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Kerr comb generation is usually based on the nonlinear dynamics of the intracavity field in a
whispering-gallery mode resonator pumped by a continuous-wave laser. However, using a pulsed
instead of a continuous-wave pump opens a new research avenue from both the theoretical and
experimental viewpoints, as it permits to tailor the spectral properties of ultrashort pulse trains
with a single passive nonlinear element. In this article, we study the dynamics of Kerr optical
frequency combs when the whispering-gallery mode resonator is pumped by a synchronous pulse-
train. We propose a model that is based on an extension of the Lugiato-Lefever equation, which
accounts for both the pulsed nature of the pump and the mismatch between the free-spectral range
of the resonator and the repetition rate of the pulse train. We lay a particular emphasis on the
effect of pump-cavity desynchronization on the spectral shape of the output combs. The numerical
simulations are successfully compared with experimental measurements where the optical pulses
are generated via time-lens soliton compression, and the resonator is a millimeter-size magnesium
fluoride resonator with billion quality factor at the pump wavelength.

I. INTRODUCTION

Whispering-gallery mode (WGM) resonators with
Kerr nonlinearity are a compact and versatile plat-
form for the generation of broadband optical frequency
combs [1–4]. The intracavity process is based on stimu-
lated four-wave mixing, and the spectral features of the
comb depend in a non-trivial fashion on the intrinsic
properties of the cavity (mainly dispersion and losses),
and on those of the continuous-wave pump (power and
frequency). The main appeal of Kerr comb generation
using a continuous-wave pump is its conceptual simplic-
ity and its high conversion efficiency.

A complementary approach to Kerr comb generation
corresponds to the case where the resonator is pumped
in a synchronous pulsed regime. In the temporal domain,
the lightwave signal entering the cavity is an optical pulse
train with a repetition rate matching the free-spectral
range of the cavity. In the spectral domain, this corre-
sponds to pumping the cavity with an optical frequency
comb. The output comb therefore results from the non-
linear interaction of the input comb with the WGM res-
onator. The resonator therefore responds as if it was sub-
jected to a large number of mutually coherent pumps, and
its dynamical behavior becomes substantially different
than the one obtained when there is a single-frequency
pump. The earliest works along that line, even though
not exactly viewed as pulse pumping schemes, involved
dual-pump Kerr combs – the “pulses” in this case being
mere sinusoids when both modes are phase-locked [5–
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9]. Recently, more systematic experimental works have
shown that pumping high-Q microresonators with ultra-
short optical pulses permits to generate broadband fre-
quency combs with lower average power when driving a
microresonator with a pulse train whose repetition rate
matches the cavity free-spectral range [10, 11].

In this work, we introduce a modified version of the
Lugiato-Lefever equation (LLE) which accounts for a
pulse train (or equivalently a frequency comb) as a pump.
In order to validate the model, we have experimentally
built an optical pulse generator to drive our WGM res-
onator. Numerical simulations based on the split-step
Fourier algorithm are then performed and compared to
the experimental results. One of the main focus of our
work is the asymmetric broadening of the generated fre-
quency combs when a mismatch between the pulse train
repetition rate and the free-spectral range of the cavity
is accounted for.

The article is structured as follows. The experimental
system under study is introduced in Sec. II. Section III
is devoted to the modeling of the optical pulse genera-
tion. The LLE corresponding to the WGM resonator in
the pulse-pump is established in Sec. IV, while Sec. V dis-
cusses the results of the numerical simulations and exper-
imental measurements. The final section provides some
concluding remarks.

II. EXPERIMENTAL SYSTEM

The system under study is presented in displayed
Fig. 1. It features two sub-units, namely an ultrashort
optical pulse generator with tunable repetition rate, and
a WGM resonator.
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FIG. 1: (Color online) Experimental setup use to drive a WGM resonator with quasi-synchronous ultrashort optical pulses. The
mm-size WGM resonator in this experiment is made of magnesium fluoride, and has an FSR of approximately 6 GHz with Q in
excess of 109 at 1550 nm. PC: Polarization controller; IM: Intensity modulator; PM: Phase modulator; EDFA: Erbium-doped
fiber amplifier; RFA: Radiofrequency amplifier; PS: Phase shifter; SMF-28: Single-mode fiber spool; WGMR: WGM resonator;
Att: Optical attenuator; OSA: Optical spectrum analyzer.

