
Automatic Generation of Model Based Tests
for a Class of Security Properties∗

Pierre-Alain Masson
LIFC, Universite de

Franche-Comte
16, route de Gray

25 030 Besancon Cedex -
FRANCE

masson@lifc.univ-fcomte.fr

Jacques Julliand
LIFC, Universite de

Franche-Comte
16, route de Gray

25 030 Besancon Cedex -
FRANCE

julliand@lifc.univ-fcomte.fr

Jean-Chritophe Plessis
LIFC, Universite de

Franche-Comte
16, route de Gray

25 030 Besancon Cedex -
FRANCE

Eddie Jaffuel
LEIRIOS Technologies

TEMIS Innovation
18, Rue Alain Savary

25000 Besancon - FRANCE
25 000 Besancon

eddie.jaffuel@leirios.com

Georges Debois
GEMALTO

6, rue de la Verrerie
92 190 Meudon - FRANCE
georges.debois@gemalto.com

ABSTRACT
This paper is a contribution to the problem of getting con-
fident in the fact that an implementation correctly meets a
security policy assigned to it. To do so, we compute tests
that exercise security properties issued from the security pol-
icy. We proceed by model based testing. Classically, we use
a functional model that formalizes the functional specifica-
tion. But we also use a second model, in the shape of secu-
rity properties, that formalize a part of the security policy.
Tests are computed from the security properties, with the
formal functional model as an oracle.

We first formalize the informal security requirements as reg-
ular expressions. Then we introduce mutations in the regu-
lar expressions as to reflect the specific situations in which
we intend to test the security properties. These mutated
regular expression are unfolded into abstract test sequences.

We present a set of four mutation rules that apply to a
class of properties that we call sequencing properties, and
we experiment our method on a standard in the smart card
domain named IAS, for Identification, Authentication and
electronic Signature.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

∗This research is supported by the French National Research
Agency (ANR) as the POSE project, which is a RNTL
(Réseau National en Technologies Logicielles) project.

General Terms
Reliability, Security

Keywords
Security policy, security properties, automatic test genera-
tion

1. CONTEXT, MOTIVATIONS AND METHOD
Some systems require strong security guarantees. This is
the case for example for embedded software in the transport
domain, or for applications in the banking domain. This is
also the case when it comes to put personal or medical data
on smart cards.

A security policy is usually assigned to such systems, de-
scribing functional aspects related to the security of the sys-
tem itself, as well as constraints on the members of orga-
nizations involved in using the system, possible adversaries,
etc.

We are only interested in this paper in the functional aspects
of the security policy assigned to a system. A challenging
question is “how to increase the confidence one can have in
the fact that an implementation correctly meets the security
requirements expressed in its security policy?”

We propose to compute tests that concentrate on exercising
in a variety of manners the security features of a system. In
this paper, we consider the testing of sequencing properties,
which express how the commands of a system are allowed
to succeed to each other in an execution. These properties
relate to dynamic aspects of the system under test. For
example, a requirement for a system might be that an ac-
cess command must always be preceded by an authentication
command, which verifies whether the access is authorized or
not.

These tests can be obtained by means of a model based test-

ing approach [11, 26]. A formal functional model is written
according to the specification of the system to test. The
model is an abstraction of any real implementation of the
system. Hence it is simpler, and is supposed to provide a
trusty representation of the expected behavior of the system
under test1.

The tests are computed from the functional model according
to one or other test selection criterion [20]. The model also
predicts the expected output of the test (the oracle). The
system under test is the implementation, and the results of
the tests on it are compared with the ones predicted by the
model.

For a system where security is crucial, we expect tests to
exercise the security requirements in a variety of manners,
not just in a “functional way”. With the access example,
simple functional tests would probably exercise the access
command in a case where it is authorized (for example with
a sequence looking like authentication · access), and in
one case where it is refused (for example with a sequence
looking like2 access where no authentication occurred).

We would like to have more tests for such security require-
ments. For example, we would like to have the test authen-
tication ·authentication · access for testing the absence
of side effects due to a previous authentication, or the test
authentication · ...· access where the access is proces-
sed some time after the authentication.

To achieve this, we propose to express the security require-
ments apart from the functional model, as formal security
properties, and to compute tests from these properties. The
functional model still serves as an oracle for these tests. The
security tests obtained this way comes in complement of the
already obtained functional tests.

We report in this paper a proposition of such a property
based testing approach. This work has been experimented
in the framework of the french RNTL POSE project. The
aim of the project is to produce conceptual, methodolog-
ical and technical tools for the conformity validation of a
system to its security policy. The project brings together
industrial (LEIRIOS, GEMALTO, SILICOMP/AQL) and
academic (LSR, LIFC/LORIA INRIA Cassis project) part-
ners. The target application domain is the smart card appli-
cations. In particular, the results of the project are applied
to the IAS, a standard for the operations of Identification,
Authenticated and electronic Signature on a smart card.

LEIRIOS has produced a functional model in B of the IAS
system, and created and continue to develop the tool LTG3

that produces functional tests from functional models. The
possible behaviors appearing in the functional specification
are modelled as operations in the B model. LIFC has for-
mally expressed sequencing properties for IAS, and have
computed tests from these properties, with the B model as
an oracle. GEMALTO has produced an implementation of
IAS, on which the tests have been executed. As neither the

1This question is left to the ability of the “modelization
engineer”.
2the line over access means access refused
3LEIRIOS Test Generator

IAS specification, nor its B model and implementation are
public domain, we won’t go too much into the details of
these.

