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Abstract 

Purpose – This paper proposes an improved two-dimensional (2-D) hybrid analytical method (HAM) in Cartesian 

coordinates, based on the exact subdomain (SD) technique and the magnetic equivalent circuit (MEC). 

Design/methodology/approach – The magnetic field solution is obtained by coupling an exact analytical model (AM), 

calculated in all regions having relative permeability equal to unity, with a MEC, using a nodal-mesh formulation (i.e., 

Kirchhoff's current law) in ferromagnetic regions. The AM and MEC are connected in both axes (𝑥, 𝑦) of the (non-)periodicity 

direction (i.e., in the interface between the tooth regions and all its adjacent regions as slots and/or air-gap). To provide accuracy 

solutions, the current density distribution in slot regions is modeled by using Maxwell’s equations instead of the MEC 

characterized by an equivalent magnetomotive force (MMF) located in slots, teeth and yokes. 

Findings – It is found that whatever the iron core relative permeability, the developed HAM gives accurate results for no- 

and on-load conditions. Finite-element analysis (FEA) demonstrates excellent results of the developed technique. 

Originality/value – The main objective of this paper is to make a direct coupling between the AM and MEC in both 

directions (i.e., 𝑥- and 𝑦-edges). The current density distribution is modeled by using Maxwell’s equations instead of the MEC 

and characterized by an MMF. 
Keywords: Hybrid magnetic model, exact subdomain technique, magnetic equivalent circuit, finite-element analysis. 
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I. Introduction 

Accurate calculation of the performance for electromagnetic devices based on magnetic field solution 

is currently of major importance of machine designers. Flat permanent-magnet (PM) linear synchronous 

machines with dual-rotor presented in this work are one of the many several electromagnetic examples 

available in the industrial sector. These machines have many advantages over the other machines excited 

by current. 

A wide category of methods is developed for design and optimization to provide an accurate 

performance information for electrical machines, such as numerical (Matthew and Sadiku, 2011; Niu et 

al., 2012a and 2012b; Demenko and Sykulski, 2016; Toudji et al., 2017) and (semi-)analytical (Zarko et 

al., 2006; Boughrara et al., 2009; Sprangers et al., 2015 and 2016; Djelloul-Khedda et al., 2017 and 2018; 

Ladghem and Ibtiouen, 2020) methods. In the last decades, the exact analytical method (i.e., based on the 

formal resolution of Maxwell’s equations applied in SD) for electrical machines has been very successful 

(Dubas and Espanet, 2009; Lubin et al., 2010; Boughrara et al., 2013), however, the disadvantage of this 

method is the infinitely permeable assumption in the iron parts. The advanced AM presented by (Dubas 

and Boughrara 2017a and 2017b) are one of the great methods that have been made in recent years. This 

method has been improved by introducing iron core relative permeability in the analytical solution. In 

(Roubache et al., 2018 and 2019; Ben-Yahia et al., 2018), the authors presented a contribution on the 2-

D SD technique based on the principle of superposition in both axes by considering the finite soft-

magnetic material permeability in spoke-type PM machines and variable flux reluctance machines. 

Several hybrid magnetic field calculations for electrical machines are proposed, such as the coupling 

between MEC (i.e., reluctance or permeance network) and: i) FEA (Philips, 1992; Nedjar et al., 2012; 

Liu et al., 2017), ii) Schwarz–Christoffel method (Hanic et al., 2016 and 2018; Faiz et al., 2019), and iii) 

analytical model (Laoubi et al., 2015; Ouagued et al., 2016a and 2016b; Bao et al., 2018; Wu et al., 2020). 

In this paper, the HAM corresponds to a direct coupling between the AM developed by (Dubas and 

Boughrara 2017a and 2017b) and the 2-D MEC. The MEC presented in (Laoubi et al., 2015; Ouagued et 

al., 2016a and 2016b; Bao et al., 2018; Wu et al., 2019 and 2020) is relatively simple due to significant 

simplifications. The coupling between the two models has been investigated for one direction (viz., only 

in the x-axis) and especially in the interface between the air-gap and the stator core. In these references,  
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Fig. 1.  Proposed flat linear PM synchronous machine. 

 

the stator topology is assumed to be current-free and only PM can be assumed as sources. For these 

conditions, the current density in slot regions is not incorporated in the equation system to be solved, 

because the equations governed in these regions are based on a nodal-based formulation (i.e., Kirchhoff’s 

current law) described by a scalar potential distribution. The current density has been replaced by an 

equivalent MMF source (Ouagued et al., 2016b; Bao et al., 2018) or by equivalent current sheets (Wu et 

al., 2019 and 2020) where good results are obtained compared to FEA. 

In this work, a 2-D HAM improves the coupling problem of the two models in both directions (i.e., x- 

and y-edges). In this case, and to give a more accurate result than that presented by (Laoubi et al., 2015; 

Ouagued et al., 2016a and 2016b; Bao et al., 2018; Wu et al., 2019 and 2020), HAM proposed is based 

on the: i) exact AM based on the formal resolution of Maxwell’s equations applied in all regions at unitary 

relative permeability (viz., the air-gap, slots and PMs), and ii) MEC using a nodal-mesh formulation 

applied to the other ferromagnetic regions (viz., teeth, and rotor/stator yoke). Moreover, the 2-D MEC is 

characterized by an equivalent MMF located in the slots, teeth and yokes. An accurate magnetic flux 

distribution can be easily calculated in all SDs by including the current density in the equations system. 

II. Model Definition and Assumptions 

The flat PM linear synchronous machine with rotor-dual, shown in Fig. 1, is composed to eight 

orthogonal subdomains as follows: 

1) PMs: Region I and IV; 

2) Vacuum: Region II and III; 

3) 𝑄 slots with coils: Region V with the index 𝑥 = 1. . 𝑄; 

4) 𝑄 soft-material: Region VI with the index 𝑥 = 1. . 𝑄; 

5) Iron yoke: Region VII and VIII. 

The rotor topology consists of PMs with radial array fixed to the surface. The stator topology consists 

of slots with radial sides surface. Three-phases winding arranged in the slots is configured in a standard 

(i.e., non-overlapping or concentrated winding) with a single-layer. 

