
A subset of precise UML for Model-based Testing
F. Bouquet

University of Besançon
LIFC, 16 route de Gray

25030 Besançon, France
bouquet@lifc.univ-fcomte.fr

C. Grandpierre, B. Legeard,
F. Peureux, N. Vacelet

LEIRIOS
18 rue Alain Savary

25000 Besançon, France
{grandpierre, legeard, peureux,

vacelet}@leirios.com

M. Utting

Department of Computer Science
Private Bag 3105

Hamilton – New-Zealand
marku@cs.waikato.ac.nz

ABSTRACT
This paper presents an original model-based testing approach that
takes a UML behavioural view of the system under test and
automatically generates test cases and executable test scripts
according to model coverage criteria. This approach is embedded
in the LEIRIOS Test Designer tool and is currently deployed in
domains such as Enterprise IT and electronic transaction
applications. This model-based testing approach makes it possible
to automatically produce the traceability matrix from
requirements to test cases as part of the test generation process.
This paper defines the subset of UML used for model-based
testing and illustrates it using a small example.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]
D.2.5 [Testing and Debugging]

General Terms
Reliability, Verification.
Keywords
Model-Based Testing, UML, OCL

1. INTRODUCTION
There are several views of model-based testing: for example the
generation of test cases from an environment model (see e.g. [1]
based on a usage profile statistical model) or the generation of test
cases with oracles from a behaviour model (see [2] for more
details on model-based testing approaches). In this paper, we
define model-based testing as a process to automatically generate
test cases and executable test scripts from a behaviour model of
the system under test (SUT). The model formalizes the expected
behaviour to be tested on the SUT. Generated tests are sequences
of operation invocations on the SUT, and include the expected
output (the oracle information), so that test verdicts can be
assigned automatically during test execution [3]. Moreover, each
behaviour of the SUT model can be labelled with a particular
requirement identifier, which makes it possible to generate a
traceability matrix that links the generated tests to the initial
requirements of the informal specification [4].

The Unified Modeling Language1 (UML) is widely used as a
modelling support for model-based testing. There are several

1 UML is a notation from the Object Management Group – See
www.omg.org

reasons for this interest. Firstly, UML provides a large set of
diagrammatic notations for modelling purposes, with several
complementary representations. A static representation (i.e. class
diagrams) is used to model the points of control and observation
of the SUT and the data that represents the abstract state of the
SUT. A dynamic representation (e.g. state diagrams or activity
diagrams) is used to model the expected behaviour of the SUT.
Secondly, the Object Constraint Language (OCL [5]) associated
with UML makes it possible to have precise models – this means
that the expected behaviour can be formalized using OCL.
Thirdly, UML is the de-facto industrial standard for modelling
enterprise IT applications; most software engineers have had some
first level training on UML – this is an important point to facilitate
the acceptance of a disruptive process such as model-based
testing.

However, UML contains a large set of diagrams and notations,
defined in a flexible and open-ended way using a meta-model2
and with some freedom allowed for different interpretations of the
semantics of the diagrams by different UML tools. So for
practical model-based testing it is necessary to select a subset of
UML and clarify the semantics of the chosen subset so that
model-based testing tools can interpret the UML models.

The paper defines a subset of UML 2.1 (the latest version of
UML) for model-based testing purposes. This subset allows
formal behaviour models of the SUT to be designed, which can be
mechanically interpreted to generate test suites. The subset uses
class, instance and state diagrams, plus OCL expressions. Such
UML models are used as input for a model-based test generator,
called LEIRIOS Test Designer, that automates – using theorem
prover technology – the generation of test sequences, covering
each behaviour in the model.

This paper is organized as follows. Section 2 introduces the subset
of UML and OCL we are proposing. Section 3 shows on a small
Stack example how this notation can be used to develop a
behaviour model for test generation purposes, and exhibits the
generated test cases. Section 4 discusses some related work and
Section 5 gives conclusions. One of the main contributions of the
paper is to identify a subset of UML that is expressive enough to
model a variety of industrial applications, and has a clear
semantics that allows executable models to be written for test
generation purposes. Another contribution is a novel
active/passive interpretation of OCL expressions that allows OCL
to be used as an action language in UML state machines and class
diagrams.

2 A meta-model is a language to describe the domains of applicative
models and to define their semantic

2. A UML SUBSET
In this section, we define the UML subset we propose for model-
based testing. The goal of this subset is to offer precise, necessary
and sufficient modelling features to design behaviour models for
test generation purposes. We call this subset UML-MBT.