Notice that security requirements may appear in the spec-
ification as authorized or forbidden cases. We call nominal
the behaviors described as they appear in the specification.
A nominal behavior thus can be positive (describing what
is allowed) or negative (describing what is forbidden). The
nominal behavior for the access example can be expressed
(in a positive way) as authentication·access.

Besides, we consider some test needs for the security proper-
ties. A test need is issued from the experience of a validation
engineer, and can be thought of as a scenario to exercise the
property in non-nominal situations. A test need is for ex-
ample to first gain an authentication and then to loose it,
and to try the access, to see if the first authentication has
no unwanted side effect on the access.

Our approach is as follows: first we express the nominal be-
havior as a regular expression: we call it the original prop-
erty. Then we inject a test need inside the property by
producing some mutation on the regular expression: we syn-
tactically transform the original property, in order to mod-
elize either erroneous or non-trivial cases of execution. The
mutated regular expression is unfolded as abstract test pat-
terns, which are sequences of calls to the operations of the
functional model. The abstract test patterns are then trans-
formed into abstract tests, by finding from the functional
model the correct values for the parameters of the operations
that make it possible to execute this sequence of operations.
The abstract tests are then transformed into concrete tests
and executed on the implementation by translating the op-
erations into commands of the implemented system.

In Section 2, we present some elements about the IAS stan-
dard, and also a fragment of its security policy. We study
various formalisms for the security properties in Section 3,
and explain why we have chosen to express the properties as
regular expressions. Our overall approach for the generation
of tests based on mutated regular expressions is presented
in Section 4, and the results of the experiments on the IAS
implementation are given in Section 5.

2. THE IAS APPLICATION AND ITS SECU-
RITY POLICY

IAS is the application on which we have performed our ex-
perimentations. It is an industrial standard for smart cards.
The specification of IAS [17] is not public domain, and so
we will only give a few hints on what it contains in this sec-
tion. Whereas the IAS 1.01 version of the specification was
intended to meet the expectations of the french market, the
IAS 2.0 version converges towards the European standard
CENTS 15480-2 [1].

2.1 IAS
2.1.1 Presentation of IAS
IAS stands for Identification, Authentication and electronic
Signature. It is a standard for Smart Cards developed as a
common platform for e-Administration in France. It spec-
ifies a set of functions devoted to the above cited opera-

tions of identification, authentication and electronic signa-
ture, needed for a smart card application to be declared in
conformance with the IAS standard. An application exe-
cuting on the card will rely on the IAS platform for all such
operations.

Smart cards applications such as the french identity card,
or the “Sesame Vitale 2” card4 should conform to IAS.

The IAS standard is proposed and specified by GIXEL5,
which is an association of industries whose intention is to
promote and develop new technologies, especially in the
smart card domain.

2.1.2 File System Overview
IAS conforms to the ISO 7816 standard. Depending on an
industrial choice, it can be based on a JavaCard or not.

The file system of IAS is illustrated with an example in
Fig. 1.

Files in IAS are either Elementary Files (EF) or Directory
Files (DF). The file system is organized as a tree structure
whose root is designed as MF (Master File). An application
is assigned a specific DF on the card, which is called an ADF
(Application Directory File).

A file must first be created. Then it can be activated and
then deactivated. May it be activated or not, it can always
be terminated or deleted. A file can also be selected, to
become the current file.

The Security Data Objects (SDO) are objects of an applica-
tion that contain highly sensible data such as PIN codes (see
for example PIN1, PIN2 and PIN3 in Fig. 1) or cryptographic
keys (see for example KEY1, KEY2 and KEY3 in Fig. 1), that
can be used to restrict the access to some of the data of the
application.

EF6

DF3

DF1

DF2

ADF1

KEY 3
KEY 2

KEY 1

MF (root)

Application

PIN 3

PIN 1

PIN 2

EF1

EF2

EF3

EF4
EF5

Figure 1: A sample IAS tree structure

2.1.3 A few Commands of IAS
The services implemented by the IAS module in the card can
be addressed by the application by means of various APDU6

4A card with medical and personal data of the holder of the
card
5Groupement des industries de l’interconnexion, des com-
posants et des sous-ensembles électroniques, it is the trade
association in France for electronic components industries
6Application Protocol Data Unit - it is the communication
unit between a reader and a card; its structure conforms to
the ISO 7816 standards

commands. We only cite here a few of these commands, as
an illustration of what kind of services are proposed by IAS
to the applications on the card.

• CREATE FILE: creation of a file (EF or DF),

• ACTIVATE FILE: setting the life-cycle state of a file (EF
or DF) to activated,

• DEACTIVATE FILE: setting the life-cycle state of a file
(EF or DF) to deactivated,

• READ BINARY: reading of the content of a file,

• VERIFY: authentication by means of a PIN code,

• GET CHALLENGE: getting of an authentication challenge,

• INTERNAL AUTH: authentication of the card wrt the ter-
minal,

• EXTERNAL AUTH: authentication of the terminal wrt the
card,

• MUTUAL AUTH: mutual authentication of the card and
the terminal,

• GENERATE ASYMETRIC KEY PAIR: generation of the pri-
vate and public parts of an asymmetric key,

• . . .

As always with APDU commands, the IAS module responds
to a command by means of a status word (i.e. a codified
number), which indicates whether the APDU command has
executed correctly or not. If not, the status word returned
by the APDU indicates the nature of the problem that pre-
vented the command to end normally.

2.2 B Modelization of IAS
Leirios Technologies have developed a B model of IAS, in
order to generate model based functional tests of it. The
B language [2] is a specification language that allows an
abstract description of the functional behavior of the system
under test.