In this paper, the proposed machine is described on a 2-D cartesian coordinate system. The magnetic 

field solution can be obtained under the following assumptions: 

1) the problem is quasi-static; 

2) the longitudinal end-effects and transverse edge-effects are neglected; 

3) the stator tooth-tips are not considered. However, they can be introduced easily; 

4) all regions have radial sides; 

5) the magnetic vector potential in all regions has only one component along the 𝑧-axis, i.e., 𝑨 =
{0; 0; 𝐴𝑧}; 
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6) the current density in the stator slots has only one component along the 𝑧-axis, i.e., 𝑱 =
{0; 0; 𝐽𝑧}; 

7) the electrical conductivity in all regions is assumed to be zero (i.e., there are no eddy-current 

losses in the PMs or armature windings); 

8) all regions are considered as isotropic; 

9) the PMs are considered to have a linear second quadrant characteristic and the PMs absolute 

permeability is assumed to be equal to that of vacuum, viz., 𝜇𝑚 ≅ 𝜇𝑜. 

 

III. Formulation of HAM 

A. Introduction 

In this paper, a 2-D HAM based on the SD technique and MEC is presented. Each SD of the proposed 

machine is modeled under a constant relative permeability 𝜇 = 𝐶𝑠𝑡 and expressed either by: i) a partial 

differential equation (PDE) in terms of 𝑨, or ii) the Kirchhoff’s laws governed by magnetic vector scalar u. 

𝑨 and u can be defined respectively as 

∇2𝑨 = −[𝜇 𝑱 + 𝜇0 ∇ × 𝑴𝒓]                                                                (1) 

𝑯 = −∇𝑢                                                                                  (2) 

where 𝑱 is the current density (due to supply currents) vector, 𝑴𝒓 is the remanent magnetization vector 

(with 𝑴𝒓 = 0 for the vacuum/iron or 𝑴𝒓 ≠ 0 for the PMs according to the magnetization direction), and 

𝜇 = 𝜇0 ∙ 𝜇𝑟 is the absolute magnetic permeability of the magnetic material in which 𝜇0 and 𝜇𝑟  are 

respectively the vacuum permeability and the relative permeability of magnetic material (with 𝜇𝑟 = 1  
for the vacuum or 𝜇𝑟  ≠ 1 for the PMs/iron). 

B. 2-D Exact SD Technique 

The PDE for magnetic field in Region I, II, III, IV and V can be written as 

∇2𝑨 = −𝜇𝑜 ∇ × 𝑴𝒓       in Regions I and IV                            (3𝑎) 

∇2𝑨 = 0                            in Regions II and III                          (3b) 

∇2𝑨 = −𝜇0  𝑱                   in Region V                                          (3𝑐) 

The magnetization vector 𝑴𝒓 of PMs can be expressed by 

𝑴𝒓 = 𝑀𝑟𝑥 𝒙 + 𝑀𝑟𝑦 𝒚                                                                      (4) 

where 𝑀𝑟𝑥 and 𝑀𝑟𝑦 are respectively the x- and y-component of 𝑴𝒓. The proposed electrical machine has 

anti-periodicity equal to 𝜏𝑝 = 𝜋 𝑝⁄  with 𝑝 is the number of pole pairs. The components of 𝑴𝒓 can be 

described explicitly by Fourier’s series as 

𝑀𝑟𝑥 =∑[𝑀𝑟𝑥𝑠𝑛 ∙ sin(𝐾𝑛𝑥) +𝑀𝑟𝑥𝑐𝑛 ∙ cos(𝐾𝑛𝑥)]

𝑛

                                           (5𝑎) 

𝑀𝑟𝑦 =∑[𝑀𝑟𝑦𝑠𝑛 ∙ sin(𝐾𝑛𝑥) + 𝑀𝑟𝑦𝑐𝑛 ∙ cos(𝐾𝑛𝑥)]

𝑛

                                           (5𝑏) 

where 𝐾𝑛 = 𝑛𝜋 𝜏𝑝⁄  with 𝑛 is the spatial harmonic order. The expressions of 𝑀𝑟𝑥𝑠𝑛, 𝑀𝑟𝑥𝑐𝑛, 𝑀𝑟𝑦𝑠𝑛 and 

𝑀𝑟𝑦𝑐𝑛 are detailed in Appendix A. 

The field vectors 𝑩 = {𝐵𝑥; 𝐵𝑦; 0} and 𝑯 = {𝐻𝑥; 𝐻𝑦; 0} are coupled by the magnetic material equation 

𝑩 = 𝜇𝑚 𝑯 + 𝜇𝑜 𝑴𝒓 = 𝜇𝑜 (𝑯 +𝑴𝒓)      in Region I and IV                             (6𝑎) 

𝑩 = 𝜇0 𝑯                          in other regions                                (6𝑏) 
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Using 𝑩 = ∇ × 𝑨, the components of 𝑩 can be deduced by 

𝐵𝑥 =
𝜕𝐴𝑧
𝜕𝑦

      &      𝐵𝑦 = −
𝜕𝐴𝑧
𝜕𝑥
                                                               (7) 

In Cartesian coordinates (𝑥, 𝑦), (3) in terms of 𝑨 = {0; 0; 𝐴𝑧} can be rewritten as 

• in Region I and IV (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝐼,𝐼𝑉

𝜕𝑥2
+
𝜕2𝐴𝑧

𝐼,𝐼𝑉

𝜕𝑦2
= −𝜇𝑜 ∙ (

𝜕𝑀𝑟𝑦
𝜕𝑥

−
𝜕𝑀𝑟𝑥
𝜕𝑦

)                                                   (8) 

• in Region II and III (i.e., Laplace’s equation): 

𝜕2𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼

𝜕𝑥2
+
𝜕2𝐴𝑧

𝐼𝐼,𝐼𝐼𝐼

𝜕𝑦2
= 0                                                                      (9) 

• in Region V (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝑉

𝜕𝑥2
+
𝜕2𝐴𝑧

𝑉

𝜕𝑦2
= −𝜇0 ∙ 𝐽𝑧                                                                   (10) 

The PDEs (8) ~ (10) can be solved by using the separation of variables method and the Dubas’ 

superposition technique. All regions of the proposed machine are described by Fourier series expression 

in both directions (i.e., x- and y-edges). 

