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Abstract—Internet of Things (IoT) is now omnipresent in all
aspects of life and provides a large number of potentially critical
services. For this, Internet of Things relies on the data collected
by objects. Data integrity is therefore essential. Unfortunately,
this integrity is threatened by a type of attack known as False
Data Injection Attack. This consists of an attacker who injects
fabricated data into a system to modify its behaviour. In this
work, we dissect and present a method that uses a Domain-
Specific Language (DSL) to generate altered data, allowing these
attacks to be simulated and tested.

Index Terms—Internet of Things, IoT, Security, False Data
Injection Attack, FDIA

I. INTRODUCTION

This work is carried out within Flowbird company1. Flow-
bird is the world leader in on-street parking solutions. Parking
meters manufactured by the company are present in hundreds
of cities around the world and process hundreds of thousands
of data in order to provide user services such as parking or
environmental monitoring.

Parking meters are internet-connected devices and share the
same characteristics as Internet of Things (IoT) devices such as
their architecture, physical vulnerability or services provided.
They can be considered as part of the IoT devices. They are
therefore susceptible to being attacked like any IoT devices.

A. Internet of Things

The constant increase in the adoption of IoT makes it
omnipresent in all spheres of our lives. Whether in private
or public environments, whether in our homes for domestic
services or in hospitals for vital services, we are surrounded by
IoT devices. This growing adoption brings us many challenges
in terms of security and privacy, particularly because of the
very nature of IoT.

By nature IoT is a network of networks, it is composed of
many heterogeneous devices (things) and technologies. The
main idea behind the IoT is to provide an interface between
the virtual world and the physical world, allowing the recovery,
the transfer, the storage and the processing of the data gathered
by the things. The data collected within the IoT are therefore
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critical to its functioning. Services offered by the IoT are
entirely dependent on the data collected.

Also, from an architectural point of view, IoT is often
described as a five-layered architecture [1]. First, the percep-
tion layer which is essentially about the data collection by
the devices (temperature, pollution, acceleration, etc.). The
collected data are then sent to the network layer. It is connected
to internet and can use different mediums, technologies and
protocols to transport the data generated by the things to
next layers. The middleware layer then processes the data
and makes decisions on actions that need to be taken. The
application layer is the front end of the data processing. It is
where the data are presented through graphical representation
to the end user. Finally, the business layer is used by manage-
ment systems to control the IoT chain and define new business
models.

Therefore, from the architecture, data are at the centre of
the IoT. A problem of integrity in one data is reflected in all
layers and therefore in the services provided.

A particular type of attack that is little studied in the field
of IoT and which specifically targets data integrity is False
Data Injection Attack (FDIA).

B. False Data Injection Attack

First introduced by [2] in the field of sensor networks
and later in the field of Wireless Sensor Networks (WSN),
especially smart grids [3], FDIA are attacks in which an
attacker seeks to change a system’s behaviour by modifying
the data used for its services. For example, in the case of
smart grids, the attacker seeks to inject errors into sensor state
variables, which then leads systems to wrong power grid state
estimation. In this particular area, this can lead to total power
blackouts such as the one in Ukraine in 2015, where a FDIA
was launched against the country’s power grid. Three energy
distribution companies were compromised and their services
were disrupted, throwing part of Ukraine into a blackout [4].

More generally, FDIA can be defined as a cyber-attack
where an attacker, thanks to his in-depth knowledge of the
system under attack, compromises it. Especially in data pro-
duction devices and data manipulation software. The objective
is to inject falsified and altered data, with the aim of modifying
the normal behaviour of these systems. It is a discreet attack



that performs small injections to avoid the various protection
systems. Therefore, the injection can extend over a long period
of time and is difficult to detect.

II. BACKGROUND AND RELATED WORK

Since the first appearance of the term, FDIA research has
mainly focused on the impact, filtering and detection of these
attacks on multiple domains with a strong focus on smart
grid. In Google scholar, when searching for publications with
the query ”false data injection attack(s) OR stealthy injection
attack(s) OR bad data injection attack(s) OR injection false
data” in their titles, 490 results are returned.

