
Self-Reconfiguration of Modular Robots Using Virtual Forces

Edy Hourany1, Christian Stephan1, Abdallah Makhoul1, Benoit Piranda1, Bachir Habib2 and Julien Bourgeois1

Abstract— Programmable matter is a material that can
change its physical properties at will, whether it is its shape,
density or conductivity. It can be implemented as an ensemble
of micro-robots arranged in space to form a specific shape and
having their own computing power. This technology behaves as
a distributed system. Each micro-robot is called a module and
the whole forms a modular robot. This paper tackles the self-
reconfiguration problem by presenting a deterministic planning
algorithm that can decide which positions can be filled over
multiple iterations using virtual forces. The proposed algorithm
implements the Hungarian method to optimize the planning by
minimizing the total number of movements of the robots and
preventing positions from being blocked. Each module embeds
the same algorithm and coordinates with the others using
neighbor-to-neighbor communications. Simulation results are
conducted to show the effectiveness of the proposed approach.

I. INTRODUCTION

Modular robots are designed with parts that can be re-
configured to form different shapes and functions. In many
cases, such robots are able to reconfigure their own shape
autonomously. Modules may be large and unique or small
and identical. In the later case, robots begin to resemble to
programmable matter that can take any shape. For example, a
robot could take a snake shape to crawl through a pipe or take
a human shape. In theory, small reconfigurable modules with
programmable properties could represent a type of universal
robot that can take any shape and perform virtually any
function. Such modules may be expensive to develop but are
cheap to produce in the long term as they achieve economies
of scale [1].

One of the foremost interesting capabilities of modular
robots, is the capacity of each module to move towards
diverse positions, changing the whole shape and morphology
of the grouped modules to achieve different tasks and to
adapt to terrain variations. According to [2], this can be
achieved either using self-reconfiguration or self-assembly
which are hard problems for the following three reasons.
First, working with a high number of computational units
generates a huge number of possible unique configurations,
(c.w)n where n is the number of modules, c the number
of possible connections per module and w the ways of
connecting the modules [3]. Second, the modules can move
simultaneously, so the branching factor of the tree describing
the configurations is O(mk) with m being the number of
possible movements and k the number of modules free to
move. Finally, the exploration space of a reconfiguration

1 Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS,
Montbéliard, France firsname.lastname@univ-fcomte.fr

2 Department of computer science, Holy Spirit University of Kaslik,
Jounieh - Lebanon bachir.habib@uek.edu.lb

between two situations is exponential in n which prevents
from finding a complete optimal planning.

In this paper, a new self-reconfiguration algorithm for
modular robots based on virtual forces is proposed. The main
objective is to optimize the shape formation by minimizing
the number of movements of the modules. The Virtual
Force Algorithm, denoted as VFA for the remainder of the
paper, was introduced by [4] to properly place a randomly
distributed set of sensors. Once the effective sensors po-
sitions are identified, a one time movement with energy
consideration incorporated is carried out, i.e., the sensors are
redeployed to these positions. This work was inspired by the
VFA to identify the attractiveness of empty positions for the
free modules.

The remainder of this paper will be as follow: Section II
presents the literature review, a brief review of prior research
on topics related to self-assembly, self-reconfiguration and
virtual forces approach in the robotics world. Section III
presents the particularities of the modular robot used and
the details about the problem we aim to address. Section
IV describes the proposed algorithm. Section V presents
the simulation results based on the proposed approach and
an elaboration on its performance. Section VI draws the
conclusion and outline directions for future works.

II. LITERATURE REVIEW

Modular Self-Reconfigurable Robots (MSR) can be clas-
sified in three different types according to [5]: chain, lattice,
or mobile reconfiguration. Chain-type MSRs change con-
figuration by attaching and detaching chains of modules to
and from themselves, with each chain always attached to
the rest of the modules at one or more points. Lattice type
robots change shape by moving into positions on a virtual
grid, or lattice similar to a chessboard game. The robot only
needs to deal with what is occupying the limited number of
neighboring positions in the lattice and therefore requires less
computation. Lastly, mobile self-reconfiguring robots change
shapes by having modules detaching from the ensemble and
moving independently until attaching again in another point.

