
PHOTONIC NEURAL NETWORKS 

Competitive photonic neural 
networks 
Photonics offers high hopes for next-generation neural network processors. Now it has 
been shown that even entirely using off-the-shelf photonics allows surpassing speed and 
energy efficiency of cutting-edge GPUs. 
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Neural networks (NNs) are a neuro-inspired concept that realizes computation based on 
the collective response of nonlinear elements (the neurons). Through this NNs mimic one of the 
most elementary aspects of computing in biological brains. A particular information processing 
task is ‘programmed’ by adjusting the network’s topology, i.e. learning, usually on the basis of 
statistical optimization leveraging examples. NNs can learn to tell cats from dogs – or to carry out 
much more serious and useful feats and represent one of computing’s most exciting recent 
developments. However, each neuron’s state needs to be calculated across the network’s 
connections, and the associated computational-toll exceedingly brings classical processors to 
their knees. 

Instead of emulating NNs with digital computers, substantial research-efforts are directed 
towards hardware whose governing laws of physics mimic a specific NN concept1. A major focus 
lies on physically realizing a NN’s connections, and photonic parallelism holds promises for 
substantially faster and more efficient NN processors2.  

 
Figure 1| Optical neural network computing. a, Zhou et al. implemented a reconfigurable 
photonic neural network using off-the-shelf components that is superior to cutting edge GPUs 
in speed and energy efficiency. b,c, Crucially, the inference accuracy of their system can 
compete with that of previous breakthrough NN architectures emulated on classical 
computers. 



Writing in Nature Photonics, Zhou et al. demonstrate that even photonic NNs realized 
with non-specialized and off-the-shelf components can outperform top-notch GPUs specifically 
tailored for NN applications3.Their photonic system is faster, more energy efficient, programmable 
and rivals the accuracy of competitive digital NN benchmark models. 

In the work by Zhou et al., a single neuron’s state is the reflection of a mirror inside a 
digital micro-mirror device (DMD), illuminated by a solid state laser. Diffraction of the DMD’s 
signal by a phase-mask displayed on a liquid-crystal spatial light modulator (SLM) creates parallel 
and reconfigurable network connections, and the modulus-square of optical detection via a fast 
camera adds nonlinearity to each NN layer. Such cascaded nonlinear operations strongly amplify 
the dimensionality of data representation, which ultimately is what allows NNs to unearth 
concealed features they can then leverage for challenging computations. The interconnections 
they implement are highly constrained, yet they achieve competitive performance by cascading 
multiple layers. They calculate that their diffractive processing unit (DPU) achieves 240.1 TOPs/s 
with an energy efficiency of 1.578 TOPs/J. All components and devices involved in running the 
system are included in this budget. Remarkably, in both metrics the authors beat Nvidia’s top of 
the line Tesla V100 tensor core GPU. 

A further substantial advance is the accuracy the authors achieve. Let us use the 
example of MNIST digit recognition and a 3-layer deep NN implemented by the DPU through 
temporal multiplexing. An initial simulation via a physics model achieves 97.6% testing accuracy. 
However, that significantly dropped to a bit above chance when the pre-optimized network 
configurations were transferred to the physical DPU. The authors continued to optimize the SLM’s 
phase mask through iterative experimental updates until they experimentally obtain 96.2% testing 
accuracy after 15 training epochs. A more complex DPU temporal multiplexing scheme (D-NIN-
1(++)), see Fig. 1a, implements a convolutional NN that with 99% testing accuracy in MNIST 
outperforms the LeNet-4 architecture’s 98.9% accuracy, Fig. 1b. This competitive performance is 
confirmed in further tests such as the fashion MNIST, Fig. 1c, as well as human action 
recognition.  

The work of Zhou et al. has many implications. The DPU physically implements network 
connections exploiting the parallelism of photonics. It has recently been shown in random 
recurrent4 as well as deep linear networks5 with fixed topologies that the photonic approach is 
competitive and enables GPU-superior scaling. Zhou et al. quantify this advantage for a range of 
more general topologies, include learning and confirm that photonic NNs can compete with 
similar NN models run on GPUs in terms of inference accuracy in several present-day benchmark 
data sets. Furthermore, the concept is size-scalable: neurons are implemented in 2D-planes 
while connections leverage optical propagation along the third dimension, and 3D makes the 
physical footprint scale linear when augmenting the number of neurons6. 

We expect that the intense current interest in optics for machine learning7–9  is only the 
beginning. Most significantly, the implementation of the nonlinearity in optical neural networks has 
been done electronically via the electronic-to-optical-to-electronic transduction. A future challenge 
is to implement the nonlinearity optically, avoiding the bottlenecks due to the conversion. This 
promises to drastically improves the performance10,11. In-situ learning in the optical domain is 
another open issue that needs to be addressed and demonstrated in hardware. 
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