By modifying this query to look for the popularity of FDIA
in different domains, we can see in the Table I that IoT is a
very little-explored domain today. The terms used for queries
are, of course, not exhaustive. Publications may escape these
queries because they use synonyms or do not explicitly refer
to the domain in the title. Nevertheless, we have browsed
through the 490 articles presented in the first search. We can
therefore say that the Table I has a good representation of
the publications according to the domain. Other terms can for
example cover the field of smart grids, such as SCADA or
state estimation. However, these keywords can also be found
in other domains such as WSN, which is why we do not use
them in our queries. Other domains also appear in the results
of the first search and are poorly explored, thus they do not
appear in our table, such as multi-agent systems or health care.

TABLE I
QUERY OF DIFFERENT DOMAIN ASSOCIATES TO FDIA

Domain Query terms result number

Smart grid ”smart-grids” OR power OR ”smart-
grid” OR electricity OR AC OR DC 254

CPS / CPNS
CPS OR CPNS OR ”cyber physical”
OR ”control systems” OR ”control sys-
tem”

81

WSN WSN OR ”wireless sensor network”
OR ”wireless sensor networks” 49

IoT ”Internet of things” OR ”Internet of
thing” OR IoT 5

ATC ADS-B OR ATC OR ”air traffic” 4

In [5], authors review FDIA in IoT domain and came to
the same conclusion. FDIA is a big challenge within IoT, but
apart for smart grids, FDIA has been very little studied.

Overall, FDIA is a fairly popular and well-studied area in
smart grids and cyberphysical system (CPS). Nevertheless, its
studies focus on a few very specific areas. By deepening the
exact research topics, we can see that a majority of the work
focuses on detection and filtering of these attacks.

One of the difficulties of FDIA research is to be able to
develop, train and verify filtering and detection techniques
using real data from systems in production that have been
attacked. Usually, attacked data are either protected for confi-
dential purposes or simply not detected, therefore not flagged
as compromised. To develop their attack mitigation systems
and validate them through experimentation, various authors
used several methods to generate data. [6] uses pseudorandom

generator to emulate the data collection and also a pseudoran-
dom generator to emulate FDIA behaviour. [7] uses for their
system in normal state (no attacked) a Bayesian model of the
random state variables with a Gaussian distribution and for the
malicious data they changed the distribution. The data used
by [8] are based on the data from the New York independent
system operator (NYISO) from 2012 and generate the state
data following a procedure. The attacked data are numerical
and they apply a modification of 90%, 95%, 100%, 105%, and
110% of the original numerical value. The main flaw in the
use of these methods is usually the loss of correlation with
reality. The use of nonreal base data and arbitrarily designed
attacks result in the loss of both system-specific and attacker-
specific behaviour. The closest work but not in the IoT domain
is made by [9], who developed a DSL-based testing framework
to perform FDIA on air traffic control (ATC) systems. They
use real data from air traffic control and perform FDIA on
them by using a DSL adapted to the specificity of the aircraft
domain. The scope of the domain is also a big difference
in the way FDIA are handled, for example [3] relies on the
number of meters and the number of state variables to find an
attack vector. In IoT, FDIA will not necessarily try to disrupt
the state estimation but rather to disrupt the data aggregation
or decrease the quality and confidence in the data to trigger
actions and events. As far as we know, there is no related work
to assess the resilience of IoT systems attacked by FDIA.

III. APPROACH

Fig. 1. Workflow for FDIA testing - Data acquisition, designing and testing

The aim of this work is to provide an efficient testing
tool to assess the resilience of the Internet of things systems
against FDIA. One of the major difficulties of this study is the
total heterogeneity of IoT ecosystems. Few standards bodies
have attempted to provide some standard framework for IoT
(oneM2M, NGSI-LD) but in reality the vast majority of IoT
follow their own protocol and data representation. Beyond
their data representation, IoT systems have the same data flow
through their layers, so FDIA can be performed on all types
of IoT ecosystems.



A. Workflow

The workflow of our approach is shown in Fig. 1.
Data acquisition is the first step of this workflow, it consists

of two things: either importing an IoT dataset under a file
format such as a CSV or JSON, or intercept the IoT dataflow
by performing a man in the middle or eavesdropping attack
to perform a live attack.

Data configuration is made by the expert of the System
Under Test (SUT). It consists in the property definition of the
data present in the dataset or in the flow defined in the data
acquisition step.