A self-reconfiguration algorithm is composed of two
phases: an assembly planning phase and a movement phase.
In [2], the authors propose a distributed algorithm for build-
ing a shape by defining on the fly the assembly planning.
The advantage of this method is that it does not require
any pre-calculation which allows a total adaptability to the
situation and a better resistance to errors. The difficulty in
this case is to detect and deal with blocking situations so as
not to position a robot in a location that will then block the



others. They propose a distributed algorithm based on long-
distance communication between robots, using the point-
to-point communication network, in order to manage these
situations. The algorithm works even in configurations with
multiple holes that are the most complicated to manage.

The authors in [6] proposed an assembly planning algo-
rithm for constructing planar structures out of rectangular
modular robots that can dock to each other to form a brick
wall pattern. The assembly plan incorporates reachability and
and collision constraints and supports distributed assembly
so that multiple robots can be docked to a growing structure
without centralized coordination.

In their paper, [7], the authors introduced a parallel,
asynchronous and fully decentralized distributed algorithm
to self-reconfigure robots in 2D vertical lattice from an
initial configuration to a goal structure. Their algorithm
avoids collisions by having a gap of one empty cell between
robots that are in transit using communications and can self-
reconfigure to almost any compact goal shapes.

In [8], the authors present a method to organize the
iterations of self-assembly agents to generate a consistent
assembly of the desired goal structure. The decisions are
made by the agent docking in the existing structure and not
by the structure. In other term, the decision are made locally
by each module in the system.

Another programmable matter module was introduced in
[9], where each module has a size of 12 mm per side and
is capable of creating a 2D shape by self-disassembly. The
authors start with a latched system and the modular robot
detaches unnecessary modules.

Thalamy et al. proposed in [10] an approach for accelerat-
ing self-reconfiguration by building a porous version of the
desired shape, using scaffolding. This method that constructs
a parametric scaffolding model, increases the parallelism of
the reconfiguration, supports its mechanical stability, and
simplifies planning and coordination between agents. Each
agent has a set of basic rules using only four states which
generates that module movements and the construction of the
scaffold is deterministic.

In [11], the authors presented a probabilistic self-
reconfiguration algorithm for re-configuring rhombic dodec-
ahedron modules residing in a Face Centered Cubic (FCC)
lattice, and that can only move using rotations. The authors
also proposed the Goal-Ordering method. In this method,
the modules use one or two metrics to decide which target
location in the goal configuration they should go fill. This
method, however, suffers from overcrowding around the open
goal positions and is likely to get stuck in local minima and
avid converging altogether, especially when the shape is solid
and hollow.

Stoy, in his papers [12], [13], approximated the target
shape with a porous representation made by removing in-
dividual modules from its volume in a manner that would
guarantee an absence of local minima and hollow or solid
sub-configurations. He then proposed to use local rules and
cellular automata to perform the reconfiguration [12], or
through a gradient descent method [13].

Recently, in [14] the authors propose a self-reconfiguration
algorithm based on clustering [15]. The self reconfiguration
is done in a parallel manner in each cluster to find the final
shape at the end. The proposed algorithm consists in moving
the robots that are not in the target shape in the interior of
the current configuration in order to fill target free cells.

In this paper, a hybrid algorithm using both centralized
and decentralized decisions is proposed. They are both
used to reconfigure the robots into a goal structure with
the least possible cost. Distributed virtual forces algorithm
with a Hungarian optimization approach are used to limit
overcrowding around the open goal positions and to avoid
getting stuck in local minima.

III. ASSUMPTIONS AND DEFINITIONS

The modules used here are 2D node models with 4 connec-
tions that can rotate in Clock Wise (CW) and Counter Clock
Wise (CCW) directions, also can make a linear or circular
translation to move around other modules. The modules are
placed on an unlimited grid, oriented along the −→x , −→y . The
grid is defined by a large set of cells where each cell can
only contain one block. Each cell of the grid has only two
different states: empty of full.

