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Abstract. — Given a prime p, a number field K and a finite set of places S of K, let KS

be the maximal pro-p extension of K unramified outside S. Using the Golod-Shafarevich
criterion one can often show that KS{K is infinite. In both the tame and wild cases we con-
struct infinite subextensions with bounded ramification using the refined Golod-Shafarevich
criterion. In the tame setting we are able to produce infinite asymptotically good extensions
in which infinitely many primes split completely, and in which every prime has Frobenius
of finite order, phenomena that had been expected by Ihara. We also achieve new records
on Martinet constants (root discriminant bounds) in the totally real and totally complex
cases.
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Given a minimal presentation pPq of a finitely generated pro-p group G with d generators
and r relations, the well-known criterion of Golod-Shafarevich states that if 1´ dt` rt2
vanishes on s0, 1r, then G is infinite. In fact one may replace this polynomial with
PPptq :“ 1´ dt`

ř

kě2 rkt
k, where rk is the number of relations in the presentation pPq
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of depth k in the Zassenhaus filtration. We may then employ the same vanishing test for
infiniteness. See §1.
While all relations in a minimal presentation have depth at least 2, it is sometimes possible
to find a presentation of a group with deep relations. Proving the group is infinite can be
more tractable under these circumstances. Alternatively, one can take quotients (cutting)
of an infinite group by deep elements and guarantee the quotient will be infinite. In the
context of pure pro-p group theory, Wilson in fact used the idea of cutting in [37].
The best uses of this refinement in number theory are probably the work on deep relations
of Galois groups of Koch [20, Chapter 12], Koch-Venkov [21], Kisilevski-Labute [19] and
Schoof [33].
Let p be a prime number, K a number field and S a finite set of finite places of K. Denote
by KS and GS the maximal pro-p extension of K unramified outside S and GalpKS{Kq
respectively. We make no assumption that S contains any primes. Indeed, S may be
empty. When GS is infinite, we will exhibit some special infinite quotients of GS. More
precisely, by starting with an infinite tower KS{K, we cut (quotient) GS in order to
produce three kind of results:
piq We cut by Frobenii; this allows us to produce asymptotically good extensions where

the set of places that split completely is infinite. It is necessary that these Frobenii
have depth in GS going to infinity. We also cut by large p-powers of Frobenii
to produce asymptotically good extensions in which every prime has Frobenius of
finite order. These orders are not bounded. Ihara stated his expectation that such
examples could exist in [17].

piiq We cut by powers of the generators of tame inertia groups; this allows us to improve
upon the results of Hajir-Maire [14] in the totally complex case and Martin [25] in
the totally real case concerning Martinet constants (root discriminants) in infinite
towers of number fields (also see [26]). We obtain bounds of 78.427 and 857.567 in
the totally real and totally complex cases respectively. Our improvements towards
the GRH lower bounds in the these cases are, by one metric, about 7.55% and 4.36%.
In contrast, the improvements made in [14] over [26] were, respectively, 16.27% and
6.54%;

piiiq In the wild ramification context, we cut by local commutators and powers of gener-
ators of the inertia group. This forces decomposition groups above p to be abelian
and have finite inertia subgroup. The root discriminants in the corresponding tower
are then bounded. As an application, let K be a totally imaginary number field
of degree at least 12 and let KSp be its maximal pro-p extension ramified only at
primes above p. Then, for infinitely many primes p (assuming a recent conjecture
of Gras concerning p-rational fields [8])
(a) the extension KSp{K contains an infinite unramified tower of number fields,
(b) there exists a constant β ą 0 and a sequence of p-rational number fields pLnq

in KSp{K such that log dpClLn " plogrLn : Qsqβ, where ClLn is the class group
of Ln.

When the class group of a number field L is not trivial, p-rationality of L implies
that the Hilbert p-class field H of L must be contained in the compositum of the
Zp-extensions of L, something that can be difficult to arrange. See [9, Chapter IV,
§3] for a good explanation.
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We also study the question of the depth of the generator τp of tame inertia in GS. Let
T be a finite set of finite places of K, disjoint from S. Let GT

S be the quotient of GS by
all the Frobenius elements of places of T . Then we prove that given k ą 0 there exists
infinitely many primes q such that for infinitely many primes p, coprime to pq, the depth
of τp in Gtqu

tpu is at least k (see Theorem 5.6).

Our work contains five sections. In §1 we recall the refined Golod-Shafarevich Theorem,
and we indicate how we use it. We then develop and apply our cutting strategy: in §2
to obtain the splitting results in the context of asymptotically good extensions; in §3 to
obtain the new root discriminant records in infinite towers of number fields; in §4 we
cut wild towers. The last section is devoted to the question of the depth of tame inertia
in GS.

Notations:
We fix a rational prime p.
´ Given a Z-module M , we denote by dpM the dimension over Fp of Fp bM : it is the
p-rank of M .

´We fix a number field K. By abuse, we identify prime ideals p Ă OK and places v of K.
For a place v of K, we denote by Kv the completion, and by Uv the local units. For v
finite, we denote by πv an uniformizer and by v the corresponding valuation.
For a prime ideal p Ă OK, we put Nppq :“ #pOK{pq its absolute norm.

´ We fix now a finite set S of finite places of K. For p P S not dividing p, one assumes
that Nppq ” 1 mod p. When all p P S are prime to p we call S tame. The set of all
p Ă OK dividing ppq is denoted Sp.
If L{K is a finite extension, we also denote by S the set of places of L above S.

´ The maximal pro-p extension of K unramified outside S is denoted KS. Note KH is
the maximal everywhere unramified pro-p extension of K. The Galois group of KS{K is
denoted GS.

´ All cohomology groups of GS have coefficients in Z{p, and we denote by d “ dpGSq and
r “ rpGSq, dpH ipGSq for i “ 1, 2 respectively. Hence, dpGSq “ dppGS{rGS,GSsq. More
generally for a finitely generated pro-p group G, we denote by dpG :“ dpGq its p-rank.

´ Set δK,p “

"

1 µp Ă K
0 otherwise . If K has signature pr1, r2q, set αK,S :“ 2`2

a

r1 ` r2 ` θK,S

where θK,S “

"

0 S ‰ H
δK,p S “ H

. It is well-known that when S is tame: dpGSq ą αK,S ùñ

r ă d2{4. More precisely, if P ptq “ 1´ dt` rt2 then P pt0q ă 0 for t0 “ d{2r Ps0, 1
2s.

´ For a number field L the root discriminant of L, denoted rdL, is |DiscpLq|1{rL:Qs. If J
is an infinite algebraic extension of Q, we set rdJ :“ lim supL |DiscpLq|1{rL:Qs where the
limit is taken over all number fields L Ă J. In the relative setting, e.g L{K, we compute
discriminants to K and use the degree of L{K when taking roots.
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1. Depth of relations and the Theorem of Golod-Shafarevich

Good references are [22, Appendice] and [20].

1.1. The Zassenhaus filtration. — Consider a finitely generated pro-p group G.
Denote by I :“ IG the augmentation ideal of the completed algebra FpvGw, i.e., IG :“
kerpFpvGw Ñ Fpq. The powers In of I are closed ideals and topologically finitely generated
over Fp.

Definition 1.1. — Given x P G, x ‰ 1, denote by ωpxq :“ maxtn, x ´ 1 P Inu. We
call the integer ωpxq the depth or level/weight of x. Put ωp1q “ 8.

Recall the Zassenhaus filtration of G:
Gn “ tg P G, ωpgq ě nu, n ě 1,

and that I{I2 » G{rG,GsGp, hence, G2 “ rG,GsGp. The sequence Gn is a filtration of
open normal subgroups of G.

Proposition 1.2. — One has the following properties:
piq For x P G, ωpxpq ě pωpxq. Hence, if x P Gn, then xp P Gnp;
piiq For x P Gn and y P Gm, one has rx, ys P Gn`m;
piiiq For x, y P G, ωpxyq ě minpωpxq, ωpyqq.

Proof. — See §7.4 of [20].