The general solution of 𝐴𝑧, which is the superposition of two components in x- and y-directions (Dubas 

and Boughrara, 2017a), can be described as: 

• in Region I and IV: 

𝐴𝑧
𝐼,𝐼𝑉 =∑(

𝐶3𝑛
𝐼,𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦

⋯+ 𝐶4𝑛
𝐼,𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦 + 𝛤𝑠

) ∙ sin(𝐾𝑛𝑥)

𝑛

+∑(
𝐶5𝑛
𝐼,𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦

⋯+ 𝐶6𝑛
𝐼,𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦 + 𝛤𝑐

) ∙ cos(𝐾𝑛𝑥)

𝑛

   (11𝑎) 

where 

𝛤𝑠 = −𝜇𝑜 ∙
𝑀𝑟𝑦𝑐𝑛
𝐾𝑛

      &      𝛤𝑐 = 𝜇𝑜 ∙
𝑀𝑟𝑦𝑠𝑛
𝐾𝑛

                                               (11𝑏) 

 

• in Region II and III: 

𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼 =∑(

𝐶3𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦

⋯+ 𝐶4𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦

) ∙ sin(𝐾𝑛𝑥)

𝑛

+∑(
𝐶5𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦

⋯+ 𝐶6𝑛
𝐼𝐼,𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦

) ∙ cos(𝐾𝑛𝑥)

𝑛

           (12) 

• in Region V: 

𝐴𝑧𝑠
𝑉 = 𝐶𝑠1

𝑉 + 𝐶𝑠2
𝑉 ∙ 𝑦 −

1

2
∙ 𝜇𝑜 ∙ 𝐽𝑧𝑠 ∙ 𝑦

2 

…+∑𝐺𝑠𝑚
𝑉𝑥 ∙ cos [𝛽𝑚

𝑉 ∙ (𝑥 − 𝛼𝑠 +
𝑤𝑠
2
)]

𝑚

+∑𝐺𝑠𝑣
𝑉𝑦
∙ sin[𝜆𝑣

𝑉 ∙ (𝑦 − 𝑦3)]

𝑣

                  (13𝑎) 

𝐺𝑠𝑚
𝑉𝑥 = 𝐶𝑠3𝑚

𝑉 ∙ 𝑒𝛽𝑚
𝑉 𝑦 + 𝐶𝑠4𝑚

𝑉 ∙ 𝑒−𝛽𝑚
𝑉 𝑦                                                      (13𝑏) 

𝐺𝑠𝑣
𝑉𝑦
= 𝐶𝑠5𝑣

𝑉 ∙ sinh [𝜆𝑣
𝑉 ∙ (𝑥 − 𝛼𝑠 +

𝑤𝑠
2
)] + 𝐶𝑠6𝑣

𝑉 ∙ sinh [𝜆𝑣
𝑉 ∙ (𝑥 − 𝛼𝑠 −

𝑤𝑠
2
)]                  (13𝑐) 

with  

𝐽𝑧𝑠 = 𝐽𝑚 ∙ [1  1  0  − 1  − 1  0  1  1  0  − 1  − 1  0]                                         (14) 
 

where 𝐽𝑚 is the current density peak, 𝛼𝑠 is the position of sth slot, 𝑚 and 𝑣 are the spatial harmonic orders, 
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𝛽𝑚
𝑉  and 𝜆𝑣

𝑉 are the spatial frequency (or periodicity) in both directions defined by 

𝛽𝑚
𝑉 =

𝑚𝜋

𝑤𝑠
      &      𝜆𝑣

𝑉 =
𝑣𝜋

y4 − y3
                                                           (15) 

with 𝑤𝑠 is the slot-opening. 

C. 2-D MEC (viz., Reluctance or Permeance Network) 

In Region VI, VII and VIII, the solution of magnetic scalar potential distribution 𝑢 can be obtained 

from Kirchhoff’s laws. From Fig. 2, the magnetic flux can be written as follows: 

∑ 𝜑𝑠,𝑖𝑗
𝑗=𝑎,𝑏,𝑐,𝑑

= 0                                                                          (16) 

𝑢𝑠,𝑖 − 𝑢𝑠,𝑗 =
𝜑𝑠,𝑖𝑗
𝑃𝑠,𝑖𝑗

                                                                        (17) 

and then, 

𝑢𝑠,𝑖 ∙ ∑ 𝑃𝑠,𝑖𝑗
𝑗=𝑎,𝑏,𝑐,𝑑

− ∑ (𝑃𝑠,𝑖𝑗 ∙ 𝑢𝑠,𝑗)

𝑗=𝑎,𝑏,𝑐,𝑑

= 0                                                 (18) 

𝑃𝑠,𝑖𝑗 =
1

ℜ𝑠,𝑖𝑗
= 𝜇0 ∙ 𝜇𝑟 ∙

𝛿𝑠,𝑖𝑗
𝐿
                                                               (19) 

where 𝐿 and 𝛿𝑠,𝑖𝑗 are respectively the active length and section of the reluctance element ℜ. 

Using (2), the components of 𝑯 can be deduced by 

𝐻𝑥 = −
𝜕𝑢

𝜕𝑥
      &      𝐻𝑦 = −

𝜕𝑢

𝜕𝑦
                                                          (20) 

 
Fig. 2.  2-D reluctance elements ℜ, magnetic scalar potential 𝑢 and magnetic flux 𝜑. 

 

 

Fig. 3.  Uniform mesh of the Region VI discretized into several BD blocks. 

 



COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 

DOI: 10.1108/COMPEL-02-2021-0039 

 

 

Since (20) are applicable for the analytical solutions of Maxwell’s equations. These equations must be 

rewritten using numerical differentiation defined as the limit of a difference quotient as: 

𝐻𝑥(𝑥) = lim
∆𝑥→0

(−
∆𝑢

∆𝑥
)      &      𝐻𝑦(𝑦) = lim

∆𝑦→0
(−
∆𝑢

∆𝑦
)                                     (21) 

The difference quotient 𝐻𝑥(𝑥) and 𝐻𝑦(𝑦) is a derivative approximation. This improves as ∆x and ∆y 

become smaller. 
 

IV. Boundary Conditions and Linear System 

To give the final solution of equations system, the boundary conditions (BCs) must be defined by 

equalizing the magnetic potential vector 𝐴𝑧, the y-component of 𝑩 and the x-component of 𝑯 in all BCs. 

