here rdx < 68.3636. Now take S = {po}, the unique
prime above 3 of norm 9. Software gives doGg = 7 so dobg = 12 and we have the
bound r7(Gg) < 12+ 1 — 1 = 12. The polynomial 1 — 7¢ + 12¢? has a root in ]0, 1] so
Gy is infinite. As doGgy = 6 < 7 = dyGg, 7, has depth 1. We cut by 7';19 to get Golod-
Shafarevich polynomial 1 — 7t 4+ 12¢? + t* which has a root in ]0, 1] so G[SQ] is infinite, and
in this tower

1

rdy = rdc - (9)72 (1) < 78.4269.

This is a new record with savings a factor of 3'/2* ~ 1.04683. ..

3.3.3. The totally real case. —
e We establish a new record here as well. Let K be the totally real field of [14] of
degree 12 over Q. It’s polynomial is 2'? — 5696620 + 9590481812% — 594648298143925 +
14419821937918124x* — 127054259798355299412% + 3527053069602078368989 and rd <
770.6432. All primes above 13 in K have norm 13. Take S to be any one of them.
Software gives

dQGQ = dQGS = 9, dQB@ = 21 and dQBS = 20.

The Golod-Shafarevich polynomial for Gy is 1 — 9¢ + 21¢* and has no root in ]0, 1]
so we cannot conclude Gy is infinite, though we suspect it is. The Golod-Shafarevich
polynomial for Gg is 1 — 9¢ + 20¢* which has a root in ]0,1[. As doGgy = deGg = 9 we
see T,,, has depth at least 2 by Proposition 1.8 (4i7). We cut by Tflg which has depth at

least 4. As 1 — 9t + 202 + ¢* has a root in ]0, 1] K§'/K is infinite and
rd = rdg - (13)12072) < 857.5662.
S

This is a new record with savings by a factor of 13%/%* ~ 1.11279. ..

3.3.4. Comments. — In the example above, a hope would be that 7, , has depth greater
than two in Gg. In that case we could cut by the relation 7,,, and the corresponding
Golod-Shafarevich polynomial would be at most 1 — 9t + 20¢% + ¢* which has a root in
10,1[. One would then have that K has infinite 2-Hilbert Class Field Tower and the

14



totally real root discriminant record would be < 770.644. We do not see how to check
the depth of 7,,, in Gg. See also the beginning of §5.

The totally complex record was 82.1004 with a GRH lower bound of 8me” ~ 44.763. For
the totally real case, the record was 913.4927 and the GRH lower bound is 8me?*2 ~
215.33. One should probably take the ratio and then logs to measure distance to the GRH
bounds. Then for a number field K, let us define d(K) = log(Rdk/a) where ov = 44.763
if K is totally imaginary or a = 215.33 if K is totally real. Let us recall the different
improvements. The ordered pairs in the table below are (rdx, 0).

Signature | Martinet (1978) | Hajir-Maire (2002) | Martin (2006) new records

tot. compl. | (92.368; 0.7244) | (82.1004; 0.6066) (78.427; 0.5608)

tot. real | (1058.565; 1.592) | (954.203; 1.488) | (913.493; 1.445) | (857.567; 1.382)

The recent improvement of ¢ in the totally imaginary case is 7.55%, and 4.36% for the
totally real case.

4. Cutting of wild towers

4.1. Local abelian extensions. — For this section, our results follow from this main
observation: we can cut wildly ramified towers if we first cut by local commutators. We
also assume throughout this section that in our wild extensions, the assertion of Kuz'min’s
Theorem holds, that is the pro-2 local Galois groups above (2) are maximal. In the first
totally complex example of §4.2 the hypotheses of Kuz’min’s Theorem are satisfied, but
we do not include the infinite places in the totally real example. It is possible that less
cutting is needed in the latter example.

Definition 4.1. — Take S = S, the set of p-adic places. Denote by Kk[gk]’p_ab/K the

maximal pro-p extension unramified outside S, locally abelian at p (and then at all

places), and for which the inertia groups at v|p are of exponent dividing p*. Put Gg“] pab

Gal(K¥P~ /).