Hence ω is a restricted filtration following the terminology of Lazard (see [22, Appendice
A2, Définition 2.2 page 201]). In fact, one even has:

Proposition 1.3. — The Zassenhaus filtration of a pro-p group G, is the minimal fil-
tration on G satisfying:
piq ωpGq ě 1;
piiq ωpxpq ě pωpxq;
piiiq for all ν ą 0, Gν :“ tx P G, ωpxq ě νu are closed.

Proof. — See Lazard [22, Appendice A2, Théorème 3.5 page 205].

1.2. The inequality. — Let G be a finitely generated pro-p group of p-rank d. Let
1 ÝÑ R ÝÑ F ϕ

ÝÑ G ÝÑ 1
be a minimal presentation pPq of G: here F is a free pro-p group on d generators with
its Zassenhaus filtration ω.
Suppose that R can be generated by tρi, i “ 1, ¨ ¨ ¨ u as a normal subgroup of F. We
denote R “ xρi, i “ 1, ¨ ¨ ¨ yN. For k ě 1, put

rk “ #tρi, ωpρiq “ ku

and assume each rk is finite. Usually one assumes that rk “ 0 for large k, but this is not
necessary and we will not do so in Theorem 2.7. We denote by

PPptq :“ 1´ dt
ÿ

kě2
rkt

k
P Rvtw
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a Golod-Shafarevich polynomial (in fact series) associated to this presentation (observe
that PP depends on the ρi). If we have no information about the depth of the relations
of R, then we take PPptq “ 1´ dt` rt2, where r “ dpH

2pGq (when it is finite).

Theorem 1.4 (Vinberg [36]). — If G is finite, then

PPptq ą 0, @t Ps0, 1r.

Proof. — Adapt the proof of [20], or see [1]. See also Anick [2].

Remark 1.5. — One may have partial information on the depth of the relations. For
example, assume that one has only ωpρkq ě ak for all k. Then as 1´dt`

ř

ρk
tak ě PPptq

(coefficient by coefficient), if 1´dt`
ř

ρk
tak has a root on s0, 1r, then G is infinite. When

one has to assume all relations are depth two, we obtain the Golod-Shafarevich inequality
‘r ď d2{4’ that guarantees G is infinite. We say that G passes the Golod-Shafarevich test
if there exists t0 Ps0, 1r such that PPpt0q ă 0. Observe that if PPpt0q “ 0 then G is
infinite, but for many of our applications we need some t0 such that PPpt0q ă 0. Finally,
it is known that if G passes the Golod-Shafarevich test and d ě 2, then G is not analytic.

1.3. Detecting the depth of an element. — We start with a minimal presentation
pPq of G:

1 ÝÑ R ÝÑ F ϕ
ÝÑ G ÝÑ 1.

One has the following result that gives a relation between the Zassenhaus filtrations ωF
of F and ωG of G.

Proposition 1.6. — The Zassenhaus filtration ωG of G coincides with the filtration
quotient of the Zassenhaus filtration ωF of F: for all g P G, ωGpgq “ maxtωFpxq, ϕpxq “
gu. Hence, for n ě 1,

Gn » FnR{R » Fn{Fn X R.

Proof. — See Lazard [22, Appendice 3, Théorème 3.5, page 205].

Definition 1.7. — The Frattini series of a pro-p group G is defined by Φ1pGq “ G and
Φn`1pGq “ Gp

nrGn,Gns.

Given g P G and x P F such that ϕpxq “ g. Often, one wants to detect the depth of
x P F.

Proposition 1.8. — Put ϕpxq “ g P G such that ωGpgq “ ωFpxq. One has ωFpxq ě k
if and only if, g P Gk. In particular,
piq g P GprG,Gs ùñ ωFpxq ě 2;
piiq g P Gp

2rG,G2s ùñ ωFpxq ě 3;
piiiq g P ΦnpGq ùñ ωFpxq ě 2n´1.

Proof. — piq Recall that G2 “ GprG,Gs.
piiq Consider the p-central descending series Gpnq. Then Gpnq Ă Gn for all n ě 1 (see for
example §7 of [20]). Hence, if g P Gp3q “ Gp

2rG,G2s, then g P G3 which is equivalent to
ωGpgq ě 3, and then ωFpxq ě 3.
piiiq Clearly Φ2pGq “ G2 and as Φn`1pGq “ pΦnpGqqprΦnpGq,ΦnpGqs Ă G2n .
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1.4. On some special quotients of a pro-p group G. — We study some infinite
quotients of G.

Proposition 1.9. — Take pxiqiPI P G a family of elements of G with ωGpxiq ě 2 for all
xi. Put Γ :“ G{xxi, i P IyN. Suppose that G is given by a minimal presentation pPq with
a Golod-Shafarevich polynomial PPptq. Then for the natural minimal presentation

1 ÝÑ xR, xyi, i P IyyN ÝÑ F ϕ1
ÝÑ Γ ÝÑ 1

of Γ, where yi are chosen such that ϕpyiq “ xi and ωFpyiq “ ωGpxiq, a Golod-Shafarevich
polynomial of Γ for this presentation is PPptq `

ř

iPI t
ωGpxiq.

Proof. — Obvious.
Much of what we need follows from this easy proposition:

Proposition 1.10. — Let G be a finitely presented pro-p group with a minimal presen-
tation pPq and a Golod-Shafarevich polynomial PPptq of G (following pPq). Suppose
that PPpt0q ă 0 for some t0 Ps0, 1r. Then for suitable k ě 2 and k1 ě 2 we have

PPpt0q ` t
k
0 ă 0 and PPpt0q `

tk
1

0
1´ t0

ă 0.

piq Let f P F be such that ωFpfq ě k. Then the group quotient F{xR, fyN » G{ϕpxfyNq is
also infinite.

piiq Take a sequence pfiqi P F, i ě 0, such that ωFpfiq ě k1 ` i. Then the group quotient
F{xR, fi, iyN » G{ϕpxfi, iyNq is also infinite.

Proof. — Let us start with a minimal presentation 1 ÝÑ R ÝÑ F ϕ
ÝÑ G ÝÑ 1 of G.

piq. When one adds a relation of depth at least k ě 2, the p-rank does not change. Take
now the following minimal presentation pP 1q of Γ:

1 ÝÑ R1 ÝÑ F ÝÑ Γ ÝÑ 1,
where R1 “ xf, ρi, iyN, the ρi being some generators of R as normal subgroup of F. Now, a
polynomial of Golod-Shafarevich for Γ and pP 1q can be written as (thanks to Proposition
1.9) PP 1ptq “ PPptq ` t

k. But k is chosen so PP 1pt0q ă 0, then Theorem 1.4 gives that Γ
is infinite.
piiq. Put Γ :“ G{ϕpxfi, iyNq. First, as the elements fi are in Fk1`i, with k1 ` i ě 2, then
dpΓ “ dpG “ d. As in piq, take now the following minimal presentation pP 1q of Γ:

1 ÝÑ R1 ÝÑ F ÝÑ Γ ÝÑ 1,
where R1 “ xρj, fi, i, jy

N, the ρj being some generators of R as normal subgroup of F.
Now, a polynomial of Golod-Shafarevich for Γ and pP 1q can be written as (thanks to
Proposition 1.9):

PP 1ptq ď PPptq ` t
k1
ÿ

iě0
ti “ PPptq ` t

k1 1
1´ t ,

which is negative at t “ t0 by assumption. Apply Theorem 1.4 as in piq.
Sometimes one can say a little bit more. As usual, let d and r be the number of generators
and relations of G. Set a “ 2r{d. Suppose a ą 1 and put

λ “

"

tau a R Z
a´ 1 a P Zą0

.
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Choose now m P Zě2 such that

1´ d2

4r `

´

λ
a

¯m

1´ λ
a

ă 0.

Lemma 1.11. — Let G be a finitely presented pro-p group such that r ă d2{4 and
2r{d ą 1. Take λ and m as above. For k ě 0, take distincts elements fj,k P F with
j “ 1, ¨ ¨ ¨ , λk`m, such that ωFpfj,kq ě m ` k. Then the group quotient G{ϕpxfj,k, j, kyNq
is also infinite.