The conversion is the step where input data are transformed
into an internal format for better data processing and to handle
a large heterogeneity of data and IoT. These converted data
are stored in a database.

Designing scenario is made by the expert of the SUT. We
provide a textual DSL for designing a scenario of FDIA. The
expert uses this DSL and selects the specific dataset he wants
to alter.

Scenario execution is the process of applying the scenario
written by the expert to the dataset. It results in a new dataset
with tampered data stored in a database. After this step the
expert can choose to export this dataset. Either for analysis, to
inject into the SUT or to teach AI learning machine to detect
false data injected into the dataset.

Injection is the process of converting the data back to their
original form and injecting them into the SUT. It can be either
an injection of all the data tampered or an injection respecting
the timing of the different messages in the dataset.

Test evaluation aims to verify the impact of the injection
in the SUT with a test oracle. This test evaluation should be
exported to a report for the purpose of either correcting the
SUT or improving the FDIA written by the test expert.

IV. FDIA FRAMEWORK

To address this FDIA issue, we have considered the de-
velopment and use of a domain-specific language (DSL). In
[10], authors define DSL as ”a programming language or exe-
cutable specification language that offers, through appropriate
notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain.”

Certainly, DSL have several drawbacks as it is a new
language, training end users can be difficult. Also, building
a DSL from scratch is very expensive. Whether in terms of
implementation, support, maintenance or user training. Making
the choice to develop a DSL is therefore a decision that must
be analysed. The problem that the DSL is supposed to solve
must be analysed to see if it is an appropriate solution. For
this purpose, we decide to follow methodology provided in
[11]. Authors define four steps: decision, analysis, design and
implementation. The decision step is the answer to ”When
to develop a DSL” and the other steps are the answers
to ”How to develop a DSL”. We mainly explore the DSL
through the section analysis design and implementation of the
methodology.

A. Domain Analysis

In [11], authors define the analysis part as being part in
which one seeks to clearly identify the field in terms of its
problems and its level of knowledge. Several input sources
can be used for this. For example, technical documentation, re-
search carried out by experts in the field or existing code. Also
the output can be varied. Generally, it is a domain-specific
terminology with its semantics, its formal level description is
freer.

Our domain, which is IoT, is technically a high level
and very heterogeneous domain, taking place in a highly
industralised universe. It would therefore be complicated to
formally define the entire domain encompassing it. In the
following, we therefore carry out an informal analysis of our
domain.

1) Scenario: The central figure of our domain is the notion
of scenarios. A security scenario is a complete step-by-step
description of the actions taken by the attacker to carry out an
attack. In our case we want to express the steps to simulate an
FDIA attack. For this, two main elements are required. The
global information of the scenario that we call the scenario
properties and the step-by-step actions of the scenario that
we call the scenario actions. A scenario is also linked to a
specific record, to which it must be applied.

2) Scenario properties: Scenario properties are the ele-
ments that provide information about the scenario to be used
globally. These properties must be scalable. According to
the needs demanded by the scenario actions, new properties
not thought of in the design should be easily added. This
also brings the notion of mandatory property, some properties
such as the scenario naming must be mandatory, while other
properties can be entirely conditioned by the scenario actions,
such as the use of a geolocation property.

3) Scenario Actions: Scenario actions are the list of actions
performed by the scenario to accomplish FDIA. Scenario
actions are an ordered list of actions, when interpreting them
they should be read and interpreted in the order in which
they appear. This implies an incidence of previous actions.
We propose to define an action by its attribute. We identify
four basic attributes for action to realise alteration attacks,
called alteration primitives. They allow to define the general
action that will be performed by the scenario action. Also,
they define the elements that make up the action. The four
alterations primitive proposed are:

• Create is used to generate data from scratch using the
information provided in the action. The generated data is
inserted into the selected record.

• Alter is the action used to modify data in a record.
It requires a selection criterion to select the data to be
modified and an alteration criterion for modifications.

• Copy is the action used to copy data from a record
selected by a selection criterion. The copied data are
then modified using an alteration criterion before being
inserted into the original record.



• Delete is the action used to delete data from a record
selected by a selection criterion.

These four basic primitives can be extended later to add
more complex and complete primitives requiring specific pa-
rameters to perform specific action.