Recall that for S = S, the pro-p group Gg is of cohomological dimension 2 and r(Gg) =
d(Gg) — 19 — 1. (For p = 2, S must contain all the infinite places, a vacuous condition in
the totally complex case).

Theorem 4.2. — Takep = 2 and S = S,. In K[ P ab/K the root discriminant is
1

Z”‘p f’u(2+ev 2¢ev fu

bounded by rdg - 2 [K:Q]

Proof. — Fix a place v|2 of K. By Kummer’s theory, the quadratic extensions of K,
are parametrized by the classes of K /K*? ~ (m,)/(x2) x U,/U? where the latter factor
has dimension e, f, + 1 over F5 so the maximal elementary abelian 2-extension of K, has
degree 2°v/v*2 We compute its discriminant over K, by using the conductor-discriminant
formula, namely we take the product of the conductors of all quadratic characters of K,,.
Note there is exactly one character for each quadratic extension, so the discriminant
equals the conductor in this case. It is elementary to compute an upper bound on the
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discriminant of a quadratic field, so by taking the product over all quadratic fields we ob-
tain an upper bound for our local discriminant. There are 2¢°/**2 —1 quadratic extensions
of K:

o 2¢vfutl _ 1 extensions corresponding to extracting the square root of a unit. These

have conductor dividing 4 = 72*. One extension is unramified and has conductor
1

o 2¢0/o*l extensions corresponding to extracting the square root of the uniformizer
times a unit. These have conductor 721,
For more details see for example [9, Chapter II, Proposition 1.6.3]. Thus the discriminant
of the maximal elementary abelian 2-extension of K divides

(7T26U>2€vf'u+1_2 . (7T26U+1)2€vf'u+1 _ 71_ev.281)f’u‘*':’3_;’_25’0](11-i-l_461)‘

Taking the 2¢/v+2th root, we get the root discriminant is
(r)2 e = (2)

This is the local contribution. The norm of v is 2/ so in the global root discriminant we
1 1
get a the factor 2/ (2+2 5% ) . Now sum over v|p and take the 1/[K : Q]th root. O

Remark 4.3. — One has Gg,/{[D,, D,],v|p) — G‘gf; = Gg/|Ggs,Gg] and then the

maximal local abelian extension Kg;“” /K of Kg, /K is infinite (it contains the cyclotomic

extension). In order to have a criteria proving that Kgc]’p _ab/K is infinite, we need a

Golod-Shafarevich polynomial of K% */K to have a root in 0, 1[.

4.2. Examples. —

4.2.1. — Take K = Q(v/=8-3-5-7-11-13) and p = 2. Software gives G% ~ Z/8 x
(Z/2)*, and for S = {p,}, the unique prime above 2, G¥ ~ Z2 x (Z/27Z)*. Also p, is not
principal and thus its Frobenius in Gz has depth 1.

In this totally complex wild case, global duality implies the natural injection 115 < Bg
from §3.2 is an isomorphism and r = r(Gs) =d — 1 —ry = 4.

Recall that the decomposition group at ps in Gg has at most 4 generators, as a quotient
of G, = Gal(K,/K,) this last group being isomorphic to the Demushkin group with 4
generators (here K, is the maximal pro-p extension of the complete field K,). Denote by
{z,y, z,t) these generators viewed in Gg. The structures of G% = Gg/[Gg, Gg] and of
G% show that the elements .y, z,¢ can be choosen such that ¢ (Frobenius) has depth 1
as does x, in inertia group. The other variables, y and z, have depth at least 2. Then

e [z,t] has depth at least 2,
o [z,y], [z, 2], [t,y], [t, z] have depth at least 3,
e and [y, z] has depth at least 4.

If we cut Gg by the local commutators, a Golod-Shafarevich polynomial to test becomes:
P(t) = (1 — 6t + 4t%) + (£ + 4% + t*) = 1 — 6t + 5t* + 4* + 14,

which has a root in ]0, 1[. Now, we can apply Proposition 1.10 to cut the ramification at

a certain depth; observe that the ramification in Gal(K?g;“b/ K) is generated by the classes

* is infinite: indeed the polynomial 1 — 6t + 62 + 4¢3 + 3t*

of x,y, z and its quotient Gg]z—a

has a root in |0, 1[.
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In this case the root discriminant in K§"*~ /K is bounded by rdy - 298 < 755.90358 - - -,
thanks to Theorem 4.2.