Proof. — Put Γ :“ G{ϕpxfj,k, j, kyNq. As before the new relations all have depth at least
two so dpΓ “ dpG “ d. Take for G the polynomial PPptq “ 1 ´ dt ` rt2. Here, a
Golod-Shafarevich polynomial PP 1 of Γ can be taken as

PP 1ptq “ PPptq `
8
ÿ

kě0
λm`ktm`k.

As λ ă 2r{d, the series converge in the neighborhood of t0 “ d{2r. Hence, one has:

PP 1pd{2rq ď 1´ d2

4r `

´

λ
a

¯m

1´ λ
a

ă 0,

and Theorem 1.4 applies.

In Galois contexts the quotients of Proposition 1.9 and Proposition 1.10 correspond to
subextensions, so we will use the term ‘cut’ to apply both to Galois groups and the
corresponding towers of fields.

2. Infinitely many splitting in KS{K

In this section we address a question of Ihara.

2.1. Wilson’s result. — Our main result, Theorem 2.7, builds on a group-theoretic
result of Wilson [37], the number-theoretic interpretation of which we give below.

Theorem 2.1. — Let K be a number field, and S be a finite set of places of K coprime
to p. Suppose that GS passes the test of Golod-Shafarevich (which is the case if dpGS ą

αK,S). Then there exists an infinite pro-p extension K̃{K in KS{K where all Frobenius
elements are torsion.

Proof. — Let PPptq be a Golod-Shafarevich polynomial of GS for which GS passes the
test. Let x1, x2, . . . be an enumeration of all Frobenii of primes not in S. By hypothesis
PPpt0q “ ´δ ă 0 for some t0 Ps0, 1r . Using Proposition 1.2 piq and Proposition 1.10
we can add in a relation corresponding to a suitable p-power of x1 so that the new
Golod-Shafarevich polynomial with this relation imposed is PPptq ` tk1 and PPpt0q `
tk1
0 ă ´δ{2. Now add in a suitable relation corresponding to a power of x2 and the
new Golod-Shafarevich polynomial with this relation imposed is PPptq ` tk1 ` tk2 and
PPpt0q ` tk1

0 ` tk2
0 ă ´δ{2. Continuing on with powers of x3, x4 etc. the resulting

series, P̃Pptq satisfies P̃Ppt0q ď ´δ{2 ă 0 so the corresponding quotient of GS, fixing K̃,
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is infinite. By construction, the Frobenius of any unramified prime in this quotient is
torsion.

Remark 2.2. — For extensions for which Frobenius elements have uniformly bounded
orders see Checcoli [4].

Remark 2.3. — Note that every p-adic analytic quotient of the infinite quotient that
appears in Theorem 2.1 is finite: this is more or less obvious, due to the fact that an
infinite p-adic analytic group has an open subgroup of finite cohomological dimension
and is then torsion free (note here, we can do the same operation with GSp).

2.2. Main result. —

Definition 2.4. — Let K be a number field and let L{K be a (possibly infinite) algebraic
extension. The root discriminant of K is rdK :“ |DiscpKq|1{rK:Qs. The root discriminant
of L{K is lim supJ |DiscpJq|1{rJ:Ks where L Ą J Ą K and rJ : Ks ă 8.

Definition 2.5. — An infinite extension L{K is called asymptotically good if its root
discriminant is finite.

Given an (possibly infinite) extension L{K, and a prime p of K, let fppq be the residue
degree extension of p in L{K. Put TL{K “ tp Ă OK | p a prime ideal,fppq ă 8u.
We introduce the estimate given by Ihara in [17]. See also Tsfasman-Vladut [35].

Theorem 2.6. — Let L{K be an infinite asymptotically good extension. Then (assuming
the GRH),

lim
XÑ8

ÿ

pPTL{KpXq

log Nppq
a

Nppq ´ 1
ă 8¨

(For an unconditional estimate, remove the square root in the deminator.)

Theorem 2.1 produces asymptotically good extensions L{K where TL{K is maximal,
namely it consists of all primes of OK except the finite set of ramified primes in L{K
(L{K asymptotically good implies only finitely many primes ramify). This had been
suspected by Ihara in [17]. In fact we can do more.
Let

SL{K “ tp Ă OK | p a prime ideal,fppq “ 1u,
be the set of prime ideals p of K that split completely in L{K. Using Proposition 1.10,
we will exhibit an asymptotically good extension K̃{K for which SK̃{K is infinite.

Theorem 2.7. — Let K be a number field, and S be a finite set of places of K coprime
to p. Suppose that dpGS ą αK,S. Then there exists an infinite pro-p extension K̃{K in
KS{K for which:
piq the set SL{K is infinite;
piiq the set TL{K is maximal.

Proof. — Let 1 ÝÑ R ÝÑ F ϕ
ÝÑ GS ÝÑ 1 be a minimal presentation of GS. By

hypothesis r ă d2{4. Take PPptq “ 1 ´ dt ` rt2 as a Golod-Shafarevich polynomial,
and note that PPpd{2rq “ 1 ´ d2{4r ă 0. We will apply Proposition 1.10 piiq with
t0 “ d{2r Ps0, 1r and k1 as given there. We will take the quotient by infinitely many
Frobenii xi of unramified primes whose depth is at least k1` i in GS. For i ě 2, denote by
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Gi the image ϕpFiq; Proposition 1.6 gives that Gi is also the Zassenhaus filtration of GS.
Now, for i ě 0, choose a prime ideal pi of OK such that its Frobenius xi P GS is in Gk1`i

(in fact a conjugacy class there), and such that pi R tp0, ¨ ¨ ¨ , pi´1u. Choose yi P Fk1`i
such that ϕpyiq “ xi so ωFpyiq ě k1 ` i. The quotient Γ of GS by the normal subgroup
generated by the Frobenius xi of the primes pi, i ě 0 is

Γ » GS{xxi, iy
N
» F{xR, yi, iyN.

Denote by L Ă KS the fixed field by xxi, i ě 0yN; GalpL{Kq » Γ. By Proposition 1.10
piiq, the pro-p extension L{K is infinite, and each prime pi has trivial Frobenius in L and
thus splits completely; in other words SL{K is infinite. Observe now that we can take

P ptq “ 1´ dt` rt2 `
ÿ

mąk

tm “ 1´ dt` rt2 ` tk

1´ t

as a Golod-Shafarevich series for L{K; here k has been taken such that P pt0q ă 0, where
t0 “ d{2r Ps0, 1

2s. Now it suffices to apply Theorem 2.1 to L{K to obtain a subextension
K̃{K of L{K for which TL{K is maximal. Moreover as SL{K Ă SK̃{K, then SK̃{K is
infinite.

Remark 2.8. — Theorem 2.7 is particulary interesting in the context of Tsfasman-
Vladut [35]. See also Lebacque [23].

In Theorem 2.7 one can say a little bit more about SL{K. For a (possibly infinite) Galois
extension L{K of a number field K, and for X ě 0, put

SL{KpXq :“ tp P SL{K, Nppq ď Xu, and πL{KpXq “ |SL{KpXq|¨

The effective version of Chebotarev’s Theorem allows us to give an upper bound for
πL{KpXq when the extension L{K is asymptotically good. Indeed:

Proposition 2.9. — If L{K is asymptotically good, there exists a constant B ě 0 such
that for X ě 2 (assuming the GRH),

πL{KpXq ď CX1{2
prK : Qs logX ` log |discpKq| `Bq ,

where C is an absolute constant. When L{K is unramified, one can take B “ 0.

Proof. — Pass to the limit Theorem 4 of [34, §2.4].

2.3. Norm of ideals in KS{K. — Suppose GS tame and infinite. Denote by Gn the
Zassenhaus filtration of GS. Suppose moreover that r ă d2{4: the pro-p group GS is not
analytic and then Gn ‰ Gn`1 for all n (see [5, Chapter 11, Theorem 11.4]).

Remark 2.10. — When GS is tame and infinite, by the tame Fontaine-Mazur conjec-
ture [7, Conjecture (5a)] GS must not be analytic and then Gn ‰ Gn`1 for all n.