After the primitives, the action is composed of multiple parts
defined by the alteration primitives.

4) Selection Criteria: The selection criteria are used for
the selection of the specific records that the attack designer
wants to alter. It is the definition of the scenario action’s target.
Usually the selection is made through the identifier of a device,
but it can also be a specific condition such as a specific value
above a threshold. So it can also be seen as a trigger.

Also, specific selections need to be made depending on the
type of IoT system present in the record. A specific selection
can be for example, the selection inside a circle defined by
geographical coordinates for its centre and a distance in metres
for its radius.

5) Time frame: The time frame is the notion used to define
the temporality of the associated action. It can be represented
in two different ways. Either absolute, where we consider the
first message of the recording as our timeline origin point, or
in a relative way, by directly using the notion of time present
in the recordings. This property can also be seen as a specific
selection criterion, it could have its place in the part of the
selection criteria, nevertheless the notion of time frame is very
important in the realisation of FDIA. It is therefore important
that they appear in a mandatory way in the definition of an
action.

6) Alteration Criteria: During the time frame, we define
the alteration criteria. It is the effect of the action. These
effects are applied to the specific records previously selected
by the selection criteria. The most fundamental criterion for
alteration is a simple assignment of value. The value can
be a simple integer or a complex function. Nevertheless,
all alteration criteria derive from an improved assignment.
For example, value assignments in increments over time. So,
specific alteration criteria needs to be made depending on the
type of IoT system present in the record.

In the next section, we explore the third step of the method-
ology, the design of the DSL.

B. Design

The design phase is the one that allows the technical
definition of the language. This phase is used to define the
semantics and syntax of the language taking into account the
information that has been collected during the domain analysis.

In the domain analysis section, the domain has been split
into several parts. These parts can be seen in the grammar
in regard of the nonterminal lexical elements. So in the next
subsections we explore the design of the DSL through the
different parts defined on the domain analysis. The different
grammars presented in the following are in the Extended
Backus-Naur Form (EBNF).

We provide in Fig. 2 a short example to illustrate the
explanation of each DSL part. It is not a real example, but
it allows illustrating each part.

scenario ”failsensor”
}

Scenario propertiesticker 2
geolocation (47.239195, 6.022537)
create things set humidityRH = (0 -> 100,2) from 0 to 4500;

Scenario actionsalter things where meter code = ”10” set temperatureTC = 0 from 0 to 4500;
copy things where meter code = ”10” set meter code = ”12” from 0 to 10000;
delete things where meter code = ”12” from 50 to 600;

Fig. 2. Example of a FDIA scenario

1) Scenario: The scenario, as stated previously, is the main
part of our DSL. It represents the start symbol of the grammar.
It aims to describe the complete action of a FDIA. A scenario
is a set of properties and combination of specific actions to
create a FDIA. It can therefore be divided into two parts, the
scenario property and the scenario actions. In the following,
we propose the EBNF grammar of a scenario:

〈scenario〉 ::= 〈scenarioDeclaration〉 〈executionList〉

〈scenarioDeclaration〉 ::= Scenario 〈stringLiteral〉 ‘;’
(〈scenarioProperties〉 ‘;’)∗

〈scenarioProperties〉 ::= ticker 〈decimalLiteral〉
| geolocation ‘(’ 〈realLiteral〉 ‘,’ 〈realLiteral〉 ‘)’

〈executionList〉 ::= 〈execution〉 ‘;’ (〈execution〉 ‘;’)∗

The EBNF grammar is represented by the two nonterminal
<scenarioDeclaration> and <executionList>
derived from the production rule <scenario>. The rule
<scenarioDeclaration> consists in the information
applied to the entire scenario and useful for its execution. The
name of the scenario is the only mandatory property. At this
moment we have defined two optional properties:

1) ticker which is information for the elapsed time between
two messages send by the SUT, also called time rate.
Usually IoT systems send their data at a steady time rate.
So we need to implement the ticker property to avoid
detection when we create a new record in injection.

2) geolocation which is a property to locate the point of
application of the scenario. In our context, we only use
localisation associates to the information of latitude and
longitude.

These properties can be extended by adding alternative produc-
tion rules to the nonterminal <scenarioProperties>.
For example, to add a property allowing geolocation in three
dimensions, we must add a <realLiteral> to consider
the altitude. We assume that in our context, we don’t have
the necessity to use any other representation than a 2D
representation.