On the x-direction: 

• At 𝑦 = 𝑦1 and ∀𝑥: 

𝑃𝑖𝑑 ∙ (𝑢𝑖 − 𝑢𝑑) = 𝐿 ∙ ∫ 𝐵𝑦
𝐼(𝑥, 𝑦1)𝑑𝑥

𝑥𝑗+Δx

𝑥𝑗

                                                   (22) 

𝐻𝑥
𝑉𝐼𝐼(𝑥, 𝑦1) = 𝐻𝑥

𝐼(𝑥, 𝑦1)                                                                   (23) 

In order to satisfy (23), the magnetic flux intensity 𝐻𝑥
𝑉𝐼𝐼(𝑥, 𝑦1) by applying (21) should be written as: 

𝐻𝑥𝑠
𝑉𝐼𝐼(𝑥, 𝑦1) = − ∑ ∑(

𝑢𝑐+1 − 𝑢𝑐
∆𝑥

)

𝑣

𝑁𝐶−1

𝑐=1

∙ [ ℎ𝑥𝑠𝑣
𝑉𝐼𝐼 ∙ sin(𝐾𝑛𝑥) +  ℎ𝑥𝑐𝑣

𝑉𝐼𝐼 ∙ cos(𝐾𝑛𝑥)]                    (24) 

where 𝑁𝐶 is the number of reluctance rows in Region VII as well as the Region VI and VIII, and ℎ𝑥𝑠𝑣
𝑉𝐼𝐼  & 

ℎ𝑥𝑐𝑣
𝑉𝐼𝐼  are the Fourier’s constants. 

• At 𝑦 = 𝑦2  and ∀𝑥: 

𝐴𝑧
𝐼 (𝑥, 𝑦2) = 𝐴𝑧

𝐼𝐼(𝑥, 𝑦2)                                                                     (25) 

𝐻𝑥
𝐼(𝑥, 𝑦2) = 𝐻𝑥

𝐼𝐼(𝑥, 𝑦2)                                                                    (26) 

• At 𝑦 = 𝑦3 and ∀𝑥: 

𝑃𝑠,𝑐𝑖 ∙ (𝑢𝑠,𝑐 − 𝑢𝑠,𝑖) = 𝐿 ∙ ∫ 𝐵𝑦
𝐼𝐼(𝑥, 𝑦3)𝑑𝑥

𝑥𝑠,𝑗+Δx

𝑥𝑠,𝑗

                                               (27) 

{𝐴𝑧
𝐼𝐼(𝑥, 𝑦3) = 𝐴𝑧𝑠

𝑉 (𝑥, 𝑦3)}|
𝛼𝑠−

𝑤𝑠
2 ≤𝑥≤𝛼𝑠+

𝑤𝑠
2                                                     (28) 

𝐻𝑥
𝐼𝐼(𝑥, 𝑦3) =∑(𝐻𝑥𝑠

𝑉 (𝑥, 𝑦3)|
𝛼𝑠−

𝑤𝑠
2 ≤𝑥≤𝛼𝑠+

𝑤𝑠
2 + 𝐻𝑥𝑠

𝑉𝐼(𝑥, 𝑦3)|
𝛼𝑠+

𝑤𝑠
2 ≤𝑥≤𝛼𝑠+1−

𝑤𝑠+1
2 )

𝑄

𝑠=1

                 (29) 

where 𝑄 is the number of regular distribution under a pole-pitch. 

In order to satisfy (29), the magnetic flux intensity 𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦3) by applying (21) should be written as: 

𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦3) = − ∑ ∑(

𝑢𝑠,𝑐+1 − 𝑢𝑠,𝑐
∆𝑥

)

𝑣

𝑁𝐶−1

𝑐=1

∙ [ ℎ𝑥𝑠𝑣
𝑉𝐼 ∙ sin(𝐾𝑛𝑥) +  ℎ𝑥𝑐𝑣

𝑉𝐼 ∙ cos(𝐾𝑛𝑥)]                  (30) 

where ℎ𝑥𝑠𝑣
𝑉𝐼  & ℎ𝑥𝑐𝑣

𝑉𝐼  are the Fourier’s constants. 
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• At 𝑦 = 𝑦4 and ∀𝑥: 

𝑃𝑠,𝑖𝑑 ∙ (𝑢𝑠,𝑖 − 𝑢𝑠,𝑑) = 𝐿 ∙ ∫ 𝐵𝑦
𝐼𝐼𝐼(𝑥, 𝑦4)𝑑𝑥

𝑥𝑠,𝑗+Δ𝑥

𝑥𝑠,𝑗

                                             (31) 

{𝐴𝑧
𝐼𝐼𝐼(𝑥, 𝑦4) = 𝐴𝑧𝑠

𝑉 (𝑥, 𝑦4)}|
𝛼𝑠−

𝑤𝑠
2
≤𝑥≤𝛼𝑠+

𝑤𝑠
2                                                     (32) 

𝐻𝑥
𝐼𝐼𝐼(𝑥, 𝑦4) = ∑(𝐻𝑥𝑠

𝑉 (𝑥, 𝑦4)|
𝛼𝑠−

𝑤𝑠
2
≤𝑥≤𝛼𝑠+

𝑤𝑠
2 + 𝐻𝑥𝑠

𝑉𝐼(𝑥, 𝑦4)|
𝛼𝑠+

𝑤𝑠
2
≤𝑥≤𝛼𝑠+1−

𝑤𝑠+1
2 )

𝑄

𝑥=1

                 (33) 

where 

𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦4) = − ∑ ∑(

𝑢𝑠,𝑑+1 − 𝑢𝑠,𝑑
∆𝑥

)

𝑣

𝑁𝐶−1

𝑑=1

∙ [ ℎ𝑥𝑠𝑣
𝑉𝐼 ∙ sin(𝐾𝑛𝑥) +  ℎ𝑥𝑐𝑣

𝑉𝐼 ∙ cos(𝐾𝑛𝑥)]                  (34) 

• At 𝑦 = 𝑦5 and ∀𝑥: 

𝐴𝑧
𝐼𝐼𝐼(𝑥, 𝑦5) = 𝐴𝑧

𝐼𝑉(𝑥, 𝑦5)                                                                   (35) 

𝐻𝑥
𝐼𝐼𝐼(𝑥, 𝑦5) = 𝐻𝑥

𝐼𝑉(𝑥, 𝑦5)                                                                  (36) 

• At 𝑦 = 𝑦6 and ∀𝑥: 