4.2.2. — In this example we demonstrate the effectiveness of using a mixed strategy
of simultaneous tame and wild cutting. Take K to be the Hilbert Class Field of the
cyclic cubic extension of conductor 163. The number field K is of degree 12 over Q with
equation given by z1? — 23210 4 1252% — 2312° + 1252% — 2322 + 1 = 0. Here for v|2,
fo = 3. Take S = {v|2,3,5,7}. Software and some basic theory give

e there are 4 primes in K above above 2, 3 and 7. There are 6 primes above 5,
e dyGgs = 18, and Equation (3) implies Bg = 0 so Hl% = 0 as well,
e r(Gs) < 17 so the Golod-Shafarevich polynomial is 1 — 18t + 17t which is very
negative on |0, 1.
We are going to cut by

e the local commutators of each place above 2, i.e. by 4 - 10 elements of depth at
least 2,

e the square of the generators of the abelian local inertia at the wild places (observe
that we can take a generator of order 2), i.e by 12 elements of depth at least 2,

e the fourth of the generators of the inertia at three places dividing 5,

e the square of the generators of the inertia of the other eleven places dividing 3-5-7.
Then the pro-p group of the new quotient has 1 — 18t + (17 + 40 + 12 + 11)t? + 3t* as
polynomial that has a root in |0, 1[. Here, one has

rd < 163%3 . (3.7 5212 (51/2)3/4 . 9%3/8 < 9742 95621 - - -

4.3. Cutting a p-rational tower. —

4.3.1. p-rational field. — Let us recall the notion of p-rational field (see for example [27],
[10], [28]).

Definition 4.4. — A number field K is called p-rational if the maximal pro-p extension
of K unramified outside .S, is free pro-p.

In the context of the inverse Galois problem, this notion is also very useful for producing
some special pro-p extensions of number fields: see Greenberg [11], Hajir-Maire [15], etc.
An easy argument from group theory gives:

Proposition 4.5. — Let K be a p-rational field and let L/K be a finite extension in
Ks, /K. Then L is p-rational.

Assuming Leopoldt’s conjecture, it is well-known that Gg, is pro-p free if and only if Ggf;
is torsion-free. The torsion of G‘g’; can be estimated by class field theory: in particular
U,) [O% which
is easy to compute. After many observations Gras [8, Conjecture 7.11] recently made the
following conjecture:

for p sufficiently large this torsion is isomorphic to the p-part of (H

veS)

Conjecture 4.6 (Gras). — Given a number field K, then for large p, K is p-rational.

We use Gras’ Conjecture to produce p-rational number fields L. with large p-class group.
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4.3.2. Results. — First, we obtain:

Theorem 4.7. — Let K be a totally imaginary field of degree at least 12 over Q. Choose
p > 2 such that : (i) p splits completely in K/Q and, (ii) K is p-rational. Then there
exists a number field L/K in Kg, /K such that Lg/L is infinite. Note that as Gal(Lg, /L)
is a subgroup of the free pro-p group Gal(Kg, /K) then L is p-rational.

Proof. — Let p > 2. As p splits completely in K, p, ¢ K, and G, is a free pro-p group
on 2 generators x,, 7,, where x, can be chosen as the Frobenius and 7, as a generator of
the inertia group.

Suppose moreover that G := Gg, is p-rational. Then we cut the free pro-p group G on
r9 + 1 generators by all the commutators [z, 7,] for all v|p, to obtain a pro-p extension
Kg;“”/ K corresponding to the maximal local abelian extension at every v|p of K unrami-

fied outside p; here 74 is the number of complex embeddings of K. Put I' := Gal(Kg;ab /K).
A naive presentation () of I allows us to obtain the Golod-Shafarevich polynomial

Poy(t) =1 — (ry + 1)t + 2ryt>.