The optical pulse generator relies on time-lens soliton-
assisted compression [12], that has the capability to yield
picosecond pulses with GHz repetition rates and watt-
level peak power. The optical source of the pulse gener-
ator is a narrow linewidth continuous-wave (CW) laser
of power PL = 10 mW and wavelength λL ' 1550 nm.
An integrated Mach-Zehnder intensity modulator with
half-wave voltages VπRF = 4.2 V and VπDC = 5.85 V is
used to carve pulses out of the CW optical signal – the
so-called pre-pulses. A phase modulator of half-voltage
Vπp = 3.1 V is then used to apply a quadratic phase pro-
file (chirp) in the time domain on the pulses, in the same
fashion a lens applies a quadratic phase profile in the spa-
tial domain to focus a light beam. Both the amplitude
and phase modulators are driven by the a radiofrequency
(RF) frequency synthesizer at angular frequency f

S
. Two

RF amplifiers are used to adjust the modulating signal
powers to the desired levels in each path. In order to
tune the RF phase difference between the input signals
fed into two modulators, a phase shifter is placed on ei-
ther one of the path (here, it is the amplitude modulator
path). The use of a RF frequency synthesizer allows us
to tune the pulse train repetition rate to any arbitrary
value from 10 MHz to several tens of GHz with kHz pre-
cision. A low noise erbium-doped fiber amplifier (EDFA)
with 33 dB gain is used to amplify the pre-pulses in order
to reach a high power before being launched into a stan-
dard SMF-28 fiber spool of length L = 3.6 km, where
they undergo time-lens soliton compression. One of the
most interesting advantage of this architecture is that
the maximum achievable peak power is far superior to
the output power of the EDFA.

The output signal of the fiber spool is a train of ps-wide
solitons with a repetition rate equal to f

S
. These pulses

are coupled via a fiber taper into a custom-made magne-
sium fluoride (MgF2) WGM resonator with an intrinsic
quality factor in excess of 109 at 1550 nm [13, 14]. The
diameter of this resonator is d ' 12 mm and its group
velocity index is ng = 1.37, corresponding to a free spec-

tral range (or FSR) equal to f
R

= c/πdng = 5.782 GHz,
where c is the velocity of light in vacuum. The bandwidth
of a resonance in this resonator has been measured to be
approximately 1 MHz. In order to couple the optical
pulses (or frequency comb in the spectral domain) gen-
erated by the system to the WGM resonator, we need to
very precisely match the repetition rate of the pulse train
(i.e., the driving frequency of the frequency synthesizer)
with the FSR of the cavity. In other words, we need to
have fS ' fR , which is approximately 6 GHz in our case
as indicated earlier.

The output signal of the resonator is eventually atten-
uated before being sent to an optical spectrum analyzer
that displays the output optical frequency comb.

III. MODEL FOR THE OPTICAL PULSE
GENERATOR

The dynamics of the optical pulse generator can be
tracked via the electric field

Ef(z, t) =
1

2
Ef(z, t)eiωL

t +
1

2
E∗f (z, t)e−iωL

t (1)

where ω
L

is the angular frequencies associated with the
1550 nm CW laser, and Ef(z, t) is the complex-valued
slowly-varying envelope of the optical field, which is nor-
malized in such a way that the optical power is readily
obtained as |Ef(z, t)|2 in units of watts.

The output field of the CW laser diode (extreme left

of Fig. 1) has an envelope EL =
√
P

L
. This signal is then

amplitude- and phase-modulated with a driving RF sig-
nal proportional to V (t) = V0 cos Ω

S
t (with Ω

S
= 2πf

S
)

before being amplified by the EDFA. As a consequence,
the slowly-varying envelope of the optical field at the in-
put of the optical fiber is obtained as [15]

Ef(0, t) =
√
κoGoPL
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× cos
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π
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}

× exp
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iπ
ηV0

Vπp

cos ΩSt+ ∆Φ

}
(2)

where κo stands for all the optical losses between the out-
put of the laser and the input of the optical fiber spool,
Go is the gain of the EDFA, VB is the bias voltage of
the intensity modulator, ∆Φ is the phase-shift induced
between phase and intensity modulations signals, while
η is a dimensionless parameter measuring the amplitude
ratio between the phase and intensity electrooptic mod-
ulations (controlled by the imbalance between the RF
amplifiers in the two modulation paths).