𝑃𝑐𝑖 ∙ (𝑢𝑐 − 𝑢𝑖) = 𝐿 ∙ ∫ 𝐵𝑦
𝑉𝐼𝐼𝐼(𝑥, 𝑦6)𝑑𝑥

𝑥𝑗+Δx

𝑥𝑗

                                                 (37) 

𝐻𝑥
𝐼𝑉(𝑥, 𝑦6) = 𝐻𝑥

𝑉𝐼𝐼𝐼(𝑥, 𝑦6)                                                                 (38) 

The magnetic flux intensity 𝐻𝑥
𝑉𝐼𝐼𝐼(𝑥, 𝑦6) by applying (21) should be written as 

𝐻𝑥𝑠
𝑉𝐼𝐼𝐼(𝑥, y) = − ∑ ∑(

𝑢𝑐+1 − 𝑢𝑐
∆𝑥

)

𝑣

𝑁𝐶−1

𝑐=1

∙ [ ℎ𝑥𝑠𝑣
𝑉𝐼𝐼𝐼∙ sin(𝐾𝑛𝑥) +  ℎ𝑥𝑐𝑣

𝑉𝐼𝐼𝐼∙ cos(𝐾𝑛𝑥)]                   (39) 

where ℎ𝑥𝑠𝑣
𝑉𝐼𝐼𝐼 & ℎ𝑥𝑐𝑣

𝑉𝐼𝐼𝐼 are the Fourier’s constants. 

On the 𝑦-direction, viz., on the edges of the Region V and the Region VI: 

• For 𝑥 = 𝛼𝑠 + 𝑤𝑠 2⁄  and ∀𝑦: 

𝑃𝑠,𝑎𝑖 ∙ (𝑢𝑠,𝑎 − 𝑢𝑠,𝑖) = 𝐿 ∙ ∫ 𝐵𝑥𝑠
𝑉 (𝛼𝑠 +

𝑤𝑠
2
, 𝑦) 𝑑𝑦

𝑦𝑘+Δy

𝑦𝑘

                                       (40) 

𝐻𝑦𝑠
𝑉 (𝛼𝑠 +

𝑤𝑠
2
, 𝑦) = 𝐻𝑦𝑠

𝑉𝐼(𝑦)                                                                (41) 

In order to satisfy (41), the magnetic flux density 𝐻𝑦𝑠
𝑉𝐼(𝑦) by applying (21) should be written 

𝐻𝑦𝑠
𝑉𝐼(𝑦) = − ∑ ∑(

𝑢𝑠,𝑎+1 − 𝑢𝑠,𝑎
∆𝑦

)

𝑣

𝑁𝐿−1

𝑎=1

∙ ℎ𝑦𝑠𝑣
𝑉𝐼 ∙ sin[𝜆 ∙ (𝑦 − 𝑦2)]                                 (42) 

where 𝑁𝐿 is the number of reluctance columns, and ℎ𝑦𝑠𝑣
𝑉𝐼  is Fourier’s constant. 

• For 𝑥 = 𝛼𝑠 − 𝑤𝑠 2⁄  and ∀𝑦: 

𝑃𝑠−1,𝑖𝑏 ∙ (𝑢𝑠−1,𝑖 − 𝑢𝑠−1,𝑏) = 𝐿 ∙ ∫ 𝐵𝑥𝑠
𝑉 (𝛼𝑠 −

𝑤𝑠
2
, 𝑦) 𝑑𝑦

𝑦𝑘+Δy

𝑦𝑘

                                 (43) 

𝐻𝑦𝑠
𝑉 (𝛼𝑠 −

𝑤𝑠
2
, 𝑦) = 𝐻𝑦(𝑠−1)

𝑉𝐼 (𝑦)                                                            (44) 
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Fig. 4.  Proposed BCs between Region VI and V (blue color), and Region VI and Regions II & III (red color). 

 

Again, to satisfy (44), the magnetic flux intensity 𝐻𝑦𝑠
𝑉𝐼(y) in the left side of Region V must be written 

as (42) by changing the variable 𝑎 by 𝑏 [see Fig. 3]. 

For simplicity, the proposed machine can be modeled for half of the period. For this case, anti-periodic 

BCs are proposed at 𝑥 = 𝑥1 and 𝑥 = 𝑥2 [see Fig. 1]: 

𝑃𝑄,𝑖𝑏 ∙ (𝑢𝑄,𝑖 − 𝑢𝑄,𝑏) = −𝐿 ∙ ∫ 𝐵𝑥1
𝑉 (𝛼1 −

𝑤1
2
, 𝑦) 𝑑𝑦

𝑦𝑘+Δy

𝑦𝑘

                                    (45) 

𝐻𝑦1
𝑉 (𝛼1 −

𝑤1
2
, 𝑦) = −𝐻𝑦𝑄

𝑉𝐼 (𝑦)                                                              (46) 

Fig. 4 shows a regular discretization of Region VI. Since there are no nodes in the corners in this 

region, a direct coupling between both models is done by respecting the interface indicated by blue and 

red color. 

It can be seen that all BCs are defined and the correlation of Fourier’s constants can be found as detailed 

in Appendix B. Thus, the system of linear algebraic equations can be written as follows: 

[𝐴] ∙ [𝑋] = [𝑏]                                                                           (47) 

where [𝐴] (𝑁 × 𝑁) is the topological matrix, [𝑏](𝑁 × 1) is the vector contain all flux source parameters, 

and [𝑋](𝑁 × 1) is the vector contain all the indeterminate Fourier coefficients. 

 

V. Analysis Results 

The parameters of the proposed electrical machine are shown in Table I. Figs. 5 ~ 8 show a comparison 

between HAM and FEA for the open-circuit [see Figs. 5 ~ 6] and armature reaction [see Figs. 7 ~ 8] 

magnetic flux density distribution with a radial magnetization pattern in the middle of Region II (i.e., in 

the vacuum) with different values of iron core relative permeability (viz., 𝜇𝑟 = 2 and 1,000). The 

maximal current density is equal to 𝐽𝑚 [see Table I]. These results have been calculated with acceptable 

discretization of Region VI (𝑁𝐶 = 31 and 𝑁𝐿 = 15) and Regions VII & VIII (𝑁𝐶 = 45 and 𝑁𝐿 = 15). 

Excellent agreement is obtained between the two models. 