2.1 UML 2.1 diagrams
The proposed subset for model-based testing is based on three
diagrams: UML class diagrams (to model the points of control
and observation of the SUT), object diagrams (to define test data),
state-machines and OCL3 (to model dynamic behaviour of the
SUT). UML offers several other diagrams, but these are sufficient
to design comprehensive, precise and interpretable models to test
finite state systems with our tool. To model dynamical behaviour,
we use state machine rather than UML sequence diagrams
because state machines allow richer behaviours to be specified,
with better support for loops and alternative paths.

This section defines the subsets of these UML diagrams that are
used to design UML-MBT models for automated test generation.

2.1.1 Class diagrams
The UML class diagram is the static view of the model. It
describes the abstract objects of the system and their
dependencies. The UML elements available to model the class
diagram are the following elements:

• Classes define the types of the objects of the system.
Inheritance is not yet implemented.

• Reflexive and binary associations, represent dependencies
between classes. The available multiplicities are 0..1, m, n..*
and n..m with m and n integers such as 0≤n<m. Association
classes are not implemented.

• Enumeration classes, composed only of literals, are used to
model static types.

• Class attributes define the state variables of the system. The
supported types are integer, Boolean and enumeration types.
For integers, a restricted domain is recommended for testing
purposes (for example the integer interval [-32668, 36767]).
Object types are represented using 1-1 associations, rather than
attributes.

• Operations model the actions owned by an object. An operation
can be defined with parameters (input and output) that can be
typed as Boolean, integer, enumeration literal or object. OCL
preconditions and postconditions can be used to formalise the
behaviour of an operation.

2.1.2 Object diagrams
The UML object diagram lists the concrete objects used to
compute test cases, and defines the initial state of the model. Each
object diagram must be an instantiation of the associated class
diagram. Notice the following restriction: objects can not be
created or deleted dynamically by the actions designed in the
model. So all objects used to describe the life cycle of the system
must be defined in the object diagram. The dynamic creation
(resp. deletion) of entities in the concrete system is simulated by
creation (resp. deletion) of links between objects in the UML
model.

3 See UML 2.0 OCL Specification. http://www.omg.org/docs/ptc/

The following UML elements can be used in object diagrams:
• Objects, or class instances, are the concrete objects of the

system that are used in the generated tests. Every slot – or
attribute instance – of every object must have a value.

• Links, or association instances, define the dependencies
between the objects in the initial state of the system.

2.1.3 State-machines
State-machine diagrams are an optional part of a UML-MBT
model. They are used to model the dynamic behaviour of the SUT
as a finite state transition system.
The UML state machines used in UML-MBT may contain the
following elements:
• initial (and optionally final) states,
• simple states, used to define the different system states of the

SUT lifecycle,
• single transitions, used to model SUT actions. Transitions may

be between two states, reflexive, or internal. A transition is
composed of :
 an optional event (optionally defined with input parameters

that can be typed as Boolean, integer, enumeration literal or
object) that triggers the transition,

 an optional guard that is a Boolean expression used to
determine whether or not the transition can fire,

 an optional action that updates the model data.

The semantics of state machine processing is based on the UML
run-to-completion processing assumption. Run-to-completion
processing means that an event occurrence can only be taken from
the pool of operations declared in the class diagram. Moreover,
this event can be dispatched only if the processing of the previous
current occurrence is fully completed (to avoid concurrency
conflicts during the processing of events). The processing of a
single event occurrence by a state machine is known as a run-to-
completion step. Before commencing on a run-to-completion step,
a state machine has to be in a stable state configuration (a state in
which no more transitions can be fired without external events).
Thus, an incoming event will never be processed while the state
machine is in some intermediate and inconsistent situation. A run-
to-completion step can also be viewed as a complex state
transition between two stable states of the state machine.
Just as OCL is used in class diagrams, to formalise the expected
behaviour of class operations, OCL is also used within state
machines to formalize transitions between states. – the guards and
the effects of transitions are expressed as OCL predicates.