The field Ef(0, t) is a train of chirped pre-pulses with
quasi-sinusoidal shape, which is then launched into the
fiber spool, where it evolves as Ef(z, t) following the prop-
agation equation

∂Ef
∂z

= −αf

2
Ef − β1f

∂Ef
∂t
− iβ2f

2

∂2Ef
∂t2

+ iγf |Ef |2Ef . (3)

The fiber parameters are the loss parameter αf =
0.046 km−1, the inverse group velocity β1f = 1/vg,f =
[2.0 × 108 m/s]−1, the group-velocity dispersion β2f =
−20 ps2/km, and the Kerr nonlinearity parameter γf =
1.1 W−1/km. The above Eq. (3) is subsequently re-
duced to the well-known nonlinear Schrödinger equation
(NLSE) with losses, by rewriting it in the moving frame
that cancels the first-order term β1f∂tEf . After numeri-
cal simulation using the split-step Fourier algorithm and
initial condition Ef(0, t), the NLSE permits to obtain the
output signal Ef(L, t) of the fiber spool, which becomes
the input signal for the WGM resonator.

IV. THE LUGIATO-LEFEVER EQUATION
MODEL FOR A WGM RESONATOR WITH A

PULSED PUMP

The Lugiato-Lefever equation (LLE) is a well estab-
lished model to describe the intracavity dynamics of laser
fields in WGM resonators with Kerr nonlinearity, when
pumped by a continuous-wave laser [4, 16, 17]. When the
pump field is a train of quasi-synchronous optical pulses,
the LLE ruling the intracavity dynamics becomes

∂E
∂t

= −κE + iσE − Ω
∆

∂E
∂θ

+ ivg

K∑
k=2

(iΩ
R

)k
βk
k!

∂kE
∂θk

+ivgγ|E|2E +
√

2κt/TR Ein(θ) , (4)

where E(θ, t) =
∑
l El(t)eilθ is the envelope of the total

intra-cavity field normalized such that |E|2 is the corre-
sponding power in watts, and El(t) is the field envelope
for the mode of reduced azimuthal order l = `− `0. This
intracavity field depends on the azimuthal angle along the

closed-path circumference of the resonator θ ∈ [−π, π]
and on the time variable t. The parameter

Ω∆ = ΩS − ΩR = 2πf∆ (5)

is the frequency detuning between the pulse repetition
rate and the cavity free-spectral range. It should be
noted that here, the retarded time-frame is character-
ized by the angle Ω

S
t (and not Ω

R
t like in the CW pump

case), so that stationary patterns are rotating at angular
frequency Ω

S
instead of Ω

R
. Equivalently, the reference

comb is equidistant with frequency spacing Ω
S
. As a con-

sequence, when Ω
∆
6= 0, the patterns should experience

a drift (or walk-off) in the cavity.
The loss parameters in this equation are the internal

(“i”), coupling or external (“e”), and total coupling band-
widths ∆ωi,e,tot = ω0/Qi,e,tot, where ω0 is the cold-cavity
eigenfrequency of the pumped mode. We can then rede-
fine these coefficients as κi,e = ∆ωi,e/2, and the total
(or loaded) half-linewidth κ = ∆ωtot/2 is now rewrit-
ten as κ = κi + κe (∼ 2π × 1 MHz). The frequency
detuning between the laser and the resonance frequency
of the pumped mode is σ = ωL − ω0. The intracav-
ity round-trip time is TS = 2π/ΩS , and the k-th or-
der dispersion parameters are βk. The four-wave mix-
ing (FWM) term induces a global coupling weighted by
the nonlinear parameter γ = n2ωL/cAeff , where n2 is
the Kerr nonlinearity, and Aeff = Veff/πd is the effective
mode area inside the resonator, with d being its diame-
ter. The parameter vg = c/ng stands for group velocity
in the resonator at the pump frequency. In this study,
we will restrict ourselves to second-order dispersion (with
β2 ∼ −10 ps2/km), and neglect higher-order dispersion
(βk ≡ 0 for k ≥ 3).