The position Pc of the cell c in the grid is given by
coordinates in Z2. Each block can be directly connected to
up to four neighbors in a 2D lattice. The following properties
are then applied:

• Unique ID;
• Same hardware executing the same software;
• Can get its orientation relative to global referential using

embedded sensors;
• Detect the presence of docked neighbors in the adjacent

cells;
• Communicates with its connected neighbors only;
Modules can move freely in different directions. They can

only rotate in Clock Wise (CW) or Counter Clock Wise
(CCW) directions and can perform a translation or a rotation
depending on the pivot and near obstacles: so in total, they
have 16 possible motions. The movement of the modules
needs to satisfy condition 1.

Condition 1: A module can move freely without any man-
ual intervention if there is only one pivot in its neighborhood.

Condition 1 defines the case where a node has more than
one neighbor that can be used as a pivot and is not able
to decide which one to use. Figure 1 shows an example of
an invalid case of movement. Indeed, the module 3 has as
pivot module 1 and 2, it can not decide by itself which node
should be considered as a pivot. Whereas in Figure 2 and
Figure 3, module 3, according to Condition 1, can pick the
only neighbor it has like a pivot. Figure 2 represents the
case of a CW motion with rotation because the left side of
the pivot is empty. Figure 3 represents the case of a CCW
motion with a translation because the right side of the pivot
is filled.

Let G be the goal shape, we assume that each module
si stores locally a copy if G. A module si has a position



3 2

1

Fig. 1. Invalid Node Motion according to Condition 1. The red module
(module 3) is a module with 2 connections. Thus a pivot for rotation is not
possible.

1 2

3

1 23

Fig. 2. Clock Wise (CW) direction and rotation. The red module (module
3) is a module with 1 connection. Thus a rotation pivot can be identified
and a rotation is then possible.

1 2

3

1 2

3

Fig. 3. Counter Clock Wise (CCW) direction and translation. The red
module (module 3) is a module with 1 connection. Thus, a pivot can be
identified and a translation is then possible.

pi(xi, yi), with (xi, yi) ∈ Z2. Furthermore, in this paper, it
is assumed that:

• The size of the system, as well as the initial shape of
the system, is unknown.

• The leader is elected and can be any module in the
system being at any position.

• Communication is only possible between adjacent
neighboring modules.

• Each module is aware of the connections it has at any
given moment, thus the loss of any message in the
middle of the transmission is improbable and therefore
ignored.

• Each module is aware of the goal shape.
• Each module can scan the grid and can check if a certain

position (x, y) is empty or filled.
• Each module has access to a scheduler queue where

they can push events to be executed either instantly or
in a future time.

IV. PROPOSED ALGORITHM

The problem treated in this paper is the following: having
a goal shape G, the free modules present in the grid will
define the potential target positions inside G that they may
fill by applying the proposed algorithm. The leader will pick
the free modules and the goal positions to be filled in a way
that minimizes the cost of the whole structure. However, after
moving some modules, the leader would be able to pick other
potential nodes and fill new empty positions. Therefore, the
process will repeat itself until no further solutions are found
by the leader.

In this paper, a deterministic self-reconfiguration algo-
rithm, is proposed, based on virtual forces and composed
of two major phases: (a) Distributed calculation of the
potential movements of the free nodes, and (b) Centralized
optimization of the overall movements of all these nodes.

A. Distributed Virtual Force Algorithm (VFA)

The first phase of the algorithm is split into three main
steps:

1) VFA phase: each free node detects the free positions
in the goal structure and for each of them, it defines a
weight as a result of the attractive and repulsive forces
towards this free position.

2) Exploration phase: the leader explores the whole sys-
tem of modules while at the same time builds a tree
structure rooted at the leader module itself.

3) System potential movements reporting phase: This
phase is launched in parallel to the previous phase,
in a manner where the algorithm collects all the free
nodes’ potential movements and their weights to report
the total potential movements from the whole system
to the leader module.

1) Phase 1: Virtual Force Algorithm: In modular robots,
the proposed approach considers each free node as a ”source
of force” for all the empty positions in the target structure.
This force can be either positive (attractive) or negative
(repulsive). On one hand, the attractive force is defined as
being inversely proportional to the number of moves required
by this free node to reach a certain empty position in a
specific direction (CW or CCW); indeed, the more moves
the node needs to reach the empty position the less the force
exerted is attractive. On the other hand, the repulsive forces
are defined as the existence of an invalid path in a certain
direction according to Condition 1.