An example of a start of a scenario without the list of actions
to perform would be:
1 scenario "exampleScenario" ;
2 ticker 2 ;
3 geolocation (47.237829,6.0240539) ;

After the scenario properties, we present the rule
<executionList> that consists in the list applied by the
scenario to perform action of FDIA.



2) Scenario Actions: Scenario actions are the core of the
attack execution. They describe step by step the actions that
the scenario must perform as following:

〈execution〉 ::= 〈create〉
| 〈alter〉
| 〈delete〉
| 〈copy〉

〈create〉 ::= ((create things 〈alterationCriteria〉 〈timeframe〉)

〈alter〉 ::= (alter things 〈selectionCriteria〉 〈alterationCriteria〉
〈timeframe〉)

〈delete〉 ::= (delete things 〈selectionCriteria〉 〈timeframe〉)

〈copy〉 ::= (copy things 〈selectionCriteria〉 〈alterationCriteria〉
〈timeframe〉))

An action is composed of several parts that can be seen on
the scenario actions grammar. The first is the nature of the ac-
tion, we call it the action primitive. The following parts of the
action are defined by the primitive. As indicated in the domain
analysis, we have three recurring parameters to perform FDIA.
The part where we select the records to be impacted by the
related action, the rule <selectionCriteria>. The part
where we indicate alterations to be made on the previously
selected records, the rule <alterationCriteria>. And
the last part where we indicate the time window on which the
action is to be applied, the rule <timeframe>. This is the
skeleton of a scenario action:

alter︸︷︷︸
Primitive

things where ident = ”10”︸ ︷︷ ︸
Selection criteria

set tempTC = 0︸ ︷︷ ︸
Alteration criteria

from 0 to 4500︸ ︷︷ ︸
Time frame

;

3) Selection Criteria: The selection criteria allows you to
select specific messages present in the record according to a
query as following:

〈selectionCriteria〉 ::= where 〈selectionCriterion〉 (and
〈selectionCriterion〉)∗

〈selectionCriterion〉 ::= 〈id〉 ‘=’ 〈type〉
| 〈id〉 ‘>’ 〈type〉
| 〈id〉 ‘<’ 〈type〉
| 〈id〉 ‘!=’ 〈type〉
| 〈id〉 isInsideCircle ‘(’ 〈realLiteral〉 ‘,’ 〈realLiteral〉 ‘,’

〈decimalLiteral〉 ‘)’
| 〈userFunction〉

According to the rule <selectionCriteria>, the
criteria always begin by the terminal symbol "where" and
are composed of at least one criterion, if several criteria are
present they are separated by the terminal symbol "and". This
symbol is self-explanatory, it represents the logical conjunction
between the different selection criteria. The logical disjunction
between criteria with the "or" operator is not implemented
in the grammar. To get around this, it is necessary to add an
action performing the same alteration using the distributivity
of the operators. However, since actions are performed step by
step in the order in which they appear, problems of consistency
in the alteration may arise. It is therefore a future work for the
implementation of the disjunction. If it appeared to us late, it
is because in practice it is rarely needed to use a disjunction
when selecting messages to be altered.

We defined four basic selection criteria and a complex one.
They are the equality, the superiority, the inferiority and the
difference. The complex one is a selection criterion that selects
the messages within a circle defined by longitude, latitude and
a radius in metres. These basic selections must be able to be
enriched according to the SUT and the needs of attacks. The
nonterminal <userFunction> represents this possibility.
It is not really present in the grammar, it is present here to
signify the importance of predicting the evolution of selection
types.

Two different examples of selection criteria untied from a
scenario action would be:
1 where identifier= 42 and temperature > 451;
2 where location isInsideCircle(47.237829,6.0240539,500.0)

After the selection criteria, we present the alteration applied
to the element selected.