The input field of the WGM resonator is the output
field Ef(L, t) of the optical pulse generator, following

Ein(θ) ≡ Ef(L, t) = Ef(L, θ/ΩS
) . (6)

We have here accounted for the fact that t is a fast time
variable time in the NLSE of Eq. (3), which in our case
has to be mapped to the spatial variable θ [note that t in
the LLE obtained in Eq. (4) is a slow time variable]. On
the other hand, the output field of the WGM resonator
is defined as

Eout(θ, t) = −Ein(θ) +
√

2κeTR
E(θ, t) . (7)

The comparison between the numerical simulations and
experimental results will be carried out using the output
signal |Eout|2, and not |E|2 which is experimentally inac-
cessible (except in the add-drop configuration). The LLE
corresponding to the conventional case of CW pumping
is recovered by setting Ω

∆
≡ 0, and by replacing the

pulsed pump Ein(θ) by a constant field
√
P0, where P0 is

the laser of the pump laser.
It is noteworthy that an equation similar to Eq. (4)

was studied in refs. [18, 19]. It was also used in ref. [20]
to investigate spontaneous breaking of the time-reversal
symmetry in a passive Kerr fiber resonator driven by a
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FIG. 2: (Color online) (a) Numerical simulation based on
Eq. (3) for the time-lens soliton compression as the quasi-
sinusoidal prepulses are propagating along the fiber spool.
The parameters of the simulation for the initial condition in
Eq. (2) are κoGoPL = 420 mW, V0 = 2 V, ∆Φ = 0 and η = 3.
(b) Comparison between the experimental and simulated au-
tocorrelation plots for the compressed (output) optical pulses.
This plot permits to evaluate the full-width at half maximum
to a value around 4 ps.

synchronous pulsed pump (with no frequency mismatch).
A detailed mathematical analysis of that model was later
on carried out in ref. [21], where the authors analyzed the
bifurcation behavior of the system and the emergence of
asymmetric states as a function of the pump power.

For our numerical simulations, it is convenient to
rewrite Eqs. (4) and (7) in dimensionless form. For that
purpose we introduce the following dimensionless vari-
ables:

ψ = (γvg/κ)
1
2 E and τ = κt (8)

for the intracavity field and the time, where κ is the
loaded half-linewidth.

If we restrict ourselves to second-order dispersion, the
dimensionless model is now rewritten as

∂ψ

∂τ
= −(1 + iα)ψ + ε

∂ψ

∂θ
− iβ

2

∂2ψ

∂θ2

+i|ψ|2ψ + F S(θ) , (9)

where we recover the real-valued dimensionless parame-
ters that characterize the conventional the LLE, and that
stand for cavity detuning and group-velocity dispersion
following

α = −σ
κ

and β = β2

vgΩ
2
R

κ
. (10)
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FIG. 3: (Color online) Kerr comb spectra at the output of the
WGMR for a repetition rate mismatch of ±30 kHz relatively
to the FSR. Top: Numerical simulation using Eq. (9) with
parameter α = 0, F = 8, β = −0.005, and considering a
Gaussian pulse with a 4.2 ps width. Bottom: Experimental
spectra using the experimental setup presented in Fig. 1.

The new dimensionless parameter is

ε = −Ω
∆

κ
, (11)

which accounts for the frequency mismatch between the
pulse train repetition rate and the cavity FSR. Note that
ε is typically of the same order of magnitude as α: Res-
onant pumping requires −1 < ε < 1, while perfectly
synchronous pumping corresponds to ε = 0.