Definition 2.11. — Let G :“ GS be tame and infinite. For a prime p R S, denote by
xp the Frobenius at p in GS. Define for i ě 1,

Nn :“ mintNppq, xp P GnzGn`1u.
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Recall pro-p extensions of a number field that are tamely ramified at a finite set of places
are always asymptotically good. One can produce some asymptotic good extensions
where the set of splitting is infinite, and in particular, by our construction, the series
ÿ

ně2

log Nn
?

Nn

converges.

Theorem 2.12. — Assume the GRH. Let KS{K be a pro-p and tame extension for which
dpGS ą αK,S. Then, considering the Zassenhaus filtration Gn of G :“ GS, one has along
the tower KS{K the estimate: for infinitely many n,

Nn " n2.

One can say more when d ă r and r ă d2{4, that is when 2
?
r ă d ă r.

Definition 2.13. — Set G :“ GS be tame and infinite, and for a prime p denote by xp
the Frobenius at p in G. Define for n ě 1, and k P Zě1,

Npkqn :“ the kth smallest norm of a prime p with xp P GnzGn`1.

Of course, Np1qn “ Nn.

Theorem 2.14. — Assume the GRH. Let GS be the Galois group of a tame p-tower for
which r ă d2{4. Choose λ and m as for Lemma 1.11. Put βk,m :“ λk`m. Then for
infinitely many k,

Npβk,mqk " λ2k.

Proof. — Set G :“ GS. Observe that here r´d ě 0. For k ě 0, let us choose λk`m differ-
ent prime ideals pi,k Ă OK (of smallest norm as possible) such that xpi,k P Gm`kzGm`k`1.
The element xpi,k is of depth m ` k. Denote by K̃ :“ Kxϕpyi,kq, i,ky

N

S . Then Lemma 1.11
implies that K̃{K is infinite: it is an asymptotically good extension where each prime pi,k
splits completely. Put βk,m :“ λk`m. Then by the estimation of Ihara (Theorem 2.6) for
K̃{K, one has:

ÿ

kě0
λk`m

log Npβk,mqk
b

Npβk,mqk

ă 8,

which implies that Npβk,mqk " λ2k`2m for infinitely many k.

2.4. The case of the center. — Using Proposition 1.10, one can also cut GS by some
special commutators. As we will see, this shows the limits of our method.
Let GS be as usual and let ta1, ¨ ¨ ¨ , adu be a minimal system of generator of GS with
Zassenhaus filtration ωG. Let x be a non-trivial Frobenius element in GS. Then
ωGprx, aisq ě 1 ` ωGpxq. Hence, assuming that GS passes the Golod-Shafarevich test
(r ă d2{4), we are guaranteed that when ωGpxq is large then Γ :“ GS{xrx, ais, i “ 1, ¨ ¨ ¨ dyN
is also infinite.

Proposition 2.15. — The class of the Frobenius element x in Γ is non-trivial and is
in the center ZpΓq of Γ.

Proof. — In Γ, the class of x commutes with the class of ai, for i “ 1, ¨ ¨ ¨ , d, and thus
with every element as the ai’s topologically generate Γ. That ωGprx, aisq ą ωGpxq implies
x is not trivial in Γ.
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Now let us remark that xrx, ais, i “ 1, ¨ ¨ ¨ , dy Ă xxyN, hence

Γ :“ GS{xrx, ais, i “ 1, ¨ ¨ ¨ , dyN � Γ1 :“ GS{xxy
N.

Here for the infiniteness of Γ one has to check if

1´ dt` rt2 ` dt1`k(1)

has a root in s0, 1r. For the quotient Γ1, one has to check if

1´ dt` rt2 ` tk(2)

has a root in s0, 1r. Some easy algebra shows that p2q is stronger than p1q: in other
words, to prove that Γ is infinite it is better to use the criteria for Γ1. Indeed, when
pd, rq “ p9, 21q and k “ 3, the polynomial 1 ´ 9t ` 20t2 ` t3 has a root in s0, 1r but
1´ 9t` 20t2 ` 9t4 does not, so the Golod-Shafarevich test gives Γ1 is infinite and we can
only conclude that Γ is infinite as it has Γ1 as a quotient. Note:

Proposition 2.16. — Suppose that all primes in S are coprime to p. The pro-p group
Γ is infinite if and only if Γ1 is infinite.

Proof. — Clearly #Γ1 “ 8 ùñ #Γ “ 8.
Let N and N1 be the kernels of the maps GS � Γ and GS � Γ1. If Γ1 is finite then KN1

S

is a number field and KN
S {KN1

S is a finitely generated tamely ramified abelian p-extension.
By class field theory such extensions are always finite so KN

S {K is finite and thus Γ is
finite.

This situation shows that some cuts may be not optimal.

3. The constants of Martinet

In this section we set new records for root discriminants in asymptotically good totally
complex and totally real towers.
Recall that for a number field K with rK : Qs “ n, the root discriminant of K, denoted
rdK, is |discpKq|1{n. There are absolute lower bounds, improved over the years, that
include terms that go to 0 as n Ñ 8. These lower bounds depend on the signature of
K and have been achieved by analytic methods. The best lower bounds depend on the
GRH.
The term that goes to 0 with increasing degree makes it natural to consider towers of
number fields and take the lim sup of the root discriminants. For the p-power cyclotomic
tower it is an exercise to see this lim sup is 8. It is also an exercise to see that root
discriminants are constant in unramified extensions. Thus the work of Golod and Sha-
farevich establishing the existence of infinite Hilbert Class Field towers also immediately
gave a rich supply infinite towers with bounded root discriminants. Recall Euler’s con-
stant γ :“ limnÑ8

`

p
řn
k“1

1
k
q ´ log n

˘

. The current GRH lower bounds for infinite towers
are 8πeγ « 44.763 for totally complex fields and 8πeγ`π

2 « 215.33 for totally real fields.
See [30] for a nice history of this work up until 1990.
It is also natural to seek explicit examples of infinite towers with small lim sup of the
root discriminants. Martinet and then Hajir-Maire gave totally real and totally complex
infinite towers with small root discriminant.
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Hajir-Maire introduced the idea of allowing tame ramification. One can show the relevant
Galois groups are infinite using the Golod-Sharafevich criterion, and the root discrim-
inants can be bounded by tame ramification theory. Here we improve their results by
using our technique of cutting towers.

3.1. Tame towers with finite ramification-exponent. — We will again use Propo-
sition 1.10. The set S will consist of p with Nppq ” 1 mod p. Recall that d “ dpH

1pGSq “

dpGS is the p-rank of GS and r “ dpH
2pGSq is the minimal number of relations of GS.

Definition 3.1. — Fix k ě 1. Denote by Krks
S {K the maximal pro-p extension of K

unramified outside S and where the exponent of ramification at p P S is at most pk so
Kr8s

S “ KS. Put Grks
S :“ GalpKrks

S {Kq.

Remark 3.2. — The extension Krks
S {K is well-defined because inertia groups are cyclic

in the tame case.

Proposition 3.3. — Assume that r ă d2{4. Put k0 “ rlogpd2

4r ´ 1q{ logpd{2rqs. Then,
for k ě logppk0q, the extension Krks

S {K is infinite.

Proof. — We follow the notations of Proposition 1.10. We have chosen k0 so that
PP 1ptq “ 1 ´ dt ` rt2 ` tk0 is negative at t “ d{2r. Take as x a generator of the in-
ertia group at p in KS{K, cut by xpk and apply Proposition 1.10 piq.

Recall the root discriminant of a number field K is denoted by rdK. The interest of
extensions as above is the following:

Proposition 3.4. — In the tower Krks
S {K the root discriminant is bounded by

rdK ¨
`

Nppq
1

rK:Qs
˘1´ 1

pk .

Proof. — The result follows from the basic theory of tame ramification.