4) Alteration Criteria: The alteration criteria are the parts
where the scenario designer specifies the changes that will
have to be made during the linked action. The described
alterations will be applied to the selected messages during the
selection criteria phase as following:

〈alterationCriteria〉 ::= set 〈alterationCriterion〉 (and
〈alterationCriterion〉)∗

〈alterationCriterion〉 ::= 〈id〉 ‘=’ 〈type〉
| 〈id〉 ‘=’ 〈evol〉
| 〈id〉 ‘+=’ 〈realLiteral〉
| 〈id〉 ‘*=’ 〈realLiteral〉
| 〈id〉 ‘+=’ 〈evol〉 〈attenuationCriteria〉?
| 〈userFunction〉

〈evol〉 ::= ‘(’ 〈decimalLiteral〉 ‘->’ 〈decimalLiteral〉 ‘,’
〈decimalLiteral〉 ‘)’

〈attenuationCriteria〉 ::= with attenuation of 〈realLiteral〉

According to the rule <alterationCriteria>, cri-
teria always start with the terminal symbol "set" and are
composed of at least one criterion, if several criteria are
present they are separated by the terminal symbol "and".
At that time we defined several types of alteration, such
as simple affectation, increment, or multiplication increment.
These alterations are always made up of three parts. The first
is the identifier of the property to be altered. The second
is a terminal symbol known as the operator to identify the
type of alteration. The third is the effect of the alteration.
An optional fourth part can exist, it is used to complete the
alteration for certain attacks. For example, in our grammar,
the rule <attenuationCriteria>, allows, according to
the distance of the altered object from the scenario application
point, to reduce the attack power.

This is the skeleton of an alteration:

Sound︸ ︷︷ ︸
identifier

+ =︸︷︷︸
Operator

3︸︷︷︸
Effect

with attenuation of 10.0︸ ︷︷ ︸
Optional part

Obviously, as in the previous sections, the scalability of the
language is important. Specific alteration criteria can be added
to the grammar according to the SUT and the attacks needs.
This is represented by the rule <userFunction>.



An example of an alteration criteria untied from a scenario
action would be:
1 set temperature=42 and humidity +=(0.0->451.0,10.0)

with attenuation of 10.0

After the two criteria, we present time frame selection.
5) Time Frame: The time frame is the part of an action

that allows you to locate the action in time as the following
production rule:

〈timeframe〉 ::= from 〈decimalLiteral〉 to 〈decimalLiteral〉

According to the rule <timeframe>, the time frame
always begins with the terminal symbol "from" followed
by the start time and ends with the terminal symbol "to"
followed by the end time.

6) Grammar Utility: In order not to overload the other
sections with superfluous elements, not all the grammar rules
have appeared previously. This section is therefore dedicated
to grammar elements that are useful to our language but which
did not find their place before. It is in particular about data
types as following:

〈type〉 ::= 〈id〉
| 〈stringLiteral〉
| 〈decimalLiteral〉
| 〈realLiteral〉

〈decimalLiteral〉 ::= ( ’0’-’9’ )+

〈id〉 ::= ( ’a’-’z’ ’A’-’Z’ ) ( ’ ’ ’a’-’z’ ’A’-’Z’ ’0’-’9’ )∗

〈stringLiteral〉 ::= ’¨’ (’ ’ ’a’-’z’ ’A’-’Z’ ’0’-’9’)∗ ’¨’

〈realLiteral〉 ::= ( ’0’-’9’ )+ ’.’ ( ’0’-’9’ )+

In this section, we explored the design of the DSL through
the different important parts defined in the language. In the
following section, we explore the fourth step of the method-
ology for developing a DSL, i.e. implementation.

C. Implementation

The implementation is the development process of the DSL.
It is based on the grammar of the language, which has been
defined in the previous section. In our case, we chose to start
with an interpreter implementation. The main reason for this
choice is to allow our language to be as efficient as possible
by keeping syntax and semantics as close as possible to expert
knowledge. It is also easier to build good error reporting.
Indeed, not relying on an underlying implementation allows
to think deeply about the design and syntax of the language.
This allows to be really in the domain specific, as named
in ”DSL”. Moreover, it allows to get rid of existing error
reporting systems to implement a language-specific one, for
example by creating a semantic analyser that checks the typing
of variables.

1) Language Implementation: Our language has been de-
veloped in java using the parser generator ANTLR2. ANTLR
is a tool widely used to produce parser that can be used
to explore Abstract Syntax Tree (AST). Once this grammar

2ANother Tool for Language Recognition: https://www.antlr.org/

is analysed by ANTLR, we get a tree parser with several
possibilities to implement tree parsing, the visitor and the
listener mechanism. The next step is to provide it with the
corresponding language input to make its interpretation.