In a neighborhood of M modules, let j ∈ (CW :
0, CCW : 1) and let the total force exerted by a node si on
an empty position pk in a certain direction j be denoted by−−→
Fijk which is a vector whose orientation is determined by the
vector sum of all the forces exerted by si in the direction j

on the empty position pk. If
−−−→
FijkA and

−−−→
FijkR are considered,

respectively, the attractive force and repulsive force exerted
by si in the direction j on the empty position pk, the total−−→
Fijk can now be expressed as:

−−−→
FijkA +

−−−→
FijkR =

−−→
Fijk (1)



−−−→
FijkA as defined previously is inversely proportional to the

number of moves required by si to reach the empty position
pk while ignoring the Condition 1. Let be n the number of
these moves and M the number of modules:

−−−→
FijkA = +

M

n
(2)

−−−→
FijkR is the existence of invalid path in a certain direction

according to the Condition 1. It can be expressed as follows:

−−−→
FijkR =

{
0, if from j to pk is a valid path
−M, if from j to pk is an invalid path

(3)

A positive value for
−−→
Fijk expresses the attractiveness of

the motion of si in the direction j towards pk, whereas a
negative value for

−−→
Fijk expresses that such a motion would

result in a blocking position for si and therefore should not
be taken into consideration as a possible motion for si.

1 2

4

13

F411A

Fig. 4. Attractive force with 3 required movements

In Figures 4, 5, and 6, the red module is a free module
and the blue ones are in the goal shape. The orange squares
are empty positions in the goal shape that should be filled.
Figures 4 and 5 present attractive forces with the variation
of the number of motions needed to reach the target. Indeed,
in Figure 4 the node s4 in the direction 1 needs 3 moves to
reach the empty position p1 with a total number of 3 modules
in the figure, therefore the length of the vector

−−−→
F411A should

equal to 4/3. Whereas in Figure 5 the node s2 in the direction

1

2

1

F211A

Fig. 5. Attractive force with 1 required movement

F501R

11

5F501A

3 4

4

Fig. 6. VF with a repulsive force

1 needs 1 move to reach the empty position p1 with a total
number of 2 modules in the figure, therefore the length of
the vector

−−−→
F211A should equal to 2/1.

Figure 6 shows a case of attractive and repulsive forces.
The node s5 in the direction 0 needs 4 moves to reach the
empty position p1 if we ignore the Condition 1 with a total
number of 5 modules in the figure, therefore the length of
the vector

−−−→
F501A should equal to 5/4. Whereas the path to

p1 following the direction 0 would cause a blocking position
of s5 between s2 and s4, so the length of

−−−→
F501R would be

equal to 5 in the opposite direction of the motion. In this case,
the sum of the forces

−−→
F501 would be negative and ignored

in the remaining phases of the algorithms. Theoretically, if
Condition 1 is not valid the value of the repulsive force will
be greater than the attractive one and the sum of forces would
be negative, therefore in such a case, it is useless to calculate
the attractive force. Let’s define L as the 2D grid, G the goal
shape we aim to obtain, D the set of possible directions, P
the set of available modules in L and T the set of forces
calculated by s.

2) Phase 2: Exploration: Inspired from [16], this phase’s
goal is to explore the whole system of modules while
building a logical tree structure rooted at the leader module
along the way. The algorithm starts with the initiation from
the leader module and by using 3 types of messages:

1) Type 1 messages represent the discovery of new mod-
ules

2) Type 2 messages reply by confirming that a new
module has been discovered and it is one of the
children of the sender module

3) Type 3 messages reply by neglecting the fact that a
module is to be discovered and notify the sender mod-
ule that the destination module is already discovered

Also, to notice that type 2 messages are the only way to
expand the tree structure of the system.

The leader module starts by specifying that it is now
discovered and that it has no parent, and would finally
transmit type 1 messages to each of its neighbors. Whenever
a module receives a type 1 message it initializes its parent
to be the sender module and replies by a type 2 message
which notifies the parent that this node is now one of its
children, and finally proceeds by sending type 1 messages
to its neighbors (excluding the already known to be parent
neighbor). If it is not the first time that it receives a type
1 message (the module is already discovered by another



module) it sends back a reply message of type 3, which
notifies the sender module that this module is not its child.