In [13] it is shown, by taking the limit in the above Proposition, that the root discriminant
of KS{K “ Kr8s

S {K is bounded by rdK ¨
`

Nppq
1

rK:Qs
˘

.
We can now give an answer to a central question of [12]:

Theorem 3.5. — Suppose S ‰ H such that dpGS ą αK,S. Then there exists a finite
extension L{K in KS{K such that LH{L is infinite.

Proof. — Observe that wlog we can assume that S “ tpu contains only one prime. By
hypothesis, r ă d2{4, so for large k, the extension Krks

S {K is infinite. The inertia group
at p is a quotient of Z{pkZ. By changing the base field, there exists a finite extension
L{K such that Krks

S {L is unramified and infinite.

3.2. Some set up. — Let K be a number field and S a finite set of finite places of K.
Let

VS “ tx P Kˆ
| x P pKˆ

v q
p for v P S, and vpxq ” 0 mod p, @ vu

and let BS to be the character group of VS{pKˆqp. Recall the exact sequence
0 ÑX2

S Ñ H2
pGSq Ñ ‘vPSH

2
pGKvq

12



where each term on the right is just Z{pZ or 0 depending on δKv ,p “ 1 or 0; observe
also that when δK,p ‰ 0, global reciprocity implies the image of the right map lies in the
hyperplane of terms that sum to zero.
From Chapter 11 of [20] we know

(3) dpGS “

˜

ÿ

vPSp

rKv : Qvs

¸

´ δK,p `

˜

ÿ

vPS

δKv ,p

¸

´ pr1 ` r2q ` 1` dppBSq

and there is a natural injection X2
S ãÑ BS which is an isomorphism if S contains all

primes of K dividing p (and infinity for p “ 2).

Remark 3.6. — Numerically showing the injection above is not an isomorphism in ex-
plicit tame cases would likely lead to strong improvements in root discriminant bounds
in asymptotically good towers.

When S is tame software will allow us to explicitly compute dpGS in many cases, thus

giving dpBS exactly and the upper bound rpGSq ď

"

dpBH S “ H
dpBS ` |S| ´ δK,p S ‰ H

.

3.3. Examples and records. — For various computations of H1s and ray class groups
we have used the software packages PARI/GP [32] and MAGMA [3]. We take always
p “ 2 in this subsection.
3.3.1. An example of J. Martin. — In his Ph.D. thesis, [25], Martin found a degree 8
totally real number field K whose 2-class group has rank 8. Equation (3) gives that
dimBH “ 16 so dimH2pGHq “ dimX2

H ď dimBH “ 16. The Golod-Shafarevich
polynomial is (at worst) P ptq “ 1 ´ 8t ` 16t2. Note P p1{4q “ 0 so GH is infinite. As
Martin’s thesis is unpublished, we record his polynomial here: x8 ´ 3297x6 ` 14790x5 `

3555341x4´24457440x3´1347361755x2`7744222350x`149856133975. Its discriminant
is p32 ¨ 52 ¨ 72 ¨ 13 ¨ 292 ¨ 53 ¨ 109q2 and the root discriminant is less than 913.4927.
3.3.2. The totally complex case. —
‚ Take K “ Qp

?
13,
?
´3 ¨ 5 ¨ 17q. Software gives d2GH “ 4 so Equation (3) gives d2BH “

6. The Golod-Shafarevich polynomial 1´ 4t` 6t2 has no root so we cannot conclude GH
is infinite. There are two primes above 43 in K, both having norm 432. Take S to be
either of these. We write S “ tp432u. Software gives that d2GS “ 5 so d2BS “ 6 and
rpGSq ď 6` 1´ 1 “ 6. In this case the Golod-Shafarevich polynomial 1´ 5t` 6t2 has a
root in s0, 1r. As d2GH “ 4 ă 5 “ d2GS, the generator of inertia τp432 P GS has depth 1
by Proposition 1.8 piiiq. We cut GS by the relation τ 4

p432 which has depth at least 4 by
Proposition 1.2. As 1 ´ 5t2 ` 6t2 ` t4 has a root in s0, 1r, the group Gr2s

S is infinite, and
in this tower one has:

rdKr2sS
“ rdK ¨ p432

q
1
4 ¨p1´

1
4 q ă 235.9351.

This is not close to the record of 82.1004 in [14] .

‚ Take the number field K with polynomial x12`138x10´x9`6579x8´1191x7`142088x6´

78327x5`1495530x4´1492094x3`8549064x2´6548187x`27239851. The field is totally
complex and software gives

rdK ă 75.7332, d2GH “ 7 and d2BH “ 13.
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The Golod-Shafarevich polynomial 1 ´ 7t ` 13t2 has no root so we set S to be the one
prime p9 above 3. It has norm 9 and software gives d2GS “ d2GH “ 7 so τp9 is of depth
at least 2 by Proposition 1.8 piiiq and τ 2

p9 has depth at least 4. One sees that d2BS “ 12
and rpGSq ď 12. As 1´ 7t` 12t2 has a root in s0, 1r, GS is infinite. After cutting by τp9 ,
our Golod-Shafarevich polynomial 1´ 7t` 12t2 ` t4 has a root in s0, 1r so Gr1s

S is infinite
and

rdKr1sS
“ rdK ¨ p9q

1
12 ¨p1´

1
2 q ă 82.9940.

This is quite close to the record of 82.1004 of [14].

‚ In this example we establish a new record by cutting the old one. Consider the totally
complex number field K of degree 12 in [14] with polynomial x12 ` 339x10 ´ 19752x8 ´

2188735x6 ` 284236829x4 ` 4401349506x2 ` 15622982921. Let H be the Hilbert Class
Field of K. Software yields that GalpH{Kq » pZ{2q6 so

d2GH “ 6, d2BH “ 6` r2 “ 6` 6 “ 12 and rpGHq ď 12.
The polynomial 1´ 6t` 12t2 is always positive so we cannot conclude that the maximal
pro-2 quotient of GH is infinite. Here rdK ă 68.3636. Now take S “ tp9u, the unique
prime above 3 of norm 9. Software gives d2GS “ 7 so d2BS “ 12 and we have the
bound rpGSq ď 12 ` 1 ´ 1 “ 12. The polynomial 1 ´ 7t ` 12t2 has a root in s0, 1r so
GS is infinite. As d2GH “ 6 ă 7 “ d2GS, τp9 has depth 1. We cut by τ 4

p9 to get Golod-
Shafarevich polynomial 1´ 7t` 12t2` t4 which has a root in s0, 1r so Gr2s

S is infinite, and
in this tower

rdKr2sS
“ rdK ¨ p9q

1
12 ¨p1´

1
4 q ă 78.4269.

This is a new record with savings a factor of 31{24 « 1.04683 . . .

3.3.3. The totally real case. —
‚ We establish a new record here as well. Let K be the totally real field of [14] of
degree 12 over Q. It’s polynomial is x12 ´ 56966x10 ` 959048181x8 ´ 5946482981439x6 `

14419821937918124x4´ 12705425979835529941x2` 3527053069602078368989 and rdK ă
770.6432. All primes above 13 in K have norm 13. Take S to be any one of them.
Software gives

d2GH “ d2GS “ 9, d2BH “ 21 and d2BS “ 20.
The Golod-Shafarevich polynomial for GH is 1 ´ 9t ` 21t2 and has no root in s0, 1r
so we cannot conclude GH is infinite, though we suspect it is. The Golod-Shafarevich
polynomial for GS is 1 ´ 9t ` 20t2 which has a root in s0, 1r. As d2GH “ d2GS “ 9 we
see τp13 has depth at least 2 by Proposition 1.8 piiiq. We cut by τ 2

p13 which has depth at
least 4. As 1´ 9t` 20t2 ` t4 has a root in s0, 1r Kr1s

S {K is infinite and

rdKr1sS
“ rdK ¨ p13q 1

12 ¨p1´
1
2 q ă 857.5662.