2.2 OCL 2.0 subset
To be able to execute transition actions and operation
postconditions, UML-MBT uses an operational interpretation of
OCL expressions used in such contexts. For example the OCL
expression self.attribute=true can be used in two different
contexts: a passive and an active context. A passive context is
used to express constraints on the system under test, while an
active context is used to express state changes in the model. So
the expression self.attribute=true is interpreted and evaluated as a
standard Boolean expression in a passive context. In an active
context it is interpreted as an assignment of the value true to the
Boolean state variable attribute.
We found it necessary to introduce this active/passive operational
interpretation of OCL into UML-MBT because of the lack of
frame information in OCL. That is, an OCL postcondition such as
attribute1=attribute2 states that the two attributes must be equal

after the operation, but does not specify the operational details of
which attribute (attribute1 or attribute2 or both) was updated in
order to satisfy the postcondition.
In this section, we explain how UML-MBT classifies each OCL
Boolean expression as being either passive or active, and describe
the meaning of each supported OCL operator in each context.
This non-ambiguous interpretation of OCL expressions makes it
possible to use OCL as an executable action language for model-
based testing UML models.

The two interpretations (passive and active) were described
briefly in [2], but are described in detail in Section 2.2.1 and
Section 2.2.2. It should be noted that some OCL operators are
allowed in both contexts so appear in both sections.

2.2.1 Passive OCL contexts
In UML-MBT, an OCL passive expression is an OCL expression
that is used in a passive context. This includes operation
preconditions, transition guards, decisions in conditional
structures and all sub-expressions of other passive expressions.
Passive expressions are used to test the state variables of a model -
- they do not modify the model state. This section defines the set
of all supported OCL passive expressions in UML-MBT.

2.2.1.1 Boolean operators
Table 1 lists the Boolean operators available in the UML-MBT
set. In this table p1 and p2 are passive Boolean expressions.
Table 1. OCL Boolean operators
OCL notation Operator Result type
p1 = p2 equals Boolean
p1 <> p2 not equals Boolean
p1 or p2 disjunction Boolean
p1 xor p2 excl. disjunction Boolean
p1 and p2 conjunction Boolean
not p1 negation Boolean

2.2.1.2 Integer operators
Table 2 lists the integer operators available in UML-MBT. In this
table i1 and i2 are integer expressions.

Table 2. OCL integer operators

OCL notation Operator Result type
i1 = i2 equals Boolean
i1 <> i2 not equals Boolean
i1 < i2 lesser Boolean
i1 > i2 greater Boolean
i1 <= i2 lesser or equal Boolean
i1 >= i2 greater or equal Boolean
i1 + i2 plus Integer
i1 – i2 minus Integer
- i1 unary minus Integer
i1 * i2 multiplication Integer
i1.div(i2) division Integer
i1.abs() absolute value Integer
i1.mod(i2) modulo Integer
i1.max(i2) maximum Integer
i1.min(i2) minimum Integer

2.2.1.3 Enumeration operators
Table 3 lists the enumeration operators available in UML-MBT.
In this table e1 and e2 are enumeration literals.

Table 3. OCL enumeration operators

OCL notation Operator Result type
e1 = e2 equals Boolean
e1 <> e2 not equals Boolean

2.2.1.4 Object/Class operators
Table 4 lists the UML-MBT operators applicable to classes or
objects (class instances). In this table o1 and o2 are objects and c1
is a class.

Table 4. OCL class/objects operators

OCL notation Operator Result type
o1 = o2 equals Boolean
o1 <> o2 not equals Boolean
o1.oclIsUndefined() is null Boolean
c1.allInstances() get all instances Set

2.2.1.5 Collection operators
Table 5 lists the collection operators available in UML-MBT. In
this table s1 and s2 are sets of objects and o1 is an object.

Table 5. OCL collection operators

OCL notation Operator Result type
s1 = s2 equals Boolean
s1 <> s2 not equals Boolean
s1->size() size Integer
s1->includes(o1) includes Boolean
s1->excludes(o1) excludes Boolean
s1->includesAll(s2) includes all Boolean
s1->excludesAll(s2) excludes all Boolean
s1->isEmtpy() is empty set Boolean
s1->notEmpty() is not empty set Boolean
s1->including(o1) including Set
s1->excluding(o2) excluding Set

2.2.1.6 Collection iterative operators
Table 6 lists the collection iterative operators available in UML-
MBT. In this table s1 is a set of objects, p1 is a passive Boolean
expression and o1 must be the name of an association link in the
class diagram. Note that the expression s1->collect(o1) can also
be written more simply as s1.o1.