3) Phase 3: System Potential Movements Reporting: In
this phase, that is run in parallel with the previous phase,
the main idea is that whenever a module is discovered and
all its subsequent children finish discovering their respective
sub-trees (or if this module does not have any children),
this module should report its sub-tree potential modules
movements to its parent. The sub-tree potential module’s
movements of a given module are the potential modules
movements of the tree structure that is rooted in this module.
Thus, this process of sub-tree potential module movements
reporting will emerge from the leaves to the leader module.
Type 4 messages are now introduced. These messages are
only passed from child to parent and they carry out a set
value named that represents the sub-tree potential modules
movements of the child node. After a module has been
discovered, and it has sent out type 1 messages to all of
its neighbors (potential children) and it received back all
the reply messages (either type 2 or type 3), it would if
all neighbors replied with type 3 messages or if it has no
neighbors other than its parent (both cases represent the case
of a leaf) send a type 4 message to its parent, with the set
composed at the first phase. If one or more neighbors replied
with a type 2 message (i.e., the node has at least one child)
wait for all children to send their sub-tree potential modules
movements, and only when they do, proceed by sending a
type 4 message to its parent, which now carries its sub-
tree potential modules movements that is the aggregation of
all sub-tree potential modules movements received from its
children with its own. This process keeps on repeating until
eventually all sub-tree potential module movements would
be transmitted from child to parent and the leader module
would be transmitted from child to parent and the leader
module would receive the final total system potential module
movements. The Algorithm’s part concerning the second
phase is presented in Algorithm 1.

4) Centralized Hungarian Optimization: At this point, the
leader has gathered all the system’s potential movements of
free modules towards empty positions in the goal structure.
We define the cost of the algorithm as being the total
number of moves by all the different free modules. The
problem that needs to be solved now is to fill the highest
number of empty positions while optimizing the cost of the
algorithm: it can be formulated as an assignment problem
which can be solved using the Hungarian Method [17]. The
Hungarian method is one of the most popular polynomial-
time algorithms for solving classical assignment problem.
As stated in the original algorithm published in 1955 :
”Assuming that the numerical scores are available for the
performance of each of n persons on each of n jobs, the
assignment problem is the quest for an assignment of persons
to jobs so that the sum of the n scores so obtained is as large
as possible” [18]. In this paper, the people are considered
the modules, the jobs are the empty positions to be filled
and the performance is the result of the Virtual Forces
phase. Theoretically, the Kuhn-Munkres algorithm (Hungar-

Algorithm 1: System Potential Movements Report-
ing

subtree movements sent← false
subtree movements← ∅

if received message then
switch message.type do

case 1 do
if is discovered = true then

...
else

...
if neighbours.size = 0 AND

!subtree movements sent then
CHECK()

// Check for possible
moves

else
foreach neighbour in neighbours

do
send type 1 message to

neighbour
end

end
end

end
case 2 do

...
end
case 3 do

...
if neighbours.size = 0 AND

!subtree movements sent then
CHECK()

// Check for possible
moves

end
end
case 4 do

child← find message.origin in children
child.subtree movements←
message.subtree movements
subtree movements←
subtree movements ∪
<{message.subtree movements} >

if neighbours.size = 0 AND
!subtree movements sent then

CHECK()
// Check for possible

moves
end

end
end

end



ian Method) is guaranteed to reach the global optimal. When
the leader has all the potential movements, it will launch
the Kuhn-Munkres algorithm twice: once in each direction
(CW and CCW). To prevent unexpected collisions between
moving blocks, the approach needs to pick one direction at
a time. The algorithm is searching for the direction with
the overall lowest possible cost on the system. Having that,
the leader will be able to identify which modules should be
moved to which positions. When the leader moves certain
blocks, it may open the way to other blocked modules to be
able to move, so the whole algorithm may be repeated on
several iterations until no further potential system movements
are provided by the environment exploration and reporting
phases. The overall algorithm of the proposed approach is
presented in Algorithm 2.