2) Language Interpretation: For linguistic interpretation
and tree analysis, we chose to use the Visitor Design Pattern.
The visitor allows a more complete exploration of the AST
in regards to the semantics. For example, it will omit certain
nodes and children or loop a certain number of times.

Our interpreter has been designed to parse the tree to build
an object representation of the input language. It is then
this representation of objects in memory that is executed to
perform the FDIA simulation. All the rules presented in the
design section can be found in the implementation, either
as a class or as an attribute. This has several advantages.
The first is the ease with which memory objects can be
manipulated through the code before execution rather than
directly during interpretation at the DSL level. This allows
better code scalability. The second is related to the underlying
tools. This makes it possible to implement and build scenario
designs in a graphical way.

D. Data Management

As it has already been discussed above, data are the central
element of FDIA and therefore of our approach. Also, IoT
has hardly been standardised and in any case has been rarely
used by manufacturers. This lack of standardisation is directly
reflected in the data, whether in the data format used or in
the data structure. For our approach, we would like to be able
to carry out FDIA simulations on as many IoT as possible.
Some requirements for data management are therefore to be
defined: we should process data from as many IoT as possible,
regardless of the structure and data types. The process should
not lose any information. The input data must be able to be
re-injected into the SUT without loss of information or format.
Without this condition it would be complicated to inject
consistently the altered data into the SUT, firstly because of
format compatibility and secondly because intrusion detection
tool would check the integrity of input data.

Therefore, we have set up a data management system
allowing the manipulation regardless of the original format
coming from the SUT. This makes it possible to perform data
alteration in our tool independently of the format. The most
efficient way to accept the majority of formats is to define
a data format at the input of our tool. For this purpose we
decided to transform all input formats into a JSON format
without structure. This is done using a flattening algorithm.
The data structure is kept in the key part of the JSON
key/value pairs representation. This allows us to retrieve the
original format from the tool output thanks to an un-flattening
algorithm.

Once the input file is in the right format, it has to be saved
in a database so that the data can be processed efficiently.
The choice was made to use a document-oriented database,
which does not require a pre-established database structure as
MongoDB. These characteristics are interesting in our case,



because we can process data of heterogeneous composition
and structure. In this database one mongoDB document rep-
resents one complete message of one IoT device. Therefore,
when querying a particular message attributes, you can act
on the whole message through its representative document.
A structure is nevertheless present in each document in
the database. The information contained in the messages is
placed under a BSON (Binary JSON) object: ”properties”.
This allows the use of serialisation-deserialisation principles
at the code level, which greatly facilitates the manipulation of
documents and objects from the database.

In the next section, we explore different scenarios in detail
for experimentation purpose.

V. EXPERIMENTATION

Through this section, we aim to illustrate the grammatical
expressiveness of the approach. We propose two examples:
the first one performs a simple FDIA and analyses the result
directly on the data, the second one is a more complex FDIA,
which is similar to an actual use case.

To develop and test this framework, we use a real IoT
system in production in the streets of multiple cities around
the world. This system is used to monitor environmental
conditions within cities, such as temperature, humidity, noise,
particle concentration and nitrogen dioxide concentration.

The data schema returned by the devices is given in Fig. 3.
Data are retrieved every 15 minutes and sent immediately
when the network is available.

1 {"data": {
2 "meter_code": "10",
3 "temperatureTC": 8.03,
4 "HumidityRH": 94.77,
5 "LAeq":"6500",
6 "No2":"24",
7 "noise":[0,2,23,26,.....,44,33,22],
8 "particles":18939,
9 "location":"47.213865,5.968195",

10 "timestamp": 637458300
11 }
12 }

Fig. 3. Data gathered by a thing in JSON

In the following experimentation, we work on data file
extracted from the IoT system. Those files represent one
month’s worth of records.

A. Experimentation 1

In this experimentation, we realise a simple FDIA to simu-
late a sensor malfunction or failure. This type of attack creates
a basic disruption which is easily detected by a human, leading
to costly maintenance decisions for the system operator, in
addition to breaking the confidence of system operators and
users.