The B model for IAS is 15500 lines long. The commands
of IAS have been modelized by a set of B operations. 60
operations were necessary to fully modelize the commands
of IAS.

As the B model of IAS is intended to serve as an oracle for
the tests, it has been written as a defensive formal specifi-
cation. This means that there is no restriction on the invo-
cation of the operations: their pre-condition only checks the
typing of the parameters. Thus every input is accepted by
the model, provided the parameters in the operation calls
fit the signatures of the operations.

The operation responds to an invocation by returning an ap-
propriate status word7, meaning either success or error, de-
pending on the context in which the operation is called. For

7more precisely, a number that corresponds to a status word
of the functional specification

example, trying to apply the operation DEACTIVATE FILE8

to an EF that is already deactivated returns a status word
of error meaning that the file is already deactivated.

As a consequence, any sequence of operation calls is accepted
by the model, which responds by means of status words
indicating whether the calls are supposed to be correct or
not with respect to the functional specification.

2.3 Security Policy of IAS
The security policy of IAS is not written as a separate doc-
ument from [17]. Thus we have extracted the security prop-
erties directly from the technical specification of IAS.

The main part of the security policy of IAS is devoted to
the access control mechanisms, which we describe below.
But there are also security requirements regarding the au-
thentication process, and in particular the sequencing of the
commands involved in the process. The other features of
the security policy of IAS are not given in this paper.

Our approach of producing tests from security properties has
been applied to the sequencing properties for the authentica-
tion process. The approach also applies to the access control
properties, as is discussed as a future direction in Section 6.

2.3.1 Access Control Mechanisms
The access to an object by a command in IAS is protected
by means of security rules. Such rules are called the access
rules to an object in IAS, and they are attached to the object
itself. Thus, every object in IAS can define its own access
rules for a particular command.

The access rules can possibly be expressed as a conjunction
of five elementary access conditions, which are as follows:

• User (user authentication) - the user must be authen-
ticated (by means of a PIN code);

• Ext (external authentication) - the terminal must be
authenticated (by means of an exchange of keys);

• SM (secure messaging) - the messages are exchanged
in a communication process according to one of the 3
following modes:

– the message is clear,

– the message is clear but hashed, and the hash is
encrypted,

– the message is encrypted and hashed, and the
hash is encrypted;

• Always - the command can always access the object;

• Never - the command can never access the object.

The rule Never is the default rule.

Consider for example the object EF3 in Fig. 1. The access
rule User with PIN2 for the command READ BINARY means
that the user must be authenticated by means of the PIN
code PIN2 to read the content of the file EF3.
8more precisely, the operation in the model corresponding
to the APDU command DEACTIVATE FILE

2.3.2 Sequencing of Commands for the Authentica-
tion

The security policy regarding the correct sequencing of the
commands in IAS for the authentication process is illus-
trated by the two following properties:

• any call to the INTERNAL AUTH command must be pre-
ceded (not necessarily immediately) by a successful call
to the EXTERNAL AUTH command,

• any call to the EXTERNAL AUTH command must be im-
mediately preceded by a successful call to the GET CHAL-

LENGE command.

In the rest of this paper, we will focus on these two proper-
ties, and more generally on the properties about the correct
sequencing of actions, to illustrate our method of automatic
test generation for security properties.

3. FORMALIZATION OF THE SECURITY
POLICY

A security policy is in general given as a separate document
from the technical specification of a product. This is not the
case with IAS where we have extracted from the technical
specification [17] the security properties, relevant to security
policy of IAS.

In any case, the security policy is not given as a formal
document. Thus, the first step towards an automatic ex-
ploitation of the security policy is to formalize it as a set of
security properties. Our intention is to automatically gen-
erate test cases that cover the security properties that we
have identified.

Our experiment in the formalization of the security policy
has been driven by the security properties encountered in
the IAS specification. We have formalized these properties
as regular expressions, after having investigated other for-
malisms such as temporal logics (see section 3.3).

3.1 Regular Expressions
Regular expressions are often well known and used in many
tools such as text editors, lexical analyzers, etc. They al-
low the description of sequences of patterns by means of
operators such as · (sequence of patterns), * (repetition of
a pattern a finite – possibly null – number of times) or +

(repetition of a pattern a finite non-null number of times).
Also, we sometimes use an interval instead of the operators
* or + to bound the number of possible repetitions of a pat-
tern. For example, the replacement of a ∗ by a 0..3 indicates
that the pattern a can be repeated between 0 and 3 times.
We also use the symbol × to denote a number of repetitions
ranging into {1, 0..n, ∗, +}. Thus, a× can be interpreted ei-
ther as a, as a 0..n, as a ∗ or as a +.

3.2 Formalization of Some Security Proper-
ties of IAS

We will focus in this section on some of the security prop-
erties of IAS and formalize them as regular expressions. We
recall that each IAS command is modelized by means of B
operations in the functional model.

3.2.1 Notations Used in the Formalization
We denote by Ops the set of all the names of the operations
of the model. The notation op denotes any operation in
Ops. The notation opa1,...,an

denotes any operation of Ops
distinct from a1, . . . , an. When no suffix is given, the nota-
tion op or opa1,...,an

simply indicates that the operation has
been called, whatever the status word returned. These are
predicates of actions. In these predicates, the status word
returned by an operation op can be indicated as:

• op success for a successful execution of op,

• op error if the status word returned by op indicates
an error.

Notice that it is easy to distinguish between these two cases
from a B formal model (see Section 2.2).