Table 6. OCL collection iterative operators

OCL notation Iterative operator Result type
s1->collect(o1) collect Set
s1->select(p1) select Set
s1->exists(p1) exists Boolean
s1->forAll(p1) for all Boolean
s1->any(p1) any Object

2.2.2 Active OCL contexts
In UML-MBT, an OCL active expression is an expression that is
used in an active context. This includes operation postconditions,
transition actions, action in the then or else part of a conditional
structure, or a sub-expression of an active expression. Active

expressions are used to change the values of state variables and to
define values for the return parameter of operations. This section
defines the set of all supported OCL active expressions in UML-
MBT.

2.2.2.1 Assignment operator =
OCL uses the equality symbol to compare two elements (e1=e2).
However, in an active context, we interpret this operator as an
assignment operator. The left hand variable is assigned the value
of the right hand expression. Thus this operator becomes non-
commutative in an active context. For example the expression
self.attribute = true sets the value of self.attribute to the Boolean
value true. The assignment operator can be used to update any
attribute value, any link and any set of links.

2.2.2.2 oclIsUndefined / isEmpty operators
In an active context these operators are used to delete links –
association instances.
The operator expr.oclIsUndefined(), where expr refers to an
association between classes with multiplicity 1 or 0..1, deletes any
existing link and sets expr to null. Similarly, expr.isEmpty(),
where expr refers to an association whose maximum multiplicity
may be greater than one, deletes all the related links and sets expr
to the empty set.

2.2.2.3 forAll iterative operator
The active expression coll->forAll(expr) operator applies
the active expression expr to each object in the collection coll.
This is similar to a loop in an imperative language.

2.2.2.4 and operator
In an active context the operator and acts as a separator between
two active expressions.

2.2.2.5 if-then-else structure
This structure makes it possible to perform conditional execution
of active OCL expressions.
The basic use is “if condition then action1 else action2 endif”,
where condition is a Boolean passive expression and action1,
action2 are active expressions.

All these active expression operators will be used in the model
example given in section 3.

2.3 UML/OCL for MBT: key issues
The UML-MBT subset of UML defined in this paper needs
specific interpretations in order to manipulate behavioural models
and generate tests. We present here some key issues we address
when generating tests with UML using the UML-MBT subset.

2.3.1 Model behaviours
The UML-MBT subset allows designing behavioural models.
These behaviours are designed in the operation postconditions (in
the class diagram) and in the transition actions (in state machines).

A set of consecutive actions – active expressions – defines the
model behaviours. A conditional structure makes it possible to
model alternative and complex behaviours in a single action or
postcondition.

Example 1. Behaviours from operation postcondition

Given the static operation getType – from a class Triangle –
which returns the type of a triangle defined by its sides (a, b and
c). This example is a version from the well-known example
mentioned in [6]. The operation expressed with OCL notation is
the following:

context: Triangle::getType(a:Integer, b:Integer,
 c:Integer):TYPE
pre: a>0 and b>0 and c>0
post:
 if a+b<=c or a+c<=b or b+c<=a then
 result = TYPE::NO_TRIANGLE
 else
 if a=b or b=c or a=c then
 if a=b and b=c then
 result = TYPE::EQUILATERAL
 else
 result = TYPE::ISOSCELES
 endif
 else
 result = TYPE::SCALENE
 endif
 endif

In this postcondition of the “getType” operation, we clearly
distinguish the four behaviours of the operation which define the
four different triangle types.

The model behaviours allow generating tests on the basis of
cause/effects defined via OCL expressions. We call test target a
pair cause/effect that corresponds to a path in a post condition of
an operation. More precisely, a test target is a pair defining an
operation (or action linked to a transition) including the effect of
the test target and one target context that makes it possible to
produce the effect.
For the postcondition of the “getType” operation, the following
test targets are computed:

Table 7. Test targets of the getType operation
Id Target context Target effect
1 a+b<=c or a+c<=b or b+c<=a result=

NO_TRIANGLE

2
not(a+b<=c or a+c<=b or b+c<=a)
and (a=b or b=c or a=c)
and (a=b and b=c)

result=
EQUILATERAL

3
not(a+b<=c or a+c<=b or b+c<=a)
and (a=b or b=c or a=c)
and not(a=b and b=c)

result=
ISOSCELES

4 not(a+b<=c or a+c<=b or b+c<=a)
and not(a=b or b=c or a=c)

result=
SCALENE

Some structural coverage criteria [7] can be applied to these
targets contexts to create new derived test targets. For example,
the Decision/Condition Coverage applied to the target 1 produces
the 3 new test targets defined as follows (target context → target
effect):

- a+b<=c → result=NO_TRIANGLE,
- a+c<=b → result=NO_TRIANGLE,
- b+c<=a → result=NO_TRIANGLE.