The normalization of the pulsed pump term is such
that

F =

√
2γvg
T

R

κe

κ3

√
P

S
, (12)

where

PS =
1

TS

∫ T
S
/2

−T
S
/2

|Ef(L, t)|2dt (13)

=
1

2π

∫ π

−π
|Ein(θ)|2dθ (14)

is the average power of the optical pulse train, while

S(θ) =
Ein(θ)√
P

S

(15)

is its normalized complex-valued envelope that fulfills the
condition

1

2π

∫ +π

−π
|S(θ)|2 dθ = 1 . (16)

We also note that the dimensionless output field is

ψout = −FS(θ) + 2ρψ , (17)
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FIG. 4: (Color online) Experimental and numerical spectra
for various values of the frequency mismatch f∆ . The parame-
ters for the numerical simulations were α = 0 and β = −0.008.
The input pulse was a Gaussian with a 4.2 ps pulsewidth.

with ρ = κe/κ being the ratio between out-coupling and
total losses. The usual dimensionless LLE for CW pump-
ing is recovered by setting ε ≡ 0 and S(θ) ≡ 1.

The new dynamical equation corresponding to our sys-
tem is Eqs. (9), with the normalization constraint of
Eq. (15). It appears that this model introduces two new
features relatively to its CW counterpart, namely the fre-
quency mismatch ε and the pulse profile S(θ). The latter
is complex-valued and infinite-dimensional, but it is very
likely that its most important characteristic will be its
angular pulsewidth w, which controls the spectral span
of the pump pulses. Therefore, in first approximation,
we can consider that pulsed pumping adds two new pa-
rameters to the classical LLE, namely ε and w.

V. EXPERIMENTAL AND NUMERICAL
RESULTS

We have used the experimental system presented in
Fig. 1 to generate the optical pulses needed to drive the
WGM resonator. The autocorrelation profile show that
pulses were shortened down to 4 ps, as shown in Fig. 2,
and the output peak power was 1.5 W (corresponding to
an average power of 40 mW). The autocorrelation func-
tion has the characteristic structure of soliton compres-
sion associated with the Peregrine soliton profile [22].

This signal was then used to pump the WGM res-
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FIG. 5: (Color online) Numerical simulation showing the vari-
ation of the pulseshape for various values of the frequency
mismatch f∆ . The parameters for the numerical simulations
are the same as those in Fig. 4.

onator, and the resulting spectra are shown in Fig. 3.
We have laid a particular emphasis on the role of the
frequency mismatch Ω

∆
= Ω

S
− Ω

R
between the pulse

train repetition rate and the resonator FSR. We observe
that the spectra undergo asymmetric broadening as the
driving signal repetition rate is mismatched, and that the
direction of the asymmetry is directly correlated with the
sign of the mismatch.

This phenomenon can be intuitively understood when
we picture the position of the frequency comb used to
drive the resonator relative to the position of each reso-
nance. When the repetition rate of the pulse train is su-
perior to the FSR of the cavity, part of the spectrum that
is broadened (high-frequency part of the optical spec-
trum) corresponds to the spectral area of the frequency
comb which is red-detuned in the resonances; conversely,
the spectral area of the frequency comb on the blue-
detuned side does not undergo any broadening. When
the repetition rate is inferior to the FSR, the opposite
phenomenology is observed. This dynamical behavior is
reminiscent of the mechanism needed to generate dissipa-
tive Kerr solitons with microresonators [23], where a scan
in the red detuned side of the resonance was necessary to
generate broadband frequency combs.

In order to reach a deeper understanding of the phe-
nomenon, the model introduced in Eq. (9) has been nu-
merically implemented, using the split-step Fourier al-
gorithm. The simulation displays a phenomenon similar
to the one observed experimentally. When ε is negative,
the repetition rate of the pulse train is higher than the
FSR of the cavity and the spectrum broadens toward the
lower frequencies. On the other hand, when ε is positive,
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the spectrum shifts toward the higher frequencies. We
observe a slope of about approximately 0.5 dB per mode
on both the experimental and numerical spectra, leading
us to the conclusion that our model is in good qualitative
agreement with the experiments. We can rule out Raman
self-pumping as the key effect behind the phenomenon
we observed, because the the related self-frequency shift
would continuously shifts the soliton pulse toward lower
frequencies. However, in our experiment, we were able
to observe both redshift and blue shifts.