This is a new record with savings by a factor of 131{24 « 1.11279 . . .
3.3.4. Comments. — In the example above, a hope would be that τp13 has depth greater
than two in GS. In that case we could cut by the relation τp13 and the corresponding
Golod-Shafarevich polynomial would be at most 1 ´ 9t ` 20t2 ` t3 which has a root in
s0, 1r. One would then have that K has infinite 2-Hilbert Class Field Tower and the
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totally real root discriminant record would be ă 770.644. We do not see how to check
the depth of τp13 in GS. See also the beginning of §5.
The totally complex record was 82.1004 with a GRH lower bound of 8πeγ « 44.763. For
the totally real case, the record was 913.4927 and the GRH lower bound is 8πeγ`π

2 «

215.33. One should probably take the ratio and then logs to measure distance to the GRH
bounds. Then for a number field K, let us define BpKq “ logpRdK{αq where α “ 44.763
if K is totally imaginary or α “ 215.33 if K is totally real. Let us recall the different
improvements. The ordered pairs in the table below are prdK, Bq.

Signature Martinet (1978) Hajir-Maire (2002) Martin (2006) new records
tot. compl. p92.368; 0.7244q p82.1004; 0.6066q p78.427; 0.5608q
tot. real p1058.565; 1.592q p954.293; 1.488q p913.493; 1.445q p857.567; 1.382q

The recent improvement of B in the totally imaginary case is 7.55%, and 4.36% for the
totally real case.

4. Cutting of wild towers

4.1. Local abelian extensions. — For this section, our results follow from this main
observation: we can cut wildly ramified towers if we first cut by local commutators. We
also assume throughout this section that in our wild extensions, the assertion of Kuz’min’s
Theorem holds, that is the pro-2 local Galois groups above p2q are maximal. In the first
totally complex example of §4.2 the hypotheses of Kuz’min’s Theorem are satisfied, but
we do not include the infinite places in the totally real example. It is possible that less
cutting is needed in the latter example.

Definition 4.1. — Take S “ Sp the set of p-adic places. Denote by Krks,p´ab
S {K the

maximal pro-p extension unramified outside S, locally abelian at p (and then at all
places), and for which the inertia groups at v|p are of exponent dividing pk. Put Grks,p´ab

S “

GalpKrks,p´ab
S {Kq.

Recall that for S “ Sp, the pro-p group GS is of cohomological dimension 2 and rpGSq “

dpGSq ´ r2 ´ 1. (For p “ 2, S must contain all the infinite places, a vacuous condition in
the totally complex case).

Theorem 4.2. — Take p “ 2 and S “ Sp. In Kr1s,p´ab
S {K, the root discriminant is

bounded by rdK ¨ 2
ř

v|p fvp2` 1
ev
´ 1

2evfv q
rK:Qs .

Proof. — Fix a place v|2 of K. By Kummer’s theory, the quadratic extensions of Kv

are parametrized by the classes of Kˆ
v {Kˆ

v
2
» xπvy{xπ

2
vy ˆ Uv{U

2
v where the latter factor

has dimension evfv ` 1 over F2 so the maximal elementary abelian 2-extension of Kv has
degree 2evfv`2. We compute its discriminant over Kv by using the conductor-discriminant
formula, namely we take the product of the conductors of all quadratic characters of Kv.
Note there is exactly one character for each quadratic extension, so the discriminant
equals the conductor in this case. It is elementary to compute an upper bound on the
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discriminant of a quadratic field, so by taking the product over all quadratic fields we ob-
tain an upper bound for our local discriminant. There are 2evfv`2´1 quadratic extensions
of K:

‚ 2evfv`1´1 extensions corresponding to extracting the square root of a unit. These
have conductor dividing 4 “ π2ev . One extension is unramified and has conductor
1.

‚ 2evfv`1 extensions corresponding to extracting the square root of the uniformizer
times a unit. These have conductor π2ev`1.

For more details see for example [9, Chapter II, Proposition 1.6.3]. Thus the discriminant
of the maximal elementary abelian 2-extension of K divides

pπ2evq2
evfv`1´2

¨ pπ2ev`1
q
2evfv`1

“ πev ¨2
evfv`3`2evfv`1´4ev .

Taking the 2evfv`2th root, we get the root discriminant is

pπq2ev`
1
2´

ev
2evfv “ p2q2`

1
2ev
´ 1

2evfv .

This is the local contribution. The norm of v is 2fv so in the global root discriminant we
get a the factor 2fvp2`

1
ev
´ 1

2evfv q. Now sum over v|p and take the 1{rK : Qsth root.

Remark 4.3. — One has GSp{xrDv, Dvs, v|py � Gab
Sp :“ GS{rGS,GSs and then the

maximal local abelian extension Kp´ab
Sp {K of KSp{K is infinite (it contains the cyclotomic

extension). In order to have a criteria proving that Krks,p´ab
S {K is infinite, we need a

Golod-Shafarevich polynomial of Kp´ab
S {K to have a root in s0, 1r.

4.2. Examples. —
4.2.1. — Take K “ Qp

?
´8 ¨ 3 ¨ 5 ¨ 7 ¨ 11 ¨ 13q and p “ 2. Software gives Gab

H » Z{8 ˆ
pZ{2q4, and for S “ tp2u, the unique prime above 2, Gab

S » Z2
2 ˆ pZ{2Zq4. Also p2 is not

principal and thus its Frobenius in GH has depth 1.
In this totally complex wild case, global duality implies the natural injection X2

S ãÑ BS

from §3.2 is an isomorphism and r “ rpGSq “ d´ 1´ r2 “ 4.
Recall that the decomposition group at p2 in GS has at most 4 generators, as a quotient
of Gp “ GalpKp{Kpq this last group being isomorphic to the Demushkin group with 4
generators (here Kp is the maximal pro-p extension of the complete field Kp). Denote by
xx, y, z, ty these generators viewed in GS. The structures of Gab

H “ GH{rGH,GHs and of
Gab
S show that the elements x, y, z, t can be choosen such that t (Frobenius) has depth 1

as does x, in inertia group. The other variables, y and z, have depth at least 2. Then
‚ rx, ts has depth at least 2,
‚ rx, ys, rx, zs, rt, ys, rt, zs have depth at least 3,
‚ and ry, zs has depth at least 4.

If we cut GS by the local commutators, a Golod-Shafarevich polynomial to test becomes:
P ptq “ p1´ 6t` 4t2q ` pt2 ` 4t3 ` t4q “ 1´ 6t` 5t2 ` 4t3 ` t4,

which has a root in s0, 1r. Now, we can apply Proposition 1.10 to cut the ramification at
a certain depth; observe that the ramification in GalpK2´ab

Sp {Kq is generated by the classes
of x, y, z and its quotient Gr1s,2´ab

S is infinite: indeed the polynomial 1´6t`6t2`4t3`3t4
has a root in s0, 1r.
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In this case the root discriminant in Kr1s,2´ab
S {K is bounded by rdK ¨ 29{8 ă 755.90358 ¨ ¨ ¨ ,

thanks to Theorem 4.2.
4.2.2. — In this example we demonstrate the effectiveness of using a mixed strategy
of simultaneous tame and wild cutting. Take K to be the Hilbert Class Field of the
cyclic cubic extension of conductor 163. The number field K is of degree 12 over Q with
equation given by x12 ´ 23x10 ` 125x8 ´ 231x6 ` 125x4 ´ 23x2 ` 1 “ 0. Here for v|2,
fv “ 3. Take S “ tv|2, 3, 5, 7u. Software and some basic theory give
‚ there are 4 primes in K above above 2, 3 and 7. There are 6 primes above 5,
‚ d2GS “ 18, and Equation (3) implies BS “ 0 so X2

S “ 0 as well,
‚ rpGSq ď 17 so the Golod-Shafarevich polynomial is 1 ´ 18t ` 17t2, which is very
negative on s0, 1r.

We are going to cut by
‚ the local commutators of each place above 2, i.e. by 4 ¨ 10 elements of depth at
least 2,

‚ the square of the generators of the abelian local inertia at the wild places (observe
that we can take a generator of order 2), i.e by 12 elements of depth at least 2,

‚ the fourth of the generators of the inertia at three places dividing 5,
‚ the square of the generators of the inertia of the other eleven places dividing 3 ¨ 5 ¨ 7.