In addition, our interpretation of OCL makes it possible to
increase or decrease the number of model behaviours, and so the
number of test targets. The Boolean keywords true and false used
in an active context allow tuning the test target generation. The
true keyword used in an active context is interpreted to mean skip

(that is, no change), while the false keyword is interpreted to
mean infeasible behaviour, so no test targets will be produced for
any path through an OCL active expression that contains false.
These active interpretations of true and false are typically used in
one branch of a conditional structure, to control test generation.
Table 8 shows the test targets generated from several examples of
OCL conditional active expressions.

Table 8. Test targets from conditional structures
Test targets OCL expression Target context Target effect

cond act1 if cond then act1
else act2 endif not(cond) act2

cond act1 if cond then act1
else true endif not(cond) skip
if cond then act1
else false endif cond act1

Notice that both branches of an OCL if-then-else structure must
always be filled, which is why it is sometimes useful to use true or
false in one branch.

2.3.2 OCL undefined value
Model-based testing is used to generate concrete tests from an
abstract model. So an executable test must be defined with
concrete values for each variable or parameter.
Now, OCL suggests the specific value undefined to qualify an
expression without defined value. This undefined value is similar
to the null value in Java. In OCL it can be tested with the special
operator oclIsUndefined().

An OCL expression is evaluated to the undefined value in the
following cases:
• When the expression coll->any(expr) has no object to return,

because there are no objects in coll that satisfy expr. That is,
coll->select(expr) is empty.

• When the expression exp.role is applied to an empty association
(that is, no link is defined between the object expressed by exp
and the target object expressed by role).

• When a division or a modulo by zero occurs.

An OCL expression is undefined if it contains any subexpression
whose value is undefined. That is, all operators are strict in their
interpretation of undefined. Note that this is one difference from
the usual OCL semantics for Boolean operators, which use a
three-valued non-strict interpretation of undefined – the UML-
MBT style is to use explicit if-then-else expressions in such cases.
This strict interpretation has an effect on the model behaviours
and so on the test targets extracted from the model. Thus a test
target for which the target context and/or the target effect is
evaluated to undefined cannot be reached and so will give no test
for the corresponding behaviour. The expression if cond then
action1 else action2 endif generates the test targets t1 defined by
cond and action1 and t2 defined by not(cond) and action2. If cond
is undefined both test targets are unreachable. If action1 is
undefined then t1 is unreachable. If action2 is undefined then t2 is
unreachable.

2.3.3 Specific ANY operator
The OCL any operator is used on a collection to obtain an
arbitrary element of the collection. If several elements satisfy the
any expression, the element is chosen non-deterministically. If no
element respects the expression, then the any operator returns the

undefined value. So our strict interpretation of undefined means
that when no object satisfies an any operator, the corresponding
behaviour will not be reachable.

In addition, the any operator is normally non-deterministic. The
expression coll->any(expr) returns an arbitrary object of coll for
which expr is true. However, to ensure reproducibility of test
generation the execution of such an expression must always return
the same object for the same test. We satisfy these requirements
by taking the test context into account when choosing the object
to be returned by an any expression. The any operator
interpretation is illustrated in the following example.

Example 2. any operator interpretation

Consider a class called A with an integer attribute named attr.
Consider three instances, a1, a2 and a3, of the class A, with
a1.attr=1, a2.attr=2 and a3.attr=3. Consider the following
postcondition expressed in OCL.

post:
 let obj = A.allInstances()->any(attr>1) in
 if obj.attr = 2 then
 result = MSG::MSG1
 else
 if obj.attr > 2 then
 result = MSG::MSG2
 else
 result = MSG::MSG3
 endif
 endif

In this postcondition the first behaviour is reachable, because
any(attr>1) is verified by instance a2, the second behaviour is
also reachable, because any(attr>1) is verified by instance a3,
but the last behaviour is unreachable. However if the any
expression was attr<1, no behaviour would be reachable in this
postcondition.

The any operator can return different objects (a1 or a2 here), but
always the same object for the same behaviour. In the example,
a2 is always given to reach the first behaviour; a3 is always
given to satisfy the second behaviour.