3.2.2 Properties as Regular Expressions

Sequencing of GET CHALLENGE and EXTERNAL AUTH.

We recall that this property specifies that any call to EX-

TERNAL AUTH must be immediately preceded by a successful
call to GET CHALLENGE. Operation EXTERNAL AUTH is denoted
as EA and operation GET CHALLENGE is denoted as GC.

This property can be expressed as a regular expression in
the following way:

(op
GC,EA

∗ · GC success · EA success) ∗

Sequencing of EXTERNAL AUTH and INTERNAL AUTH.

We recall that this property states that when INTERNAL AUTH

is called, the last call to EXTERNAL AUTH must have been
successful. The operation INTERNAL AUTH is abbreviated as
IA.

The property is expressed with a regular expression as

((op
EA,IA)

∗ · EA success · (op
EA error

) ∗ · IA success) ∗

3.3 Regular Expressions: Limited but Well Sui-
ted

It is clear that not all the security properties can be ex-
pressed by means of a regular expression. Let us think of
a property about the active parents of a DF in IAS: for a
DF to be selected and become the current DF, then its par-
ents must be active. This property can not be expressed by
means of a regular expression. It can be expressed as an
invariant state predicate in the shape of

(DF state(DF parent(currentDF)) = active)

where the meaning of DF state, DF parent and currentDF

is straightforward.

This “active parents” property had already been formalized
as an invariant in the B model, and thus correctly exercised

by any functional test. Sequencing properties can not be
expressed as such directly in the B model.

Regular expressions are well suited to the expression of prop-
erties about the dynamic of the operation calls in a system,
which was our main preoccupation in this study. In partic-
ular, properties about the correct sequencing of commands,
such as GET CHALLENGE / EXTERNAL AUTH or EXTERNAL AUTH

/ INTERNAL AUTH exist not only in IAS, but also as equiva-
lents in all smart cards systems.

Other formalisms such as temporal logics are well suited
to the expression of dynamic properties. Indeed, we have
also tried to express these properties as Linear Temporal
Logic (LTL) properties [21, 22], and as Temporal Pattern
Language (TPL)9 properties [25, 16].

The reasons why we have finally chosen regular expressions
as the appropriate formalism are double.

First, regular expressions is a language well known and often
practiced by the validation engineers to whom the method
is intended. This makes it a ready-to-use formalism for the
expression of security properties. In contrast, temporal log-
ics such as LTL or TPL are seldom used in an industrial
context. As such, a specific formation is needed in order to
use them easily as a descriptive language.

Second, temporal logics usually have their semantics defined
over infinite executions. A test case has to be a finite exe-
cution. The potential length of the test cases described as a
regular expression can easily be controlled by bounding the
number of possible repetitions of the operation calls inside
the expression. This corresponds to the replacement of the
∗ and + operators by intervals (see Section 3.1).

3.4 Link Between the Properties and the Func-
tional Model

We intend to compute tests from the security properties,
and to use the formal functional model as an oracle for these
tests. To do so, it is necessary that the security properties
are “glued” to the functional model. This section explains
what knowledge of the functional model is required for the
expression of the security properties.

The idea is that a regular expression expresses some partic-
ular sequencings of the commands that we want to observe.
That is to say we expect the formal functional model to
predict the output values of a particular sequencing of com-
mands, so that the values returned by the implementation
under test can be compared with those.

3.4.1 Operations and Parameters
We use a tool that performs a symbolic animation of the ex-
ecution modelled by the regular expression on the functional
model. That is to say, the commands in the sequence are
executed one by one as operations of the model, with the
result of every call predicted by the model for some parame-

9TPL is the result of a recent collaboration between LIFC
and the INRIA/EVEREST project. It is a specification lan-
guage close to Linear Temporal Logic, but which allows to
mix states and actions aspects in the same formula.

ter values chosen by the model amongst the possible values.
The parameter values are chosen as to try to produce a suc-
cess or an error for the last operation in the sequence (see
Section 4.3).

To do so, we need to know the names of the operations
of the model, in order to relate them to the names of the
commands used in the regular expression.

The operations in the model are parameterized, whereas the
commands in the regular expressions need not be so. In-
deed, the symbolic animation will guess which values of the
parameters make it possible to sequence the operation calls
in the same order as they are sequenced in the regular ex-
pression. Remember that the model is defensive, so that
any sequence of operation calls is feasible (see Section 2.2).
The model may respond to some sequence of calls by a sta-
tus word indicating that, though the sequence is feasible,
it will end in an error state. For example, the sequence
GET CHALLENGE · CREATE FILE · EXTERNAL AUTH is feasible,
though it necessarily leads EXTERNAL AUTH to end in an er-
ror state.

Let us precise that it is allowed to give some parameters
for the commands inside the regular expressions. If this is
to be done, a complete knowledge of the signatures of the
operations of the model is needed to relate the parameters
of the commands to the ones of the operations. Moreover,
paths specified in this way might not be feasible if wrong
values are given for the parameters.

3.4.2 Return Values
As indicated in Section 3.2.1, it is possible inside the regular
expressions to precise if we want a given operation to end in
success state or in an error state.

The B functional model responds to an operation call by
returning a status word. So we have to distinguish between
all the possible status words returned by an operation which
ones correspond to success and which ones correspond to
error.

It is also possible not to precise the expected result of a
command, and to guess the possible values from the model
by symbolic animation. Here again, if the expected results
are given a priori and not guessed from the model, there is
a risk that the sequence might not be feasible.