As ry = 6, we easily compute that Py is negative on |0, 1[, and so for a large given k, if

we cut by the powers 77" of 7,, v|p, the extension Kgﬂ’p ~® /K is infinite. As Z/p* maps
onto the inertia group of all p|p, one concludes by a changing the base field. O

Recall that if a pro-p group G passes the test of Golod-Shafarevich, then G is not p-adic
analytic (when d > 3) and, by Lubotzky-Mann [24], the p-rank of the open subgroups U
of G tends to infinity with [G : U]. In fact, one has the following due to Jaikin-Zapirain
(see [18] or [6, Theorem 8.3]):

Theorem 4.8 (Jaikin-Zapirain). — Suppose that a pro-p group G passes the Golod-
Shafarevich test. Then there exist infinitely many n such thatlog, d,G, = (log,[G : G,])”,
for some B €]0, 1], where G,, is the Zassenahaus filtration of G.

In our context, as corollary, one obtains:

Corollary 4.9. — Let K be a totally imaginary field of degree at least 12 over Q. Choose
p > 2 such that : (i) p splits totally in K/Q and, (ii) K is p-rational. Then there ezists
a constant > 0 and a sequence of p-rational number fields (L,) in Kg, /K such that

log d,Cly,, » (log[L,, : Q])’B )

where Cly, is the class group of L.

Proof. — Choose k as in proof of Theorem 4.7 such that Kg;]’p _ab/K is infinite. Put
G = Gal(K[S]j’p ﬂb/K), and consider G,, the Zassenhaus filtration of G. Let K,, be the

subfield of Kgﬁ’p “* /K fixed by G,: by Proposition 4.5 all the fields K, are p-rational.

Take ng large enough so that the pro-p extension Kg;]’p _ab/Kno is unramified: this is

always possible because G, forms a filtration of open subgroups of G and for each v|p
the inertia group in G is finite.

By hypothesis the group G passes the Golod-Shafarevich test: by Theorem 4.8, for in-
finitely many n > ng, we get log, d,G,, = (log,[G : G,])?, for some f3 €]0, 1[. To conclude
it suffices to note that for n > ngy the extension ngp]’p _ab/Kn is unramified, and then by
class field theory one has d,Clk, > d,G,,. O
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5. Depth of ramification

5.1. Motivation. — Let us start with one comment that motivates this section. Let
P(t) = 1 —dt + rt* be a polynomial with no root on [0, 1] but such that 1 —dt + (r — 1)¢?
has a root. For example, take the totally real field of §3.3.2 where (d,r) = (9,21) .

Suppose that Gg has P as Golod-Shafarevich polynomial for a certain minimal presen-
tation (). Then with S = {p}, p coprime to p, and when p, < K, the group Gg has
parameters (d,r — 1), or (d+ 1,7). If r > 1, it is easy to see Gg is infinite in either case.
Suppose now that the generator of inertia at p, 7,, has depth at least k in Gg. If we cut
Gs by {7, the Golod-Shafarevich polynomial becomes 1 — dt + (r — 1)t + t*, and for
large k it has a root. In this case we can introduce the relation 7, and observe Ky /K is
infinite. For (d,r) = (9,21) we need k > 3.

Question 5.1. — Suppose Gg is infinite. To simplify, take S = {p} with p coprime
to p. How deep can the generator 7, of tame inertia be in Gg?

5.2. Add a splitting condition. —

5.2.1. Detect the level of inertia. — Let S and T be finite disjoint sets of primes of K.
We denote by K% the maximal pro-p subextension of Kg/K where all places of T split
completely. Put G§ = Gal(K§/K). Consider the Frattini series ®,(G}) and ®,(G§).
Set K,, := (K%)q’"(eg). We abuse notation and set w 1= wgz.

If L/K is a finite subextension of K§/K, we denote by G{ ¢ the Galois group Gal(Lg/L).
To simplify, we assume that S = {p} where p < Ok is coprime to p. Let 7, € G§ be a
generator of the inertia group at p in K% /K.