2.3.4 Requirements traceability
UML-MBT supports the expression of requirements that are
external to the model (they usually come from the informal and
often textual, specification of the system). A requirement can be
related to any effect designed in the operation postconditions or in
the transition actions. Such effects are also directly annotated in
the OCL constraints with a specific identifier that refers to the
expression of the related requirement.

Concretely a requirement is expressed with a specific form of
comment block. The start and the end requirement markers are
“/*@REQ:” and “@*/”. Everything enclosed in this specific
comment block is considered to be a declaration of requirements.

The Stack example of the next part illustrates the use of these
requirement identifiers to achieve requirement traceability.

3. APPLICATION EXAMPLE
We propose in this section an example of the application of
model-based testing with the UML-MBT set in order to generate
tests from a specification modelled with UML/OCL.

In this example, the system under test is a chained stack of generic
elements. The stack is loaded via a push operation and is emptied
via a pop operation. The elements to push are randomly chosen
from a pool of elements. The maximum size of the stack is the
constant MAX. A list of functional requirements which must be
assumed is given in Table 9.

In addition this example shows the different specific points
presented in the previous section.

3.1 Requirements
We consider that the system under test has to satisfy the following
requirements.
Table 9. Stack Requirements

Identifier Requirement description

pool_empty The pool can be emptied out by one
operation

pool_fill The pool can be completely filled by
one operation

empty_stack_exception A pop operation on an empty stack
generates an exception

full_stack_exception
When the stack size equals MAX, a
push operation on the stack generates
an exception

random_element,
automatic_delete

The stack is loaded with elements
from the pool. The elements are
loaded one by one and chosen
randomly from the pool. This element
is automatically deleted from the
pool.

automatic_reinsertion A popped element is automatically
put into the pool.

3.2 The Stack Model
We present here a model of the Stack system, designed for test
generation purposes. Some modelling choices are discussed too.

3.2.1 Class diagram
Figure 1 presents the class diagram. It depicts the different objects
of the system under test and the dependencies between them.

We have three object types in the system. The stack is composed
of chained elements taken from a pool. This pool contains a
collection of elements.

Figure 1. The class diagram of the Stack model

The Stack::push() and Stack::pop() operations are events used in
the state-machine. Pool::emptyOut() and Pool::fillOut() are
defined as follows:
context: Pool::emptyOut():OclVoid
post: self.elements->isEmpty()
 /*@REQ:pool_empty@*/

context: Pool::fillOut():OclVoid
post: self.elements = Element.allInstances()
 /*@REQ:pool_fill@*/

Notice the use of the isEmpty() operator in an active context in
order to empty out the pool. Also notice the two requirements set
on these operations: pool_empty and pool_fill.

3.2.2 Initial state
Figure 2 presents the object diagram that depicts the initial state of
the system under test.

Figure 2. The initial state of the Stack model

In the initial state, the stack and the pool are empty. The link
between the stack and the pool is created. Note the MAX
constant, arbitrarily set with 3.

3.2.3 State-machine
Figure 3 presents the state-machine used to describe the different
dynamic states of the system under test.

The state-machine is clearly comprehensive. We can push and pop
elements. The different states in which the stack can be are
designed in this diagram. The transition actions are defined as
follows:
action pushOnEmptyStack
post:
 let element = self.pool.elements->any(true) in
 self.top = element
 /*@REQ:random_element@*/
 and self.size = self.size + 1
 and self.pool.elements =
 self.pool.elements->excluding(element)
 /*@REQ:automatic_delete@*/

action pushOnLoadedStack
post:
 let element = self.pool.elements->any(true) in
 element.down = self.top
 /*@REQ:random_element@*/
 and self.top = element
 and self.size = self.size + 1
 and self.pool.elements =
 self.pool.elements->excluding(element)
 /*@REQ:automatic_delete@*/

action popForEmptyStack
post:
 let element = self.top in
 self.top.oclIsUndefined()
 and self.size = self.size - 1
 and self.pool.elements =
 self.pool.elements->including(element)
 /*@REQ:automatic_reinsertion@*/

action popForLoadedStack
post:
 let element = self.top in
 self.top = element.down
 and element.down.oclIsUndefined()
 and self.size = self.size - 1
 and self.pool.elements =
 self.pool.elements->including(element)
 /*@REQ:automatic_ reinsertion @*/

Notice the particular use of active expression expressed with
operators that are interpreted as mentioned in Erreur ! Source du
renvoi introuvable. (oclIsUndefined()). The two requirements
random_element and automatic_delete are linked with the actions
push*. The requirement automatic_reinsertion is set on the
actions pop*. The requirements empty_stack_exception and
full_stack_exception are both linked to empty actions, written
with the keyword true.