Figs. 9 ~ 10 show respectively the magnetic flux density distribution in the middle of the three slots 

and teeth under open-circuit [see Fig. 9] and armature reaction [see Fig. 10] conditions with different 

relative permeability values of stator core (viz., 𝜇𝑟 = 2 and 1,000). To avoid computational errors, the 

mesh discretization in teeth regions should be chosen fine (𝑁𝐶 = 51 and 𝑁𝐿 = 51) unlike to the previous 

case where 𝑁𝐶 = 31 and 𝑁𝐿 = 15. An excellent agreement is achieved between HAM and FEA 

whatever the relative permeability values. The computational time is increased to approximately 4 times. 
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Fig. 5.  Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial 

magnetization pattern in the middle of the Region II for 𝜇𝑟 = 2 in all ferromagnetic regions. 

 

    

Fig. 6.  Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial 

magnetization pattern in the middle of Region II for 𝜇𝑟 = 1,000 in all ferromagnetic regions. 

 

    

Fig. 7.  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of Region II 

for 𝜇𝑟 = 2 in all ferromagnetic regions. 

 

    

Fig. 8.  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density in the middle of Region II 

for 𝜇𝑟 = 1,000 in all ferromagnetic regions. 
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Fig. 9.  Comparison of HAM and FEA predicted for the open-circuit magnetic flux density distribution with a radial 

magnetization pattern in the middle of Region V and VI. 
 

    

Fig. 10.  Comparison of HAM and FEA predicted of the armature reaction magnetic flux density distribution in the middle of 

Region V and VI. 
 

 
                                                  HAM                                                                FEA 

(a) 

 
                                                  HAM                                                                FEA 

(b) 

Fig. 11.  Magnetic flux density ‖𝑩‖ distribution calculated by HAM and FEA under no-load condition for: (a) 𝜇𝑟 = 2  and 

(b) 𝜇𝑟 = 1,000. 
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                                                  HAM                                                                FEA 

(a) 

 
                                                  HAM                                                                FEA 

(b) 

Fig. 12.  Magnetic flux density ‖𝑩‖ distribution calculated by HAM and FEA under armature reaction current condition for: 

(a) 𝜇𝑟 = 2  and (b) 𝜇𝑟 = 1,000. 
 

Table II shows the time consuming required to calculate the magnetic flux density by different 

approaches such as HAM, SD technique and FEA. For the SD technique, the HAM in teeth regions and 

rotor yoke are replaced by AM as indicated in (Ben-Yahia et al., 2018; Roubache et al., 2019). 

Figs. 11 ~ 12 show the magnetic flux density distribution in all parts of electrical machine calculated 

by HAM and compared to FEA with different values of iron core relative permeability. 

 

VI. Conclusion 

In this paper, a 2-D HAM in Cartesian coordinates has been proposed for the flat PM linear 

synchronous machines with rotor-dual and a radial magnetization pattern of PMs. The developed model is 

based on the exact AM by applying Dubas’ superposition technique able to be coupled to MEC in both 

directions (i.e., x- and y-edges). The excitation currents of winding have been represented by current 

density in slots contrary to the previous case where MMF based on Kirchhoff’s law is used. Excellent 

accuracy results are presented and compared with those obtained by FEA for any value of iron core 

relative permeability. Whatever the operating conditions, this approach can greatly help to precisely 

optimize the performances of the electrical machine, in particular with the local saturation effect that will 

be proposed in a future contribution. 
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APPENDIX A 

Radial magnetization expressions in (5) are defined by: 

• for the x-component: 

𝑀𝑟𝑥𝑠𝑛 = 𝑀𝑟𝑥𝑐𝑛 = 0                                                                 (𝐴01) 

• for the y-component: 

𝑀𝑟𝑦𝑠𝑛 = 𝑚𝑟𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ sin(𝐾𝑛𝜏)                                             (𝐴02) 

𝑀𝑟𝑦𝑐𝑛 = 𝑚𝑟𝑛 ∙
𝐵𝑟𝑚
𝜇𝑜

∙ sin (
𝑛𝜋

2
) ∙ cos(𝐾𝑛𝜏)                                            (𝐴03) 

where 

𝑚𝑟𝑛 =
4

𝑛𝜋
∙ sin (

𝑛𝜋𝜉

2
)                                                              (𝐴04) 

with 𝐵𝑟𝑚 is the remanent flux density of PMs, 𝜏 is the rotor position, and 𝜉 is the PM pole-arc to pole-

pitch ratio. 

 

APPENDIX B 

From (23), we have: 

𝐾𝑛
𝜇0
∙ (𝐶3𝑛

𝐼 ∙ 𝑒𝐾𝑛𝑦1 − 𝐶4𝑛
𝐼 ∙ 𝑒−𝐾𝑛𝑦1) =

2

𝜏𝑝
∙ ∫ 𝐻𝑥

𝑉𝐼𝐼(𝑥, 𝑦1) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝜏𝑝

0

                     (𝐵01) 

𝐾𝑛
𝜇0
∙ (𝐶5𝑛

𝐼 ∙ 𝑒𝐾𝑛𝑦1 − 𝐶6𝑛
𝐼 ∙ 𝑒−𝐾𝑛𝑦1) =

2

𝜏𝑝
∙ ∫ 𝐻𝑥

𝑉𝐼𝐼(𝑥, 𝑦1) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝜏𝑝

0

                    (𝐵02) 

where the Fourier constants of (24) can be written as: 

ℎ𝑥𝑠𝑣
𝑉𝐼𝐼 =

2

𝜏𝑝
∙ ∫ sin(𝐾𝑛𝑥) 𝑑𝑥

𝑥𝑠,𝑗+Δ𝑥

𝑥𝑠,𝑗

                                                      (𝐵03) 

ℎ𝑥𝑐𝑣
𝑉𝐼𝐼 =

2

𝜏𝑝
∙ ∫ cos(𝐾𝑛𝑥) 𝑑𝑥

𝑥𝑠,𝑗+Δ𝑥

𝑥𝑠,𝑗

                                                     (𝐵04) 

From (25), we have: 

𝐶3𝑛
𝐼 ∙ 𝑒𝐾𝑛𝑦2 + 𝐶4𝑛

𝐼 ∙ 𝑒−𝐾𝑛𝑦2 + 𝛤𝑠 = 𝐶3𝑛
𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦2 + 𝐶4𝑛

𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦2                             (𝐵05) 