We have also investigated the effect on the frequency
mismatch Ω∆ between the repetition rate of the pulses
and FSR of the cavity on the dynamics of the system.
Figure 4 shows the experimental and numerical spectra
for four different detuning ranging from 0 to −120 kHz,
while Fig. 5 displays the corresponding numerical pulse
shapes. When the detuning is null, we observe minimal
spectrum broadening, and the pulses remain Gaussian.
As f

∆
is set to −60 kHz, we observe a large asymmet-

rical broadening, tilted towards higher frequencies. This
broadening corresponds to a pulse doubling (or splitting)
in the time domain. When the detuning is decreased to
−90 kHz, the bandwidth broadening is reduced, thereby
indicating that the broadening process has a nontrivial
dependence with Ω

∆
. Accordingly, the pulse splitting in

the time domain is gradually reversed. Further decrease
of the detuning to −120 kHz leads to a the spectrum
that is very similar to one obtained with resonant pump-
ing (f

∆
= 0 kHz), with the time-domain pulse displaying

a single but slightly asymmetric peak. Both the experi-
mental measurements and the numerical simulations are
in agreement while describing this phenomenology, which
confirms the notable effect of frequency mismatch on the
bandwidth of the output comb spectra. One should note
however that we have pumped two different mode fami-
lies in Figs. 3 and 4, thereby explaining why two different
values of dispersion were used in the numerical simula-
tions. One can also note that the envelope of the spectra
are not smooth, and this can be attributed to instability
within the resonator (thermal instabilities, jitter of the
source).

Another interesting point is the small frequency range
around which the system exhibits asymmetric broaden-
ing. Both the experimental measurements and the nu-
merical simulations indicate that this range is roughly
about 100 kHz in our case, even though the resonance on
which we are locked is approximately 1 MHz wide. Our
interpretation of this phenomenon is that when we set
a detuning of Ω

∆
, only the the first pair of teeth of the

frequency comb we use to pump the resonator is detuned
by that amount relative to the resonance, as the the n-
th pair of comb teeth is detuned by nΩ

∆
. This means

that as the detuning is increased, the sidemodes of the
pump comb are increasingly becoming out-of-resonance
input signals, and their influence in the intracavity dy-

namics thereby decreases. Asymptotically, only the cen-
tral frequency of the pump comb becomes relevant when
Ω

∆
� κ and the resulting comb becomes in all points

similar to the one obtained by a continuous-wave pump.

VI. CONCLUSION

We have introduced a new version of the Lugiato-
Lefever equation which accounts for the use of a pulse
train as the quasi-synchronous driving field of a WGM
resonator. We have presented the experimental setup
used to drive the WGMR with pulses, as well as the cor-
responding theoretical model. The numerical simulations
and experimental measurements have shown the phe-
nomenon of asymmetric broadening of frequency comb
when a mismatch between the cavity FSR and the repe-
tition rate of the pulse train was induced.

This work could be extended in numerous ways in the
near future. From a mathematical viewpoint, it is neces-
sary to perform a full bifurcation analysis based on the
normal form theory in order to understand the nature
and stability of the patterns that can emerge in the sys-
tem [24–27]. The consideration of other nonlinear [28, 29]
or thermal [30–32] effects would lead to additional terms
that are relevant in order to provide a more accurate de-
scription of the intracavity dynamics. From the applica-
tions perspective, this system and the associated model
would permit to optimize self-oscillators incorporating
WGM oscillators in their feedback loop [33, 34].

One of the most important application of our work
belong to the realm of quantum optics. Indeed, quantum
frequency combs are the ideal technological paradigm
for the creation and manipulation of frequency bin
states [35–40]. High-Q WGM resonators with pulsed
pumping arose in recent years as ideal systems from
that perspective as they have the potential to pro-
vide a chipscale platform for the next generation of
quantum photonic systems, as it enables time bin
protocols and drastically reduces the optical power
needed to drive the resonators [41–47]. We expect
that a quantization of the classical equations would
allow us to gain a deeper understanding of these systems.
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