Figure 3. The state-machine of the Stack model

3.3 Test targets and generated tests The test targets computed from the model shown in the
previous diagrams are given in Table 10. From these targets
we generate the following tests presented in

Table 11. More precisely, for each test target, we use an
automated theorem prover [8] to search for a path from the initial
state to that target, and data values that satisfy all the constraints
along that path. This is similar to a symbolic model-checking
approach [9, 10]. A test is also composed of:

• a preamble (potentially empty); the sequence of operations
called to reach the targeted behaviour,

• a body, the execution of the targeted behaviour,
• a postamble (potentially empty); the sequence of operations to

return to the model initial state.

The generation of postambles is optional.

In the Stack model, the generated tests cover all the behaviours
that were modelled, and all the states and transitions of the state-
machine.

In addition we can construct the traceability matrix of the
requirements that are designed in the model and linked with the
test targets.

Note that some tests have no postamble. This means that the
model initial state is not reachable from the state, in which the
system under test is.

Table 10. Test targets from the Stack model

Target definition
Id Tested

 UML element context effect
Tested Requirements

Operations

1 POOL::emptyOut - elements->isEmpty() pool_empty

2 POOL::fillOut - elements=Element.allInstances() pool_fill

Transitions

3 Empty
EmptyStackException

- true empty_stack_exception

4 Empty
Loaded

-

let element = pool.elements->any(true) in
top=element and
size=size+1 and
pool.elements->excludes(element)

random_element,
automatic_delete

5 Loaded
Loaded

size < max-1

let element = pool.elements->any(true) in
element.down=top and
top=element and
size=size+1 and
pool.elements->excludes(element)

random_element,
automatic_delete

6 Loaded
Full

size = max-1

let element = pool.elements->any(true) in
element.down=top and
top=element and
size=size+1 and
pool.elements->excludes(element)

random_element,
automatic_delete

7 Full
FullStackException

- true full_stack_exception

8 Full
Loaded

-

let element = top in
top=element.down and
element.down.oclIsUndefined() and
size=size-1 and
pool.elements->includes(element)

automatic_reinsertion

9 Loaded
Loaded

size > 1

let element = top in
top=element.down and
element.down.oclIsUndefined() and
size=size-1 and
pool.elements->includes(element)

automatic_reinsertion

10 Loaded
Empty

size = 1

let element = top in
top.oclIsUndefined() and
size=size-1 and
pool.elements->includes(element)

automatic_reinsertion

Table 11. Generated tests on Stack model

Corresponding test Target
Id preamble body postamble

1 pool.emptyOut()
2 pool.fillOut() pool.emptyOut()
3 stack.pop()
4 pool.fillOut() stack.push() stack.pop(), pool.emptyOut()
5 pool.fillOut(), stack.push() stack.push() stack.pop(), stack.pop(), pool.emptyOut()
6 pool.fillOut(), stack.push(), stack.push() stack.push() stack.pop(), tack.pop(), stack.pop(), pool.emptyOut()
7 pool.fillOut(), stack.push(), stack.push(), stack.push() stack.push()
8 pool.fillOut(), stack.push(), stack.push(), stack.push() stack.pop() stack.pop(), stack.pop(), pool.empty()
9 pool.fillOut(), stack.push(), stack.push() stack.pop() stack.pop(), pool.empty()
10 pool.fillOut(), stack.push() stack.pop() pool.empty()

4. RELATED WORK
They are numerous model-based testing approaches that use
UML as modelling notation4. Some of them are based on
sequence or interaction diagrams to express scenarios (see e.g.
[11]), state machines to express behaviour models (see e.g. [12])
or combine them (see e.g. [13]). Few approaches are using OCL
as an action language for model-based testing. B. K. Aichernig
proposes an approach based on mutation analysis of OCL
specifications [14], and Bruel et al [15] proposes a combination
of test cases using an approach very similar to the test target
computation proposed in this paper. But there is currently no
subset of UML/OCL clearly proposed for model-based testing.