4. THE TEST GENERATION PROCESS
We have developed a method to automatically generate ab-
stract tests for the fragment of the security policy of a system
that can be expressed as regular expressions. This method
is illustrated in Fig. 2.

We take as input the security requirements, the test needs
and a functional model. In our experiment with IAS, the
security requirements are a part of the functional speci-
fication. The test needs for the various security require-
ments have been expressed by validation engineers from
both GEMALTO and LEIRIOS. The functional model is
a B model.

The security requirements are formally expressed as secu-

rity properties in the shape of regular expressions. The test
needs are formalized as mutation rules, that is to say as
syntactic replacements that apply to regular expressions.

The output of the process is a set of abstract tests, that is to
say some sequences of parameterized calls to the operations
of the model, with the expected results of such calls (the
oracle).

The method proceeds in four steps: formalization, mutation,
unfolding and instantiation.

Figure 2: The test generation process

Step 1 - Formalization. The first step in the process is
the formalization of the security requirements and of the
test needs. The security requirements are formalized as se-
curity properties in the shape of regular expressions. The
test needs are formalized as mutation rules, which perform
syntactic transformations on regular expressions.

The formalization of the security requirements is performed
by the validation engineer for each security requirement as
expressed in the specification. Thus the set of security prop-
erties is specific to every system studied. On the contrary,
the formalization of test needs as mutation rules can be per-
formed once and for all. Test needs are generic, and when a
new test need appears, it can be added as a new mutation
rule to the existing base of mutation rules.

We give in Section 4.1 some generic rules that express generic
test needs.

Step 2 - Mutation. At the second step, the security prop-
erties issued from the previous step are mutated as to in-
corporate the test needs. This is performed by applying
the mutation rules to the regular expressions. The aim is
to exercise the property in non-nominal situations. The re-
sult is a new set of regular expressions that we call the test
scenarios.

Step 3 - Unfolding. The result of the third step is a set
of test patterns, in the shape of sequences of operation calls.
This is obtained from the previous step by unfolding the
regular expressions (the test scenarios).

Notice that the number of test patterns issued from a single

regular expression is potentially infinite, due to the opera-
tors ∗ and +. In practice, every number of repetitions should
be bounded before unfolding.

Also notice that the non-named operations (denoted by op)
have to be replaced by all the possible operation names.

Step 4 - Instantiation. The fourth step computes for each
test pattern a set of abstract tests, in the shape of a se-
quence of parameterized operation calls, with the expected
results of each operation call. This is performed by the tool
LTG10[10] by means of a constraint solving technique from
the functional model, as explained in Section 4.3.

Notice that the abstract tests generated this way have the
same abstraction level as the functional model. So a con-
cretization phase is needed before the tests can be executed
on the implementation under test. In our case, the con-
cretization is performed by LTG by means of an adaptation
layer, which is written in coordination by both the model
and the implementation providers. We do not discuss this
technical point here.

4.1 Mutation of Properties
The mutation of a property syntactically changes the ex-
pression of the property, in order to express a test need re-
lated to the property. Test needs are supposed to be generic
and should apply to various case studies. They are first ex-
pressed by experienced validation engineers and formalized
as mutation rules, that perform syntactic transformations.

We give in this section four mutation rules that were inspired
by the IAS study. The first one is completely generic, and
the others may apply to any other system with security prop-
erties stating how operations are allowed to be sequenced.

The first of these four rules omits the kind of termination
of an operation (success or error), so that all the pos-
sible behaviors of the operation can be guessed from the
functional model. This is expressed as rule 1:

op{ success, error} op (1)

The second and third rules break the sequencing of two op-
erations. When a given operation a must be immediately
followed by a given operation b:

• the rule 2 introduces the possibility for a either not to
occur at all, or to occur several times11,

• the rule 3 introduces the possibility for any operation
(denoted as op) distinct from a and b to occur between
a and b.

The second rule is expressed as

a · b× a
∗ · b× (2)

10LTG is an automatic test generator commercialized by
LEIRIOS Technologies (see http://www/leirios.com)

11several occurrings of an action allows testing the possible
side effects of the first occurring on the following ones

The third rule is expressed as

a
× · b× a

× · (opa,b)
0..1 · b× (3)

Notice that breaking the sequencing of any operation op and
a given operation a is not necessary.

The fourth rule is for the case when a given operation b must
have been preceded by a given operation a with any number
of other operations between a and b. The mutation rule 4
introduces the possibility for a not to occur. This rule is
expressed as

a · (opa,b)
∗ · b× a

∗ · (opa,b)
∗ · b× (4)

4.2 Generation of the Test Patterns
The test patterns are obtained by unfolding the mutated
regular expressions. As noticed above, the possible repeti-
tions of the sub-patterns inside the regular expression have
to be bounded, so that the expression unfolds as a finite
number of test patterns.

In our implementation of the method, the regular expression
is first transformed into a minimal deterministic automaton,
which is then unfolded. We have used for this purpose a
standard tool, the Java package dk.brics.automaton12 .

The coverage criterion “all the paths of the property” leads
to a complete unfolding of the automaton. There is a risk
of a combinatorial explosion of the number of test patterns
obtained this way. If so, we suggest to offer to the validation
engineer the ability to choose a different coverage criterion,
such as all the states, all the transitions, all the cycles.

Besides, the advantage of using automata is that this inter-
mediate form is common to other property describing lan-
guages such as temporal logics or sequence diagrams. Thus
the method could easily be generalized to these formalisms,
provided that the mutation are applied directly to the au-
tomata and not to the regular expressions.