Then the pro-p group of the new quotient has 1 ´ 18t ` p17 ` 40 ` 12 ` 11qt2 ` 3t4 as
polynomial that has a root in s0, 1r. Here, one has

rd ď 1632{3
¨ p3 ¨ 7 ¨ 51{2

q
1{2
¨ p51{2

q
3{4
¨ 223{8

ă 2742.95621 ¨ ¨ ¨

4.3. Cutting a p-rational tower. —
4.3.1. p-rational field. — Let us recall the notion of p-rational field (see for example [27],
[10], [28]).

Definition 4.4. — A number field K is called p-rational if the maximal pro-p extension
of K unramified outside Sp is free pro-p.

In the context of the inverse Galois problem, this notion is also very useful for producing
some special pro-p extensions of number fields: see Greenberg [11], Hajir-Maire [15], etc.
An easy argument from group theory gives:

Proposition 4.5. — Let K be a p-rational field and let L{K be a finite extension in
KSp{K. Then L is p-rational.

Assuming Leopoldt’s conjecture, it is well-known that GSp is pro-p free if and only if Gab
Sp

is torsion-free. The torsion of Gab
Sp can be estimated by class field theory: in particular

for p sufficiently large this torsion is isomorphic to the p-part of
´

ś

vPSp
Uv

¯

{Oˆ
K which

is easy to compute. After many observations Gras [8, Conjecture 7.11] recently made the
following conjecture:

Conjecture 4.6 (Gras). — Given a number field K, then for large p, K is p-rational.

We use Gras’ Conjecture to produce p-rational number fields L with large p-class group.
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4.3.2. Results. — First, we obtain:

Theorem 4.7. — Let K be a totally imaginary field of degree at least 12 over Q. Choose
p ą 2 such that : piq p splits completely in K{Q and, piiq K is p-rational. Then there
exists a number field L{K in KSp{K such that LH{L is infinite. Note that as GalpLSp{Lq
is a subgroup of the free pro-p group GalpKSp{Kq then L is p-rational.

Proof. — Let p ą 2. As p splits completely in K, µp Ć Kv and Gv is a free pro-p group
on 2 generators xv, τv, where xv can be chosen as the Frobenius and τv as a generator of
the inertia group.
Suppose moreover that G :“ GSp is p-rational. Then we cut the free pro-p group G on
r2 ` 1 generators by all the commutators rxv, τvs for all v|p, to obtain a pro-p extension
Kp´ab
Sp {K corresponding to the maximal local abelian extension at every v|p of K unrami-

fied outside p; here r2 is the number of complex embeddings of K. Put Γ :“ GalpKp´ab
Sp {Kq.

A naive presentation pPq of Γ allows us to obtain the Golod-Shafarevich polynomial
PPptq “ 1´ pr2 ` 1qt` 2r2t

2.

As r2 ě 6, we easily compute that PP is negative on s0, 1r, and so for a large given k, if
we cut by the powers τ pkv of τv, v|p, the extension Krks,p´ab

S {K is infinite. As Z{pk maps
onto the inertia group of all p|p, one concludes by a changing the base field.
Recall that if a pro-p group G passes the test of Golod-Shafarevich, then G is not p-adic
analytic (when d ě 3) and, by Lubotzky-Mann [24], the p-rank of the open subgroups U
of G tends to infinity with rG : U s. In fact, one has the following due to Jaikin-Zapirain
(see [18] or [6, Theorem 8.3]):

Theorem 4.8 (Jaikin-Zapirain). — Suppose that a pro-p group G passes the Golod-
Shafarevich test. Then there exist infinitely many n such that logp dpGn ě plogprG : Gnsq

β,
for some β Ps0, 1r, where Gn is the Zassenahaus filtration of G.

In our context, as corollary, one obtains:

Corollary 4.9. — Let K be a totally imaginary field of degree at least 12 over Q. Choose
p ą 2 such that : piq p splits totally in K{Q and, piiq K is p-rational. Then there exists
a constant β ą 0 and a sequence of p-rational number fields pLnq in KSp{K such that

log dpClLn " plogrLn : Qsqβ,
where ClLn is the class group of Ln.

Proof. — Choose k as in proof of Theorem 4.7 such that Krks,p´ab
Sp {K is infinite. Put

G “ GalpKrks,p´ab
Sp {Kq, and consider Gn the Zassenhaus filtration of G. Let Kn be the

subfield of Krks,p´ab
Sp {K fixed by Gn: by Proposition 4.5 all the fields Kn are p-rational.

Take n0 large enough so that the pro-p extension Krks,p´ab
Sp {Kn0 is unramified: this is

always possible because Gn forms a filtration of open subgroups of G and for each v|p
the inertia group in G is finite.
By hypothesis the group G passes the Golod-Shafarevich test: by Theorem 4.8, for in-
finitely many n ě n0, we get logp dpGn ě plogprG : Gnsq

β, for some β Ps0, 1r. To conclude
it suffices to note that for n ě n0 the extension Krks,p´ab

Sp {Kn is unramified, and then by
class field theory one has dpClKn ě dpGn.
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5. Depth of ramification

5.1. Motivation. — Let us start with one comment that motivates this section. Let
P ptq “ 1´ dt` rt2 be a polynomial with no root on r0, 1s but such that 1´ dt`pr´ 1qt2
has a root. For example, take the totally real field of §3.3.2 where pd, rq “ p9, 21q .
Suppose that GH has P as Golod-Shafarevich polynomial for a certain minimal presen-
tation pPq. Then with S “ tpu, p coprime to p, and when µp Ă K, the group GS has
parameters pd, r ´ 1q, or pd` 1, rq. If r ą 1, it is easy to see GS is infinite in either case.
Suppose now that the generator of inertia at p, τp, has depth at least k in GS. If we cut
GS by xτpy, the Golod-Shafarevich polynomial becomes 1 ´ dt ` pr ´ 1qt2 ` tk, and for
large k it has a root. In this case we can introduce the relation τp and observe KH{K is
infinite. For pd, rq “ p9, 21q we need k ě 3.

Question 5.1. — Suppose GS is infinite. To simplify, take S “ tpu with p coprime
to p. How deep can the generator τp of tame inertia be in GS?

5.2. Add a splitting condition. —
5.2.1. Detect the level of inertia. — Let S and T be finite disjoint sets of primes of K.
We denote by KT

S the maximal pro-p subextension of KS{K where all places of T split
completely. Put GT

S “ GalpKT
S{Kq. Consider the Frattini series ΦnpGT

Hq and ΦnpGT
S q.

Set Kn :“ pKT
Hq

ΦnpGTHq. We abuse notation and set ω :“ ωGTS
.

If L{K is a finite subextension of KT
S{K, we denote by GT

L,S the Galois group GalpLTS{Lq.
To simplify, we assume that S “ tpu where p Ă OK is coprime to p. Let τp P GT

S be a
generator of the inertia group at p in KT

S{K.

Lemma 5.2. — If dpGT
Kn,H “ dpGT

Kn,S for some n, then ωpτpq ě 2n.

Proof. — For m ě 1, write K1
m “ pKT

S q
ΦmpGTS q. If, for i ď n ` 1, we had a p-extension

of Ki unramified outside S but actually ramified there, we could take its composite
with the unramified extension Kn{Ki to contradict the equality of our hypothesis. Thus
dpGT

Ki,H “ dpGT
Ki,S for all i ď n ` 1. Hence, one has K2 “ K1

2, then K3 “ K1
3 etc. up

to Kn`1 “ K1
n`1. In particular the extension K1

n`1{K is unramified and τp P Φn`1pGT
S q;

in other words GT
S{Φn`1pGT

S q » GT
H{Φn`1pGT

Hq. By Proposition 1.8 piiiq, we get ωpτpq ě
2n.
5.2.2. Depth and freeness. — Recall from §3.2 that

VS “ tx P Kˆ
|x P pKˆ

v q
p
@v P S and vpxq ” 0 mod p, @vu

and set
VT

“ tx P Kˆ
| vpxq ” 0 mod p, @v R T u

and
VT
S “ tx P Kˆ

|x P pKˆ
v q

p
@ v P S and vpxq ” 0 mod p, @v R T u.