5. CONCLUSION
This paper introduced a subset of UML/OCL for model-based
testing. In Section 3, we illustrated how this UML-MBT subset
of UML can be used to write a precise model of a Stack system,
which is executable and a good basis for test generation. The
stack model is very small, and it would not be difficult to
generate a similar test suite manually – but with larger industrial
models many more tests are needed to cover the model, and the
cost benefits of model-based testing become more significant.
The UML-MBT subset of UML is fully supported by the
LEIRIOS Test Designer v3.0 tool (see [3, 4] for more detail on
test generation strategies). This test generator takes UML
models from Borland Together and IBM Rational Software
Modelling tools and provides a plug-in that verifies the
compliance of the UML model with the defined UML-MBT
subset. It checks the model for OCL syntactic verification and
consistency (e.g. verification that the instances verify the
corresponding multiplicities in the class diagram). LEIRIOS
Test Designer provides adapters to export generated test cases
and test scripts in test management and execution tools such as
HP/Mercury Quality Center. This UML-based model-based
testing solution is currently deployed on large applications in the

4 See “model-based testing” section on Wikipedia to have an updated list
of MBT tools - http://en.wikipedia.org/wiki/Model-based_testing

domains of Enterprise IT information systems and eTransactions
systems (banking, ticketing or e-Admin applications).

6. REFERENCES
[1] S. J. Prowell, "JUMBL: A Tool for Model-Based

Statistical Testing," hicss, p. 337c, 36th Annual Hawaii
International Conference on System Sciences
(HICSS'03) - Track 9, 2003.

[2] M. Utting and B. Legeard. Practical Model-Based
Testing - A tools approach. Elsevier
Science/Morgan&Kaufmann, 2007. 454 pages, ISBN 0-
12-372501-1.

[3] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F.
Peureux, M. Utting, and E. Torreborre. “Model-based
Testing from UML Models”. In Procs. of the Int.
Workshop on Model-based Testing (MBT'2006), volume
P-94 of Lecture Notes in Informatics, Dresden, Germany,
pages 223-230, October 2006. ISBN 978-3-88579-188-1.

[4] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M.
Utting. “Requirement Traceability in Automated Test
Generation - Application to Smart Card Software
Validation”. In Procs. of the ICSE Int. Workshop on
Advances in Model-Based Software Testing (A-
MOST'05), St. Louis, USA, May 2005. ACM Press.

[5] J. Warmer and A. Kleppe. The Object Constraint
Language Second Edition: Getting Your Models Ready
for MDA. Addison-Wesley, 2003.

[6] G. J. Myers. The Art of Software Testing. John Wiley &
Sons, 1979.

[7] A.J. Offut, Y. Xiong and S. Liu. “Criteria for generating
specification-based tests”, Proceedings of the 5th Int.
Conference on Engineering of Complex Computer
Systems (ICECCS'99), Las-Vegas, USA, pages 119-131,
October 1999. IEEE Computer Society Press.

[8] Prover Technology website – www.prover.com
[9] T. Jéron and P. Morel, “Test generation derived from

model-checking”, Proceedings of the 11th Conference on

Computer-Aided Verification (CAV'99), Trento, Italy,
LNCS 1633, pages 108-122, July 1999

[10] P. Ammann, P.E. Black and W. Majurski, “Using Model
Checking to Generate Tests from Specifications”,
Proceedings of the 2nd Int. Conference on Formal
Engineering Methods (ICFEM’98), Brisbane,
Australia, pages 46-55, December 1998. IEEE
Computer Society Press.

[11] Matthias Beyer, Winfried Dulz, Fenhua Zhen,
"Automated TTCN-3 Test Case Generation by Means of
UML Sequence Diagrams and Markov Chains," ats, p.
102, 12th Asian Test Symposium (ATS'03), 2003.

[12] M.E. Vieira, M.S. Dias, D.J. Richardson, Object-
Oriented Specification-Based Testing Using UML State-
chart Diagrams, Proceedings of the Workshop on
Automated Program Analysis, Testing, and Verification
(at ICSE’00), June 2000.

[13] L. Briand, Y. Labiche, A UML-Based Approach to
System Testing, Proceedings of the Fourth International
Conference on the Unified Modeling Language
(UML’01), 2001, pp. 194-208.

[14] Bernhard K. Aichernig, Percy Antonio Pari Salas: Test
Case Generation by OCL Mutation and Constraint
Solving. QSIC 2005: 64-71

[15] M. Benattou, J.-M. Bruel, and N. Hameurlain,
“Generating Test Data from OCL Specification” in
Proceedings of the ECOOP’2002 Workshop on
Integration and Transformation of UML models
(WITUML’02), 2002.