4.3 Test Generation
A test pattern obtained at the previous step is a sequence
of operation calls in the shape of op1 · op2 · · · opn. Some of
the operation calls may be parameterized, if they were so in
the original regular expression.

The aim of the step of instantiation is to compute a set of
test cases that conform to the above cited pattern. For this,
all of the parameters of the operations have to be instan-
tiated, and the expected results of such successive calls are
computed from the functional model. These two tasks are
performed by the tool LTG as explained below.

In the sequence op1 · op2 · · · opn, we distinguish between the
last operation call opn, which we design as the targeted op-
eration, and the preceding sequence op

1
·op

2
· · · opn−1

. LTG
tries to generate one test for each possible behavior of the
targeted operation. In our case where the operations re-
turn status words, this means that there will be one test
computed for each possible status word returned by opn.

12This package has been developed by A. Møller, and can
be found at http://www.brics.dk/automaton/

A test is computed by finding a suitable preamble for each
behavior of the targeted operation. A preamble is one se-
quence op1 · op2 · · · opn−1 of operation calls in which the
values of the parameters of the operations are chosen as to
produce the desired behavior when opn is called. If no in-
stantiation of the parameters make it possible to produce
one particular behavior, then no test is computed for this
case.

For example, if the operation EA is supposed to return only
two possible status words (one for success and one for
error), then two tests are computed from the sequence
GC · EA. In the first one the parameters of the call to GC

are chosen so that EA ends successfully, and in the second
one the parameters of GC make that EA fails.

The values of the parameters are computed from the func-
tional model by means of a constraint solving technique with
a limit strategy [9, 12].

5. EXPERIMENTATION, CHECKUP AND
STATE OF THE ART

5.1 Implementation
We have implemented the method as part of the LTG plat-
form. The steps of mutation and of sequence generation have
been implemented by means of the Java package dk.brics.

automaton. The tool produces all the sequences that can
possibly be obtained by unfolding the automaton. For the
number of sequences to be finite, the tool takes a regular
expression as input in which the number of possible occur-
rences of each pattern is bounded (i.e. every sign ∗ and +
in the regular expression is replaced by a constant interval).

The tests generation has been implemented in LTG by means
of the preamble helper technique [12], which valuates by con-
straint solving a preamble op

1
· op

2
· · · opn−1

for a target
behavior of an operation opn (see Section 4.3).

5.2 Experiments and Results on IAS
We have experimented our method on the property stat-
ing that any external authentication must be immediately
preceded by a successful command GET CHALLENGE (see Sec-
tion 2.3.2). This property has been formalized as the the
following regular expression (see Section 3.2.2):

(op
GC,EA

∗ · GC success · EA success) ∗

The application of mutation rule 1 about the abstraction of
the type of termination of the operations gives the following
regular expression:

(op
GC,EA

∗ · GC · EA) ∗

The application of mutation rule 2, allowing none or several
occurrences of GC gives:

(op
GC,EA

∗ · GC ∗ · EA) ∗

The application of mutation rule 3 about the sequence break-
ing gives:

(op
GC,EA

∗ · GC ∗ · (op
GC,EA)

0..1 · EA) ∗

Then we have limited the length of the test sequences to be
produced from this expression, in the following way:

• we want to observe this particular sequence of opera-
tions only once or twice, and we have replaced the final
∗ by the bounded repetition 1..2. Notice that playing
the sequence of operations twice allows the observation
that playing it successfully once have no side effect on
replying it in a different context (where it could possi-
bly fail);

• we have bounded op
GC,EA

∗ as op
GC,EA

0..1;

• we have bounded GC ∗ as GC 0..2.

Thus, the final expression from which we have generated the
abstract test sequences is:

(op
GC,EA

0..1 · GC 0..2 · (op
GC,EA)

0..1 · EA) 1..2

The complete unfolding of this test scenario has produced
24 different test patterns.

LTG has then computed 36 different test cases from these
24 patterns. Indeed, when no intermediate operation have
been added between GC and EA (12 patterns), LTG has com-
puted 2 tests: one for EA success and one for EA error.
With an operation between GC and EA (12 patterns), only
the behavior EA error was reachable, which gave 12 tests.

All of these 36 tests have been executed by the GEMALTO
team on the IAS implementation, and the results were all
OK. The fact that the results were all OK is not surprising
since the GEMALTO team had correctly taken care of this
sequencing property during the development phase of IAS.

Amongst these 36 tests, only 2 had already been obtained by
the standard functional tests generation process of LTG [6,
8]. These are the tests EA error and GC success·EA success.
This result comes from the functional test strategy, which
efficiently faces the combinatorial explosion problem by lim-
iting the number of tests issued from one abstract sequence.
Thus, the functional test strategy produces only one test by
target behavior of EA, i.e. EA success and EA error, and
this test is as short as possible. Then, our test generation
strategy completes the set of functional tests by a set of se-
quencing tests in various contexts, chosen by the validation
engineer.

5.3 Related Works
TOBIAS13 [19, 13] is a tool for generating test cases in a
combinatorial way. Its principle is very close to our method
since it works by unfolding test patterns described as regu-
lar expressions. Nevertheless, our work differs from the ap-
proach of test generation in TOBIAS in two points. One the
first hand, by using the LTG capacity of performing a con-
straint evaluation of the functional model, we only produce
executable tests provided with the operation parameters and
the oracle. As TOBIAS generates a set of sequences in a
combinatorial way, and independently from any predicting

13Test OBjective desIgn ASsistant

model, many of the sequences generated may correspond to
non executable tests. On the other hand, we have defined a
step of mutation of the property, in order to generate robust-
ness tests of the properties formalized as regular expressions.
This allows an automatic computation of many interesting
test cases from a single nominal property. Let us notice that
once the properties have been mutated, it is possible to use
TOBIAS to unfold them as test patterns. LTG can still be
used after that to generate the executable tests from these
patterns.