Algorithm 2: Overall proposed approach

S ← ∅
best cost← +∞
best solution← ∅

T ← distributed algorithm of the first section
while T is not empty do

foreach direction in {CW , CCW} do
S ← KUHN-MUNKRES(direction)
if best cost >S.cost then

best cost← S.cost
best solution← S.solution

end
foreach s in S do

Scheduler.push(Movement Event, s)
end

end
T ← distributed algorithm of the first section

end

V. SIMULATION RESULTS

The proposed algorithm was implemented and evaluated
using VisibleSim [2] a modular robots simulator. To study
the performance of the proposed algorithm, four metrics
were taken into account in our simulations: the number
of iterations needed by the Kuhn-Munkres algorithm; the
number of moves made by all the modules; the number of
messages exchanged among the modules during the self-
reconfiguration process and the number of events processed
by the simulator.

To show that our approach works on different styles
of shapes, we have conducted configurations of varying
complexity. A video of these simulations is provided 1 to
better illustrate the algorithm and the reconfiguration results.
We considered two configuration scenarios while varying the
total number of modules. The first scenario is to transform
a straight chain line modular robot to a ”UFC” 2 like shape

1Youtube video: https : //youtu.be/fwKvdF 3zDk
2Acronym of our University: University of Franche Comté

Fig. 7. The goal shape of UFC

Fig. 8. The goal shape of a humanoid

and the second to transform it to a humanoid shape as shown
in Figures 7 and 8 respectively.

The obtained results are presented in Figures 9 and 10.
These figures show the number of iterations, events, mes-
sages and moves for the two configurations ”UFC” like
shape and humanoid shape while varying the total number of
modules. In the two scenarios, we notice that the number of
messages and moves to change the shape of a modular robot
using our algorithm is linear according to the total number
of modules in the system which is a very encouraging result
comparing to the results presented in [2].

29 35

112

27226 55249

212156

3439
7867

32965

1163
3226

17766

0 20 40 60 80 100 120 140 160 180
Number of Modules

Number of Iterations Number of Events Number of Messages Number of Motions

Fig. 9. Simulation Results of the ”UFC”-like shape.

https://youtu.be/fwKvd_F3zDk


22 24
54 55

144

14775

17564

83005 98485 267879

1876

2196

10100
12338 37014

571 690

3540 4349

16263

0 20 40 60 80 100 120 140 160 180
Number of Modules

Number of Iterations Number of Events Number of Messages Number of Motions

Fig. 10. Simulation Results of the humanoid shape.

VI. CONCLUSIONS

This paper presented an algorithm for a system of modular
robots that is capable of self-reconfiguration based on a
distributed virtual forces approach and a centralized op-
timization method. The proposed algorithm tries to move
the maximum number of free modules to empty positions
inside a goal shape over multiple iterations if required. The
results show that the algorithm has a linear consumption
of messages over the distributed phase and will increase
the resources consumption with the number of iterations
required which is related to how much the initial shape is
different from the goal shape. In a future work, a possible
improvement of the Kuhn-Munkres algorithm is to use the
technique based on sparsity structure of the cost matrix
as proposed in [19]. This may improve the complexity of
our approach. Another future direction is to study a self-
reconfiguration solution for 3D lattice modular robots.

ACKNOWLEDGMENT

The authors would like to acknowledge the National
Council for Scientific Research of Lebanon (CNRS-L) for
granting a doctoral fellowship to Edy Hourany.
This work has been supported by the EIPHI Graduate School
(contract ANR-17-EURE-0002) and the ISITE-BFC project
(ANR-15-IDEX-03).

REFERENCES

[1] Tommaso Toffoli and Norman Margolus. Programmable matter:
concepts and realization. Physica. D, Nonlinear phenomena, 47(1-
2):263–272, 1991.

[2] Thadeu Tucci, Benoı̂t Piranda, and Julien Bourgeois. A distributed
self-assembly planning algorithm for modular robots. In 17th Inter-
national Conference on Autonomous Agents and MultiAgent Systems,
AAMAS, pages 550–558, 2018.

[3] Michael Park, Sachin Chitta, Alex Teichman, and Mark Yim. Auto-
matic configuration recognition methods in modular robots. The Int.
Jour. of Robotics Research, 27(3-4):403–421, March 2008.