Fig. 4(a) shows the temperature data in Celsius in May
2019. Each spike on the line chart corresponds to one day.
We apply the DSL scenario shown in Fig. 5 to this dataset.
The scenario describes an alteration where all the data in the
time window defined are replaced by the value of 25 degrees

Celsius. Fig. 4(b) shows the execution result. Visually any
human can detect this attack, as well as any algorithm.

With this experimentation we validate the simple selection
and alteration of the grammar. We can produce the same
kind of alteration on other data of the example. Such as the
humidity to simulate the rain or on the number of particles
and NO2 in the air to simulate the absence of pollution or
traffic jam.

(a) Initial temperature (b) Altered data

Fig. 4. FDIA on Temperature in degrees Celsius in May 2019

1 scenario "failsensor"
2 ticker 2
3 alter things where meter_code="521" set temperatureTC

=50 from 622732500 to 624066300;

Fig. 5. FDIA for sensor disruption

B. Experimentation 2

In this experimentation, we realise a FDIA with more
complex selection and alteration function. The objective of this
attack is to select multiple things through their geographical
location, and to simulate a gradual increase in pm10 (particles
between 2.5 and 10 micrometres) particle levels in a part of
the city. For a more realistic attack, we need to select several
sensors by their geolocation and apply to them the attenuation
of the attack force according to their distance to the attack.
This type of attack can occur for several reasons, for example,
to trigger alternating car traffic during pollution peaks or to
lower real estate value in a neighbourhood.

For this experiment, we use data from the pm10 particles
sensor gathered during the month of May 2019 by three things
identified by their meter code identifier: 500 (green), 515
(blue) and 521 (yellow). Chart of the data shown in Fig. 7.

Fig. 6. Map of the sensor situation

The scenario described in Fig. 8 aims to select the three
things through their geographical location, we choose to use
the GPS coordinate of the thing 500 with a radius distance
of 500 metres for the circle selection. So with this selection



Fig. 7. Particles in may 2019 before an FDI attack

criterion we pick all the things present as shown on the map
Fig. 6, and we apply an increase to the selection that begins
at 1 and increases over time with a step of 10. An attenuation
of 10 by meter is applied to this alteration according to the
distance from the application point of the scenario.

Fig. 9 shows the attack result. We can see the effects on
the three curves by the progressive increase of their values
and that the farther the object is from the thing 500 (centre
of the attack) the lower the value of its curve. In the initial
data, sensor 515 was predominant in terms of particle number,
and sensors 500 and 521 were following almost the same
trend. After the attack, the sensor closest to the attack (500) is
predominant over the two others. Sensor 515 which is the
furthest away detects fewer particles, this is visible in the
figure since its curve is below the others.

1 scenario "IncrementationAndAttenuation"
2 ticker 2
3 geolocation (47.213865,5.968195)
4 alter things where location isInsideCircle(47.213865,

5.968195,500) set particles+=(0.0->99999.0,10.0)
with attenuation of 10.0 from 0 to 999999999;

Fig. 8. FDIA for particle increase with distance attenuation

Fig. 9. Particles in may 2019 after FDI attack

The expressiveness of the approach makes it possible to
define this type of complex attack on several sensors. For
example, we can also simulate the propagation of sound in
the city or evaluation of the heat and humidity level in the
city to trigger a heatwave plan.

This section has demonstrated the usefulness and the perfor-
mance of the tools provided. For experimentation 2, we have
worked on 3 different connected objects which have produced

8931 records over the period of one month. The DSL scenario
performed on this data was executed in under 2 seconds.

VI. CONCLUSION

In this work, we have addressed the FDIA challenge by
proposing an approach and a language to describe an FDIA
attack and then execute it on production data. The prototype
proposed in this article currently supports the processing
of data from all types of IoT devices by help of JSON
format flattening technique. It allows simple alterations such
as assignments, but also complex alterations such as distance-
dependent attenuation of alterations. Finally, it allows the
export of these altered data in original format. This approach
can then be used for several purposes as to test the resilience
of a system or to train machine learning tools to detect
such attacks. As future work progresses, the DSL should
be improved on its expressiveness, in particular, with more
alteration and selection functions. Also, a link between the
tool and SUT would allow performing tests directly from the
tool.
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