The mutation technique is also used by P. Ammann and
P. Black [3, 7]. They propose a different approach of mu-
tation of the operands and of the relational and logical op-
erators in the expressions of the functional model. What we
do is a mutation of the operations sequencing.

Our approach is to be compared with the work on test gen-
eration by model-checking, as in [24, 3, 15, 23], or to similar
approaches like TGV [14, 18]. TGV is a tool allowing auto-
matic synthesis of conformance tests of an implementation
to a formal specification. The functionalities to be tested
are described as test purposes. The concept of test purpose
is close to our concept of test need. Our approach is differ-
ent in the sense that our “test purposes” need not be given
explicitly by the user. They are computed automatically
from the nominal cases, where the test need is captured by
applying appropriate mutation rules.

In [24], O. Sokolsky proposes a method that generates a
set of tests from a LTL property that is quantified existen-
tially. These tests are intended to be non trivial tests of
the LTL property. They relate the non triviality concept
to the non vacuity satisfaction concept [5, 4] of a LTL for-
mula. We also produce non trivial tests, but in a different
way, by applying some selected mutation rules to a prop-
erty describing the nominal behavior. In [24], no human
interaction is needed to produce the abstract test sequences
since the non trivial properties can be automatically com-
puted from the original property, and that the corresponding
abstract test sequences are computed by means of a model-
checker. These test sequences are witness traces satisfying
the non trivial properties. The length of these sequences
is bounded by the number of states (possibly very high) of
the implementation, which may be an information hard to
know a priori. On the contrary, our method requires that
a validation engineer pilots the production of the abstract
test sequences. This allows shorter tests sequences to be
generated, as no information about the possible number of
states of an implementation is required, and that the pilot-
ing allows the validation engineer to bound the length of
the abstract test sequences. Moreover, our method allows
to produce the tests directly from a property specified as
a regular expression and a functional model in B, with no
need to translate it into an explicit state transition system
intended to a model-checker.

6. CONCLUSION AND PERSPECTIVES
6.1 Summary of the Approach
We have presented in this paper some experiments relative
to a property based testing approach, which is a model based
testing approach from both a formal functional model of a
system, and a formal expression of the security requirements

as security properties. We have formalized a class of secu-
rity properties (the sequencing properties) as regular expres-
sions. We have produced some mutations to these regular
expressions in order to modelize erroneous or non-trivial ex-
ecutions with respect to the security property. The mutated
regular expressions have then been transformed into tests by
unfolding the regular expressions, and by computing the cor-
responding sequence of operation calls from the functional
model.

Our experiments have used the IAS standard for smart cards
as a case study, and we have produced a set of security tests
that have been exercised on an implementation of IAS.

6.2 Open Issues

6.2.1 Generalization of the Method
We are now aiming at generalizing this approach to other
security properties than sequencing properties, and to other
formalisms than regular expressions.

In particular, we have mentioned in Section 3.3 the possi-
bility to express the security properties as temporal logic
formulas. Regular expressions, LTL and TPL share a com-
mon underlying formalism: the one of automata. Our idea
is that instead of defining mutation rules that only apply
to regular expressions, it would be interesting to define mu-
tation rules that apply directly to the automata. This way
we could generalize our mutation method to all of the above
cited formalisms, as tools exist that transform each of these
formalisms to (regular or Büchi) automata.

Then the problem is to compute the abstract test sequences
from the automaton. If the property is an action prop-
erty, as it is the case with our regular expressions, then the
unfolding of the automaton directly produces sequences of
operation calls as before. But what if the input property is a
state property, as it is in general the case with LTL proper-
ties? The unfolding of the automaton produces a sequence
of states of the system, and not a sequence of operation calls.
It is thus necessary to find from the functional model which
sequences of operation calls make it possible to reach suc-
cessively the states in the sequence. This can be obtained
by means of the constraint solving techniques used in LTG,
and we are working at it at the present time.

Also, the method is not limited to sequencing properties,
and should apply to any property that can be formalized
as an automaton. We think in particular to some access
control properties, where we could successively exercise the
acquisition and loss of the rights to access an asset. It is
necessary, for such a generalization, that new mutation rules
are proposed, according to the “meaning” of the property
that is formalized as an automaton.

6.2.2 Control of the Combinatorial Explosion of the
Number of Tests

There is a risk that the systematic application of the method
leads to a combinatorial explosion of the number of tests
produced, all along the test generation process. The intro-
duction of piloting at various steps of the process shall make
it possible to control the combinatorial explosion.

Currently, the abstract test sequences are obtained by a
complete unfolding of the automaton. Some coverage cri-
teria (such as all of the states, or only some of the transi-
tions, . . .) could be chosen by the validation engineer to
restrict the number of abstract test sequences obtained by
the traversal of the automaton.

Also, when a mutation introduces the possibility for any
operation op to occur in a sequence, it can potentially be
instantiated as any operation of the model. As there might
be a great number of these, it multiplies the number of pos-
sible abstract tests sequences issued from the same mutated
property. The validation engineer could allow only a subset
of the operations to instantiate op.

The same kind of problem occurs with the parameters of
the operations. As they are not specified in the original
property, there can be a great number of instantiations of
these parameters that fit the pattern defined by the mutated
property. The validation engineer should then also have the
possibility to choose amongst the various possible instanti-
ations of the parameters.