[4] Y. Zou and Krishnendu Chakrabarty. Sensor deployment and target
localization based on virtual forces. In IEEE INFOCOM 2003.
Twenty-second Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE Cat. No.03CH37428), volume 2,
pages 1293–1303 vol.2, 2003.

[5] M. Yim, Ying Zhang, and D. Duff. Modular robots. IEEE Spectrum,
39(2):30–34, 2002.

[6] Jungwon Seo, Mark Yim, and Vijay Kumar. Assembly planning for
planar structures of a brick wall pattern with rectangular modular
robots. In 2013 IEEE International Conference on Automation Science
and Engineering (CASE), pages 1016–1021. IEEE, 2013.

[7] André Naz, Benoı̂t Piranda, Julien Bourgeois, and Seth Copen Gold-
stein. A distributed self-reconfiguration algorithm for cylindrical
lattice-based modular robots. In 2016 IEEE 15th International
Symposium on Network Computing and Applications (NCA), pages
254–263. IEEE, 2016.

[8] Chris Jones and Maja J Mataric. From local to global behavior in
intelligent self-assembly. In 2003 IEEE International Conference on
Robotics and Automation (Cat. No. 03CH37422), volume 1, pages
721–726. IEEE, 2003.

[9] Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One cen-
timeter modules for programmable matter through self-disassembly.
In 2010 IEEE International Conference on Robotics and Automation,
pages 2485–2492. IEEE, 2010.

[10] Pierre Thalamy, Benoit Piranda, and Julien Bourgeois. Distributed
Self-reconfiguration using a Deterministic Autonomous Scaffolding
Structure. Research Report 2843, UBFC, 2019.

[11] Mark Yim, Ying Zhang, John Lamping, and Eric Mao. Distributed
Control for 3D Metamorphosis. Autonomous Robots, 10(1):41–56,
2001.

[12] K Stoy. Using cellular automata and gradients to control self-
reconfiguration. Robotics and Autonomous Systems, 54(2):135–141,
2006.

[13] K. Stoy and R. Nagpal. Self-reconfiguration using directed growth. In
In Proc. 7th Int. Symp. on Distributed Autonomous Robotic Systems,
pages 1–10, 2004.

[14] Mohamad Moussa, Benoit Piranda, Abdallah Makhoul, and Julien
Bourgeois. Cluster-based distributed self-reconfiguration algorithm
for modular robots. In 35th International Conference on Advanced
Information Networking and Applications (AINA 2021), may 2021.

[15] Jad Bassil, Mohamad Moussa, Abdallah Makhoul, Benoı̂t Piranda, and
Julien Bourgeois. Linear distributed clustering algorithm for modular
robots based programmable matter. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IROS 2020, pages 3320–3325.
IEEE, 2020.

[16] Joseph Assaker, Abdallah Makhoul, Julien Bourgeois, and Jacques
Demerjian. A unique identifier assignment method for distributed
modular robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2020, pages 3304–3311. IEEE, 2020.

[17] Hong Cui, Jingjing Zhang, Chunfeng Cui, and Qinyu Chen. Solving
large-scale assignment problems by kuhn-munkres algorithm. In 2nd
Int. Conf. Advances Mech. Eng. Ind. Inform.(AMEII 2016), 2016.

[18] Harold W Kuhn. Kuhn hw. the hungarian method for the assignment
problem. naval research logistic quaterly 1955; 2: 83-97. Naval
Research Logistic Quaterly, 2:83–97, 1955.

[19] Hong Cui, Jingjing Zhang, Chunfeng Cui, and Qinyu Chen. Solving
large-scale assignment problems by kuhn-munkres algorithm. 2016.

ACRONYMS

CCW Counter Clock Wise. 2, 3, 6
CW Clock Wise. 2, 3, 6

FCC Face Centered Cubic. 2

VF Virtual Forces. 4, 5
VFA Virtual Force Algorithm. 1, 3


	INTRODUCTION
	Literature Review
	Assumptions and Definitions
	Proposed Algorithm
	Distributed Virtual Force Algorithm (VFA)
	Phase 1: Virtual Force Algorithm
	Phase 2: Exploration
	Phase 3: System Potential Movements Reporting
	Centralized Hungarian Optimization


	Simulation Results
	Conclusions
	References