Note VHS “ VS. If we switch fields to some L Ě K, we will include the field in the notation
to avoid confusion, e.g. VT

L or VT
L,S. One has

1 ÝÑ Oˆ
K,T {pO

ˆ
K,T q

p
ÝÑ VT

K{pKˆ
q
p
ÝÑ ClTKrps ÝÑ 1,(4)

where Oˆ
K,T denotes the group of T -units of K and ClTK the p-Sylow subgroup of the

T -class group of K. Put K1 :“ Kpµpq and K1
pT q “ K1p

p
?

VT q. One has [9, Chapter V,
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Corollary 2.4.2] involving the Artin symbol
ˆK1

pT q{K1

¨

˙

in GalpK1
pT q{K1q. Note that S

and T there are our T and S here respectively.

Theorem 5.3 (Gras). — Let S “ tp1, ¨ ¨ ¨ , psu be a tame set of primes of K. There
exists a cyclic degree p extension F{K, unramified outside S, totally ramified at S, and
where each place of T splits completely, if and only if for i “ 1, ¨ ¨ ¨ , s, there exist ai P
pZ{pZqˆ such that

s
ź

i“1

ˆK1
pT q{K1

Pi

˙ai

“ 1 P GalpK1
pT q{K1

q,

where Pi|pi is any prime in OK1 above pi.

Now choose p of K whose Frobenius in K1
pT q{K has order p and set S “ tpu. This implies

that for P Ă OK1 with P|p the Frobenius xP P GalpK1
pT q{K1q at P is nontrivial. Theo-

rem 5.3 implies that dpGT
S “ dpGT

H, hence τp has depth at least 2 in GT
S by Lemma 5.2.

We want to apply this principle to the number field K2 “ pKT
Hq

Φ2pGTHq bearing in mind
the Galois action of GT

H{Φ2pGT
Hq.

Let us fix a Galois extension L{K with Galois group H inside KT
H{K. One has the

following consequence of Theorem 5.3.

Corollary 5.4. — Suppose that VT
L{pLˆqp has a non trivial free FprHs-submodule. Then

there exists a prime p Ă OK such that dpGT
L,H “ dpGT

L,S where S “ tpu.

Proof. — Suppose that VT
L{pLˆqp has a free FprHs-submoduleM of rank 1; as the algebra

FprHs is Frobenius, the free submodule M is a direct factor in VT
L{pLˆqp. By Kummer

duality, one deduces that GalpL1pT q{L1q contains a free FprHs-module of rank 1, generated
by some g. By Chebotarev’s density theorem one can choose a prime p Ă OK such that its
Frobenius in GalpL1pT q{Kq is in the conjugacy class of g; the prime p splits completely in

L1{K. Put S “ tpu. Denote by Q0 a prime ideal in OL1 above p such that
ˆL1pT q{L1

Q0

˙

“ g.

But @h P H we have
ˆL1pT q{L1

Qh
0

˙

“ gh
´1 , and as xgyH is a free FprHs-module, there is no

nontrivial relation between the
ˆL1pT q{L1

Qh
0

˙

’s. By Theorem 5.3, there is no degree p cyclic

extension F{L ramified at some places of S, unramified outside S, and where each place
of T splits completely, and then dpGT

L,H “ dpGT
L,S.

Remark 5.5. — Let L{K be a Galois extension of number fields with Galois group H.
Let T be a H-invariant set of places of L. Here are two ways to produce situations where
VT

L{pLˆqp has a free-H-part:
piq for large |T | with size depending on |H| (thanks to a bound given by Ozaki [31],

see also [16]), we are guaranteed that Oˆ
L,T b Fp, and then also VT

L{pLˆqp by (4),
contains a nontrivial free FprHs-submodule. But the bound for |T | is very bad;

piiq by Kummer theory, and by an appropriate choice of T , we are guaranteed that
VT

L{pLˆqp contains a nontrivial free FprHs-submodule. This is the method we will
use.
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5.3. A result. — We prove the following

Theorem 5.6. — Let K be a number field. Then given k ą 0 there exists infinitely
many primes q, such that for infinitely many primes p, coprime to pq, one has ωpτpq ě k

in GalpKtqu
tpu{Kq.

As we will see the proof of Theorem 5.6 can be reduced to the next Proposition.

Proposition 5.7. — Let L{K be a given finite p-extension with Galois group H. There
exists a positive density set Θ1 of primes q of K, all coprime to p and all split completely
in L{K, such that for all t P N and for all sets T “ tq1, ¨ ¨ ¨ , qtu Ă Θ1 of t different
primes, one has

t
à

i“1
FprHs ãÑ VT

L{pLˆqp.

Proof. — Put L1 “ Lpµpq, and ∆ “ GalpL1{Lq. Let us start with the following lemma

Lemma 5.8. — There exists a positive density set Θ1 of primes q of K, all coprime to
p, such that for all t P Zě0 and for all sets T “ tq1, ¨ ¨ ¨ , qtu Ă Θ1 of t different primes,
one has Fp b Gab

L1,T �
Àt

i“1 FprHsr∆s as GalpL1{Kq-modules. Moreover the qi’s split
completely in L{K.

Proof. — First, let us choose a set of places Σ of L1, GalpL1{Kq-invariant, such that
GΣ,ab

L1,H “ t1u. Put F “ L1p p
b

Oˆ
L1,Σq. The extension F{K is Galois and let Θ1 be the

Chebotarev set of places of K that split completely in F{K. The splitting implies that for
each v P Θ1 one has the equality of completions Kv “ L1v “ L1vp p

b

Oˆ
L1,Σq, so Oˆ

L1,Σ Ă Up
v

and µp Ă Kv. Take now T “ tv1, ¨ ¨ ¨ , vtu a set of t different places of Θ1 all coprime to p.
By class field theory one has:

Fp bGΣ,ab
L1,T »

ś

w|vPT Uw

Oˆ
L1,Σ

ś

w|vPT U
p
w
»

ź

w|vPT

Uw{U
p
w.

As all places of T split completely in L1{K, then
ź

w|vPT

Uw{U
p
w »

t
à

i“1
FprHsr∆s.

One concludes by noting that Fp bGab
L1,T � Fp bGΣ,ab

L1,T »
Àt

i“1 FprHsr∆s.

The Kummer radical RT of the maximal p-elementary extension of L1, unramified out-
side T , is a subgroup of VT

L1{pL1
ˆ
qp (remember that T is coprime to p). Hence by

Lemma 5.8 we get
t

à

i“1

`

FprHsr∆s
˘˚

ãÑ RT Ă VT
L1{pL1

ˆ
q
p,

where ˚ denotes the reflection action following ∆. By taking the ∆-invariant, Proposi-
tion 5.7 holds by noting that

`

VT
L1{pL1

ˆ
qp
˘∆
» pVT

L{Lˆqp.
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Proof. — (of Theorem 5.6). Given k ą 0, write n “ rlog2 ks. Let L “ pKHq
ΦnpGHq and

put H “ GalpL{Kq. By Proposition 5.7, choose a prime q, coprime to p and that splits
completely in L{K, such that FprHs ãÑ VT

L{pLˆqp where T “ tqu. So VT
L{pLˆqp contains

a free nontrivial FprHs-submodule. Then by Corollary 5.4, there exists a prime p Ă OK
such that dpGT

L,H “ dpGT
L,S where S “ tpu.

But, as q splits completely in K, observe now that pKHq
ΦnpGHq “ pKT

Hq
ΦnpGTHq. Then by

Lemma 5.2, we get that the depth of τp P GT
S “ GalpKT

S{Kq is at least 2n ě k.

Remark 5.9. — The reader may wonder why one can’t, for instance in the totally real
example of §3.3.2, simply apply Theorem 5.6 for some p whose τp will have depth 3 for
some q. The difficulties are that first Gtqu

tpu may have many more relations imposed by
the splitting condition, and second if one removes the splitting condition, the kernel of
the map Gtpu � Gtqu

tpu might contain elements of depth 2, so the preimage of τp may have
depth 2.
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