𝐶5𝑛
𝐼 ∙ 𝑒𝐾𝑛𝑦2 + 𝐶6𝑛

𝐼 ∙ 𝑒−𝐾𝑛𝑦2 + 𝛤𝑐 = 𝐶5𝑛
𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦2 + 𝐶6𝑛

𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦2                             (𝐵06) 

 

https://doi.org/10.1109/TIE.2019.2942561
https://doi.org/10.1109/TMAG.2006.874594
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From (26), we have: 

𝐶3𝑛
𝐼 ∙ 𝑒𝐾𝑛𝑦2 − 𝐶4𝑛

𝐼 ∙ 𝑒−𝐾𝑛𝑦2 = 𝐶3𝑛
𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦2 − 𝐶4𝑛

𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦2                                 (𝐵07) 

𝐶5𝑛
𝐼 ∙ 𝑒𝐾𝑛𝑦2 − 𝐶6𝑛

𝐼 ∙ 𝑒−𝐾𝑛𝑦2 = 𝐶5𝑛
𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦2 − 𝐶6𝑛

𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦2                                 (𝐵08) 

Development of (28) gives: 

𝐶𝑠1
𝑉 + 𝐶𝑠2

𝑉 ∙ 𝑦3 −
𝜇𝑜
2
∙ 𝐽𝑧𝑠 ∙ 𝑦3

2 =
1

𝑤𝑠
∙ ∫ 𝐴𝑧

𝐼𝐼(𝑥, 𝑦3)𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

                                (𝐵09) 

𝐶𝑠3𝑚
𝑉 ∙ 𝑒𝛽𝑚

𝑉 𝑦3 + 𝐶𝑠4𝑚
𝑉 ∙ 𝑒−𝛽𝑚

𝑉 𝑦3 =
2

𝑤𝑠
∙ ∫ 𝐴𝑧

𝐼𝐼(𝑥, 𝑦3) ∙ cos [𝛽𝑚
𝑉 ∙ (𝑥 − 𝛼𝑠 +

𝑤𝑠
2
)] 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

    (𝐵10) 

From (29), we have: 

𝐾𝑛
𝜇0
∙ (𝐶3𝑛

𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦3 − 𝐶4𝑛
𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦3) =

2

𝜏𝑝
∙∑

(

 
 
 
 
 
 ∫ 𝐻𝑥𝑠

𝑉 (𝑥, 𝑦3) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

…+ ∫ 𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦3) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+1−
𝑤𝑠+1
2

𝛼𝑠+
𝑤𝑠
2 )

 
 
 
 
 
 

𝑄

𝑖=1

    (𝐵11) 

𝐾𝑛
𝜇0
∙ (𝐶5𝑛

𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦3 − 𝐶6𝑛
𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦3) =

2

𝜏𝑝
∙∑

(

 
 
 
 
 
 ∫ 𝐻𝑥𝑠

𝑉 (𝑥, 𝑦3) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

…+ ∫ 𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦3) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+1−
𝑤𝑠+1
2

𝛼𝑠+
𝑤𝑠
2 )

 
 
 
 
 
 

𝑄

𝑖=1

    (𝐵12) 

Development of (32) gives: 

𝐶𝑠1
𝑉 + 𝐶𝑠2

𝑉 ∙ 𝑦4 −
𝜇𝑜
2
∙ 𝐽𝑧𝑠 ∙ 𝑦4

2 =
1

𝑤𝑠
∙ ∫ 𝐴𝑧

𝐼𝐼𝐼(𝑥, 𝑦4)𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

                                (𝐵13) 

𝐶𝑠3𝑚
𝑉 ∙ 𝑒𝛽𝑚

𝑉 𝑦4 + 𝐶𝑠4𝑚
𝑉 ∙ 𝑒−𝛽𝑚

𝑉 𝑦4 =
2

𝑤𝑠
∙ ∫ 𝐴𝑧

𝐼𝐼𝐼(𝑥, 𝑦4) ∙ cos [𝛽𝑚
𝑉 ∙ (𝑥 − 𝛼𝑠 +

𝑤𝑠
2
)] 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

   (𝐵14) 
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From (33), we have: 

𝐾𝑛
𝜇0
∙ (𝐶3𝑛

𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦4 − 𝐶4𝑛
𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦4) =

2

𝜏𝑝
∙∑

(

 
 
 
 
 
 ∫ 𝐻𝑥𝑠

𝑉 (𝑥, 𝑦4) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

…+ ∫ 𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦4) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+1−
𝑤𝑠+1
2

𝛼𝑠+
𝑤𝑠
2 )

 
 
 
 
 
 

𝑄

𝑖=1

   (𝐵15) 

𝐾𝑛
𝜇0
∙ (𝐶5𝑛

𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦4 − 𝐶6𝑛
𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦4) =

2

𝜏𝑝
∙∑

(

 
 
 
 
 
 ∫ 𝐻𝑥𝑠

𝑉 (𝑥, 𝑦4) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

…+ ∫ 𝐻𝑥𝑠
𝑉𝐼(𝑥, 𝑦4) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝛼𝑠+1−
𝑤𝑠+1
2

𝛼𝑠+
𝑤𝑠
2 )

 
 
 
 
 
 

𝑄

𝑖=1

   (𝐵16) 

From (35), we have: 

𝐶3𝑛
𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦5 + 𝐶4𝑛

𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦5 = 𝐶3𝑛
𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦5 + 𝐶4𝑛

𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦5 + 𝛤𝑠                           (𝐵17) 

𝐶5𝑛
𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦5 + 𝐶6𝑛

𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦5 = 𝐶5𝑛
𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦5 + 𝐶6𝑛

𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦5 + 𝛤𝑐                            (𝐵18) 

From (36), we have: 

𝐶3𝑛
𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦5 − 𝐶4𝑛

𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦5 = 𝐶3𝑛
𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦5 − 𝐶4𝑛

𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦5                                (𝐵19) 

𝐶5𝑛
𝐼𝐼𝐼 ∙ 𝑒𝐾𝑛𝑦5 − 𝐶6𝑛

𝐼𝐼𝐼 ∙ 𝑒−𝐾𝑛𝑦5 = 𝐶5𝑛
𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦5 − 𝐶6𝑛

𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦5                                (𝐵20) 

From (38), we have: 

𝐾𝑛
𝜇0
∙ (𝐶3𝑛

𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦6 − 𝐶4𝑛
𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦6) =