We are currently pursuing our experiments on the IAS stan-
dard, in the framework of the POSE project.

7. REFERENCES
[1] CEN/TS 15480 - Standard European citizen card

progress, 2006.
www.unilink.it/Portals/57ad7180-c5e7-49f5-b282-
c6475cdb7ee7/08 CEN-TS%2015480%20standard.pdf.

[2] J.-R. Abrial. The B Book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[3] P. Ammann, P. Black, and W. Majurski. Using model
checking to generate tests from specifications. In
ICFEM’98, 2nd IEEE Int. Conf. on Formal
Engineering Methods, pages 46–54. IEEE Computer
Society Press, Dec. 1998.

[4] R. Armoni, L. Fix, A. Flaisher, O. Grumberg,
N. Piterman, A. Tiemeyer, and M. Vardi. Enhanced
vacuity detection in linear temporal logic. In CAV’03,
Computer Aided Verification, volume 2725 of LNCS,
pages 368–380, 2003.

[5] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh.
Efficient detection of vacuity in temporal model
checking. Formal Method in System Design,
18(2):141–163, Mar. 2001.

[6] E. Bernard, B. Legeard, X. Luck, and F. Peureux.
Generation of test sequences from formal
specifications: GSM 11-11 standard case study.
International Journal of Software Practice and
Experience, 34(10):915–948, 2004.

[7] P. Black, V. Okun, and Y. Yesha. Mutation operators
for specifications. In ASE’2000, 15th Automated
Software Engineering Conference, pages 81–88,
Grenoble, France, Sept. 2000. IEEE Computer Society
Press.

[8] F. Bouquet, F. Lebeau, and B. Legeard. Test case and
test driver generation for automotive embedded
systems. In 5th Int. Conf. on Software Testing,
ICS-Test 2004, pages 37–53, Düsseldorf, Germany,
Apr. 2004.

[9] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A
constraint solver to animate a B specification.
International Journal on Software Tools for
Technology Transfer, STTT, 6(2):143–157, Aug. 2004.

[10] F. Bouquet, B. Legeard, F. Peureux, and
E. Torreborre. Mastering Test Generation from Smart
Card Software Formal Models. In CASSIS’04, Int.
Workshop on Construction and Analysis of Safe,
Secure and Interoperable Smart devices, volume 3362
of LNCS, pages 70–85, Marseille, France, Mar. 2004.
Springer.

[11] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of
Reactive Systems, volume 3472 of LNCS. Springer,
2005.

[12] S. Colin, B. Legeard, and F. Peureux. Preamble
computation in automated test case generation using
Constraint Logic Programming. The Journal of
Software Testing, Verification and Reliability,
14(3):213–235, 2004. Selected papers from the 2003
UK-Test Workshop.

[13] L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, and
J.-L. Lanet. Case study in JML-based software
validation. In ASE’04, 19th IEEE Int. Conf. on
Automated Software Engineering, pages 294–297, Linz,
Austria, Sept. 2004. IEEE Computer Society.

[14] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho.
Using on the fly verification techniques for the
generation of test suites. In CAV’96, Conference on
Computer Aided Verification, 1996.

[15] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Procs of the Joint 7th Eur. Software
Engineering Conference and 7th ACM SIGSOFT Int.
Symp. on Foundations of Software Engineering, 1999.

[16] A. Giorgetti and J. Groslambert. JAG: JML
Annotation Generation for verifying temporal
properties. In FASE’2006, Fundamental Approaches to
Software Engineering, volume 3922 of LNCS, pages
373–376, Vienna, Austria, Mar. 2006. Springer.

[17] GIXEL. Plateforme commune pour l’eAdministration,
spécification technique, IAS 2.0 edition, 2004.

[18] C. Jard and T. Jéron. TGV: theory, principles and
algorithms. a tool for the automatic synthesis of
conformance test cases for non-deterministic reactive
systems. Software Tools for Technology Transfert,
7(1), 2005.

[19] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron.
Filtering TOBIAS combinatorial test suites. In
FASE’04, Fundamental Approaches to Software
Engineering, volume 2984 of LNCS, pages 281–294,
Barcelona, Spain, Mar. 2004. Springer.

[20] L. Lúcio and M. Samer. Technology of test-case
generation. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 323–354.
Springer, 2005.

[21] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symp. on Foundations
of Computer Science (FOCS’77), pages 46–57, 1977.

[22] A. Pnueli. The temporal semantics of concurrent
programs. Theoretical Computer Science, 13:45–60,
1981.

[23] S. Rayadurgam and M. Heimdahl. Coverage based
test-case generation using model checkers. In ECBS
2001, 8th Annual IEEE Int. Conf. and Workshop on
the Engineering of Computer Based Systems, pages
83–91. IEEE Computer Society, Apr. 2001.

[24] L. Tan, O. Sokolsky, and I. Lee. Specification-based
testing with linear temporal logic. In IRI’2004, IEEE
Int. Conf. on Information Reuse and Integration, Nov.
2004.

[25] K. Trentelman and M. Huisman. Extending JML with
temporal logic. In 9th Int. Conf. on Algebraic
Methodology And Software Technology (AMAST’02),
volume 2422 of LNCS, pages 334–348,
St-Gilles-Les-Bains, Ile De La Réunion, France, Sept.
2002. Springer-Verlag.

[26] M. Utting and B. Legeard. Practical Model-Based
Testing - A tools approach. Elsevier Science, 2006.
ISBN 0-12-372501-1.