Lemma 5.2. — If d,G, , = d,Gf, ¢ for some n, then w(r,) = 2"

Proof. — For m > 1, write K, = (K%)®(G%)_ If, for i < n + 1, we had a p-extension
of K; unramified outside S but actually ramified there, we could take its composite
with the unramified extension K,,/K; to contradict the equality of our hypothesis. Thus
d,G¥, s = dpGi, g for all i < n+ 1. Hence, one has Ky = Kj, then K3 = Kj etc. up
to K,4+1 = K/,,;. In particular the extension K/ _,/K is unramified and 7, € ®,,,(G%);
in other words G§/®,.1(G%) ~ GL/®,.1(GL). By Proposition 1.8 (iii), we get w(r,) =
2", ]

5.2.2. Depth and freeness. — Recall from §3.2 that
Vg ={reK*ze (K))’ Yve S and v(z) =0 mod p, Yv}
and set
VI ={zeK*|v(x) = 0mod p, Vv ¢ T}
and
Vi={rzeK*|lre(K)PVveSand v(zr) = 0 mod p, Vv ¢ T}.
Note V¥ = V. If we switch fields to some L 2 K, we will include the field in the notation
to avoid confusion, e.g. V{ or V{ g. One has
(4) 1 — O 7/ (0% r)" — Vi/(K*)" — Clg[p] — 1,

where Oy ; denotes the group of T-units of K and ClL the p-Sylow subgroup of the
T-class group of K. Put K’ := K(u,) and K{;) = K'(¥VT). One has [9, Chapter V,
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K/ /K’
Corollary 2.4.2] involving the Artin symbol ((T)/> in Gal(K{z)/K'). Note that S

and T there are our 7" and S here respectively.

Theorem 5.3 (Gras). — Let S = {p1,--- ,ps} be a tame set of primes of K. There
exists a cyclic degree p extension F/K, unramified outside S, totally ramified at S, and

where each place of T splits completely, if and only if for i = 1,--- s, there exist a; €
(Z/pZ)* such that

El K/ K/ a;
I (m/ ) =1 € Gal(K{/K'),
i=1 P

where B;|p; is any prime in Ok above p;.

Now choose p of K whose Frobenius in K/, /K has order p and set S = {p}. This implies
that for P < Ok with PBlp the Frobenius zq € Gal(K{s)/K') at P is nontrivial. Theo-

rem 5.3 implies that d,G§ = d,GJ, hence 7, has depth at least 2 in G§ by Lemma 5.2.

T
2(C7,

We want to apply this principle to the number field Ky = (Kg) ) bearing in mind

the Galois action of GL/®2(G).

Let us fix a Galois extension L/K with Galois group H inside KJ/K. One has the
following consequence of Theorem 5.3.

Corollary 5.4. — Suppose that VI /(L*)P has a non trivial free F,[ H]-submodule. Then
there exists a prime p < Ok such that d,G{ 5 = d,G{ g where S = {p}.

Proof. — Suppose that V{ /(L*)? has a free F,[ H |-submodule M of rank 1; as the algebra
F,[H] is Frobenius, the free submodule M is a direct factor in V{/(L*)?. By Kummer
duality, one deduces that Gal(L’(T) /L) contains a free F,[ H]-module of rank 1, generated
by some g. By Chebotarev’s density theorem one can choose a prime p = Ok such that its
Frobenius in Gal(L’(T) /K) is in the conjugacy class of g; the prime p splits completely in

Li./L/
L'/K. Put S = {p}. Denote by 9y a prime ideal in &1, above p such that ( n/ ) =g.