2

𝜏𝑝
∙ ∫ 𝐻𝑥

𝑉𝐼𝐼𝐼(𝑥, 𝑦6) ∙ sin(𝐾𝑛𝑥) 𝑑𝑥

𝜏𝑝

0

                   (𝐵21) 

𝐾𝑛
𝜇0
∙ (𝐶5𝑛

𝐼𝑉 ∙ 𝑒𝐾𝑛𝑦6 − 𝐶6𝑛
𝐼𝑉 ∙ 𝑒−𝐾𝑛𝑦6) =

2

𝜏𝑝
∙ ∫ 𝐻𝑥𝑖

𝑉𝐼𝐼𝐼(𝑥, 𝑦6) ∙ cos(𝐾𝑛𝑥) 𝑑𝑥

𝜏𝑝

0

                  (𝐵22) 

Some integral function is defined as: 

• 1st integral: 

∫ sin(𝐾𝑛𝑥)

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 =
2 ∙ sin (

𝐾𝑛𝑤𝑠
2
) ∙ sin(𝐾𝑛𝛼𝑠)

𝐾𝑛
                                     (𝐵23) 

• 2nd integral: 

∫ cos(𝐾𝑛𝑥)

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 =
2 ∙ sin (

𝐾𝑛𝑤𝑠
2
) ∙ cos(𝐾𝑛𝛼𝑠)

𝐾𝑛
                                     (𝐵24) 

• 3rd integral: 
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∫ sin(𝐾𝑛𝑥) ∙ cos [𝛽𝑚
𝑉 ∙ (𝑥 − 𝛼𝑠 +

𝑤𝑠
2
)]

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 = 

if 𝛽𝑚
𝑉 ≠ 𝐾𝑛 

𝐾𝑛
2

(𝛽𝑚
𝑉 )2 − 𝐾𝑛

2 ∙ {cos [𝐾𝑛 ∙ (
𝑤𝑠
2
+ 𝛼𝑠)] (−1)

𝑚 − cos [𝐾𝑛 (
𝑤𝑠
2
− 𝛼𝑠)]}                     (𝐵25𝑎) 

 

 

if 𝛽𝑚
𝑉 = 𝐾𝑛 

2𝑚𝜋 ∙ sin (𝐾𝑛𝛼𝑠 −
𝑚𝜋
2
)

4𝐾𝑛
                                                            (𝐵25𝑏) 

• 4th integral: 

∫ cos(𝐾𝑛𝑥) ∙ cos [𝛽𝑚
𝑉 ∙ (𝑥 − 𝛼𝑠 +

𝑤𝑠
2
)]

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 = 

if 𝛽𝑚
𝑉 ≠ 𝐾𝑛 

−
𝐾𝑛

2

(𝛽𝑚
𝑉 )2 − 𝐾𝑛

2 ∙ {sin [𝐾𝑛 ∙ (
𝑤𝑠
2
+ 𝛼𝑠)] (−1)

𝑚 + sin [𝐾𝑛 (
𝑤𝑠
2
− 𝛼𝑠)]}                    (𝐵26𝑎) 

if 𝛽𝑚
𝑉 = 𝐾𝑛 

2𝑚𝜋 ∙ cos (𝐾𝑛𝛼𝑠 −
𝑚𝜋
2
)

4𝐾𝑛
                                                         (𝐵26𝑏) 

• 5th integral: 

∫ sin(𝐾𝑛𝑥) ∙ sinh [𝜆 ∙ (𝑥 − 𝛼𝑠 ±
𝑤𝑠
2
)]

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 = 

1

2 ∙ (𝜆2 + 𝐾𝑛
2)
∙

(

  
 
…

−2𝐾𝑛 ∙ sinh(𝜆𝑤𝑠) ∙ cos [𝐾𝑛 ∙ (𝛼𝑠 +
𝑤𝑠
2
)]

±2𝜆 ∙ cosh(𝜆𝑤𝑠) ∙ sin [𝐾𝑛 ∙ (𝛼𝑠 +
𝑤𝑠
2
)]

…∓ 2𝜆 ∙ sin [𝐾𝑛 ∙ (𝛼𝑠 ∓
𝑤𝑠
2
)] )

  
 
                          (𝐵27) 

• 6th integral: 

∫ cos(𝐾𝑛𝑥) ∙ sinh [𝜆 ∙ (𝑥 − 𝛼𝑠 ±
𝑤𝑠
2
)]

𝛼𝑠+
𝑤𝑠
2

𝛼𝑠−
𝑤𝑠
2

𝑑𝑥 = 
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1

2 ∙ (𝜆2 + 𝐾𝑛
2)
∙

(

  
 

∓2𝜆 ∙ cosh(𝜆𝑤𝑠) ∙ cos ∙ [𝐾𝑛 ∙ (𝛼𝑠 ±
𝑤𝑠
2
)]

…+ 2𝐾𝑛 ∙ sinh(𝜆𝑤𝑠) ∙ sin [𝐾𝑛 ∙ (𝛼𝑠 ±
𝑤𝑠
2
)]

…∓ 2𝜆 ∙ cos [𝐾𝑛 ∙ (𝛼𝑠 ∓
𝑤𝑠
2
)] )

  
 
                          (𝐵28) 

• 7th integral: 

∫ sin[𝜆 ∙ (𝑦 − 𝑦3)]

𝑦4

𝑦3

𝑑𝑦 = −
−1 + cos[𝜆 ∙ (𝑦4 − 𝑦3)]

𝜆
                                  (𝐵29) 

• 8th integral: 

∫ 𝑦 ∙ sin[𝜆 ∙ (𝑦 − 𝑦3)]

𝑦4

𝑦3

𝑑𝑦 = −
𝜆𝑦4 ∙ cos[𝜆 ∙ (𝑦4 − 𝑦3)] − sin[𝜆 ∙ (𝑦4 − 𝑦3)] − 𝜆𝑦3

𝜆
      (𝐵30) 

• 9th integral: 

∫ 𝑦2 ∙ sin[𝜆(𝑦 − 𝑦3)]

𝑦4

𝑦3

𝑑𝑦 =

(−𝜆2𝑦4
2 + 2) ∙ cos[𝜆 ∙ (𝑦4 − 𝑦3)] + 𝜆

2𝑦4
2

𝜆3

…+
2𝜆𝑦4 ∙ sin[𝜆 ∙ (𝑦4 − 𝑦3)] − 2

𝜆3

                   (𝐵31) 