Qo
K/ _ g ana is a free F dule, there i
ar =g¢" ', and as (g)y is a free F,[H]|-module, there is no

But Vh € H we have <

L) /L
nontrivial relation between the ( (B}{ )’s. By Theorem 5.3, there is no degree p cyclic
0
extension F/L ramified at some places of S, unramified outside S, and where each place

of T splits completely, and then d,G{ = d,G{ g. O

Remark 5.5. — Let L/K be a Galois extension of number fields with Galois group H.
Let T be a H-invariant set of places of L. Here are two ways to produce situations where
VI /(L*)P has a free- H-part:

(1) for large |T'| with size depending on |H| (thanks to a bound given by Ozaki [31],
see also [16]), we are guaranteed that 07 @ F,, and then also V{ /(L*)? by (4),
contains a nontrivial free F,[ H]-submodule. But the bound for |T'| is very bad,;

(#7) by Kummer theory, and by an appropriate choice of T, we are guaranteed that
VI /(L*)P contains a nontrivial free F,[H]-submodule. This is the method we will
use.
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5.3. A result. — We prove the following

Theorem 5.6. — Let K be a number field. Then given k > 0 there exists infinitely
many primes q, such that for infinitely many primes p, coprime to pq, one has w(r,) = k

in Gal(K %g{/K)

As we will see the proof of Theorem 5.6 can be reduced to the next Proposition.

Proposition 5.7. — Let L/K be a given finite p-extension with Galois group H. There
exists a positive density set ©1 of primes q of K, all coprime to p and all split completely
in L/K, such that for all t € N and for all sets T = {q1,--- ,q:} < ©1 of t different

primes, one has

Fy[H] — Vi /(L)

@®-

Il
—

1

Proof. — Put L' = L(u,), and A = Gal(L'/L). Let us start with the following lemma
Hop &

Lemma 5.8. — There exists a positive density set ©1 of primes q of K, all coprime to
p, such that for all t € Zso and for all sets T = {q1, - ,q:} < ©1 of t different primes,
one has F, @ Gt — @®'_, F,[H]|[A] as Gal(L//K)-modules. Moreover the q;’s split
completely in L/K.

Proof. — First, let us choose a set of places ¥ of LI/, Gal(L'/K)-invariant, such that
GE}% = {1}. Put F = L’((/ﬁf,,z). The extension F/K is Galois and let ©; be the
Chebotarev set of places of K that split completely in F/K. The splitting implies that for
each v € ©; one has the equality of completions K, = L, = L;(Vﬁﬁz), so Op 5, < UP

and p, < K,. Take now T' = {vy,--- , v} a set of ¢ different places of ©; all coprime to p.
By class field theory one has:

Uw
F,® Qab o leveT -~ H Uw/UfZ.

T — X 14
ﬁL/vE HW‘UET U wlveT

As all places of T split completely in L'/K, then

t

1 /v ~ DF,[H][A]

w|veT
One concludes by noting that F, ® G{? , — F, ® Gf,’zll ~ @!_, F,[H][A] O

The Kummer radical Ry of the maximal p-elementary extension of L/, unramified out-
side T, is a subgroup of V{,/(I'*)P (remember that T is coprime to p). Hence by
Lemma 5.8 we get

t
@D (F[H][A])" = Ry < Vi,/ L),
i=1
where * denotes the reflection action following A. By taking the A-invariant, Proposi-
tion 5.7 holds by noting that (VZ,/(L™)?)> ~ (VI/L*). 0
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Proof. — (of Theorem 5.6). Given k > 0, write n = [logy k]. Let L = (Kg)®"(2) and
put H = Gal(LL/K). By Proposition 5.7, choose a prime ¢, coprime to p and that splits
completely in L/K, such that F,[H| < VI /(L*)? where T' = {q}. So VI /(L*)? contains
a free nontrivial IF,[ H]-submodule. Then by Corollary 5.4, there exists a prime p < Ok
such that d,G{ 5 = d,G[ g where S = {p}.

But, as q splits completely in K, observe now that (Kg)®»(G2) = (K%)%(Gg). Then by
Lemma 5.2, we get that the depth of 7, € Gf = Gal(K%/K) is at least 2" > k. O

Remark 5.9. — The reader may wonder why one can’t, for instance in the totally real
example of §3.3.2, simply apply Theorem 5.6 for some p whose 7, will have depth 3 for
some (. The difficulties are that first GEE% may have many more relations imposed by
the splitting condition, and second if one removes the splitting condition, the kernel of

the map Gy — Gggi might contain elements of depth 2, so the preimage of 7, may have
depth 2.
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