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ABSTRACT 
This paper presents an original model-based testing approach that 
takes a UML behavioural view of the system under test and 
automatically generates test cases and executable test scripts 
according to model coverage criteria. This approach is embedded 
in the LEIRIOS Test Designer tool and is currently deployed in 
domains such as Enterprise IT and electronic transaction 
applications. This model-based testing approach makes it possible 
to automatically produce the traceability matrix from 
requirements to test cases as part of the test generation process. 
This paper defines the subset of UML used for model-based 
testing and illustrates it using a small example.  

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications] 
D.2.5 [Testing and Debugging] 

General Terms 
Reliability, Verification. 
Keywords 
Model-Based Testing, UML, OCL 

1. INTRODUCTION 
There are several views of model-based testing: for example the 
generation of test cases from an environment model (see e.g. [1] 
based on a usage profile statistical model) or the generation of test 
cases with oracles from a behaviour model (see [2] for more 
details on model-based testing approaches). In this paper, we 
define model-based testing as a process to automatically generate 
test cases and executable test scripts from a behaviour model of 
the system under test (SUT). The model formalizes the expected 
behaviour to be tested on the SUT. Generated tests are sequences 
of operation invocations on the SUT, and include the expected 
output (the oracle information), so that test verdicts can be 
assigned automatically during test execution [3]. Moreover, each 
behaviour of the SUT model can be labelled with a particular 
requirement identifier, which makes it possible to generate a 
traceability matrix that links the generated tests to the initial 
requirements of the informal specification [4]. 

The Unified Modeling Language1 (UML) is widely used as a 
modelling support for model-based testing. There are several 

                                                 
1 UML is a notation from the Object Management Group – See 
www.omg.org  

reasons for this interest. Firstly, UML provides a large set of 
diagrammatic notations for modelling purposes, with several 
complementary representations. A static representation (i.e. class 
diagrams) is used to model the points of control and observation 
of the SUT and the data that represents the abstract state of the 
SUT. A dynamic representation (e.g. state diagrams or activity 
diagrams) is used to model the expected behaviour of the SUT. 
Secondly, the Object Constraint Language (OCL [5]) associated 
with UML makes it possible to have precise models – this means 
that the expected behaviour can be formalized using OCL. 
Thirdly, UML is the de-facto industrial standard for modelling 
enterprise IT applications; most software engineers have had some 
first level training on UML – this is an important point to facilitate 
the acceptance of a disruptive process such as model-based 
testing. 

However, UML contains a large set of diagrams and notations, 
defined in a flexible and open-ended way using a meta-model2 
and with some freedom allowed for different interpretations of the 
semantics of the diagrams by different UML tools. So for 
practical model-based testing it is necessary to select a subset of 
UML and clarify the semantics of the chosen subset so that 
model-based testing tools can interpret the UML models. 

The paper defines a subset of UML 2.1 (the latest version of 
UML) for model-based testing purposes. This subset allows 
formal behaviour models of the SUT to be designed, which can be 
mechanically interpreted to generate test suites. The subset uses 
class, instance and state diagrams, plus OCL expressions. Such 
UML models are used as input for a model-based test generator, 
called LEIRIOS Test Designer, that automates – using theorem 
prover technology – the generation of test sequences, covering 
each behaviour in the model. 

This paper is organized as follows. Section 2 introduces the subset 
of UML and OCL we are proposing. Section 3 shows on a small 
Stack example how this notation can be used to develop a 
behaviour model for test generation purposes, and exhibits the 
generated test cases. Section 4 discusses some related work and 
Section 5 gives conclusions. One of the main contributions of the 
paper is to identify a subset of UML that is expressive enough to 
model a variety of industrial applications, and has a clear 
semantics that allows executable models to be written for test 
generation purposes. Another contribution is a novel 
active/passive interpretation of OCL expressions that allows OCL 
to be used as an action language in UML state machines and class 
diagrams. 

                                                 
2 A meta-model is a language to describe the domains of applicative 
models and to define their semantic 



2. A UML SUBSET  
In this section, we define the UML subset we propose for model-
based testing. The goal of this subset is to offer precise, necessary 
and sufficient modelling features to design behaviour models for 
test generation purposes. We call this subset UML-MBT. 

2.1 UML 2.1 diagrams 
The proposed subset for model-based testing is based on three 
diagrams: UML class diagrams (to model the points of control 
and observation of the SUT), object diagrams (to define test data), 
state-machines and OCL3 (to model dynamic behaviour of the 
SUT). UML offers several other diagrams, but these are sufficient 
to design comprehensive, precise and interpretable models to test 
finite state systems with our tool. To model dynamical behaviour, 
we use state machine rather than UML sequence diagrams 
because state machines allow richer behaviours to be specified, 
with better support for loops and alternative paths. 

This section defines the subsets of these UML diagrams that are 
used to design UML-MBT models for automated test generation. 

2.1.1 Class diagrams 
The UML class diagram is the static view of the model. It 
describes the abstract objects of the system and their 
dependencies. The UML elements available to model the class 
diagram are the following elements: 

• Classes define the types of the objects of the system. 
Inheritance is not yet implemented. 

• Reflexive and binary associations, represent dependencies 
between classes. The available multiplicities are 0..1, m, n..* 
and n..m with m and n integers such as 0≤n<m. Association 
classes are not implemented. 

• Enumeration classes, composed only of literals, are used to 
model static types. 

• Class attributes define the state variables of the system. The 
supported types are integer, Boolean and enumeration types. 
For integers, a restricted domain is recommended for testing 
purposes (for example the integer interval [-32668, 36767]). 
Object types are represented using 1-1 associations, rather than 
attributes. 

• Operations model the actions owned by an object. An operation 
can be defined with parameters (input and output) that can be 
typed as Boolean, integer, enumeration literal or object. OCL 
preconditions and postconditions can be used to formalise the 
behaviour of an operation. 

2.1.2 Object diagrams 
The UML object diagram lists the concrete objects used to 
compute test cases, and defines the initial state of the model. Each 
object diagram must be an instantiation of the associated class 
diagram. Notice the following restriction: objects can not be 
created or deleted dynamically by the actions designed in the 
model. So all objects used to describe the life cycle of the system 
must be defined in the object diagram. The dynamic creation 
(resp. deletion) of entities in the concrete system is simulated by 
creation (resp. deletion) of links between objects in the UML 
model.  
                                                 
3 See UML 2.0 OCL Specification. http://www.omg.org/docs/ptc/  
 

The following UML elements can be used in object diagrams:  
• Objects, or class instances, are the concrete objects of the 

system that are used in the generated tests. Every slot – or 
attribute instance – of every object must have a value. 

• Links, or association instances, define the dependencies 
between the objects in the initial state of the system. 

2.1.3 State-machines 
State-machine diagrams are an optional part of a UML-MBT 
model. They are used to model the dynamic behaviour of the SUT 
as a finite state transition system.  
The UML state machines used in UML-MBT may contain the 
following elements:  
• initial (and optionally final) states, 
• simple states, used to define the different system states of the 

SUT lifecycle, 
• single transitions, used to model SUT actions. Transitions may 

be between two states, reflexive, or internal. A transition is 
composed of : 
 an optional event (optionally defined with input parameters 

that can be typed as Boolean, integer, enumeration literal or 
object) that triggers the transition, 

 an optional guard that is a Boolean expression used to 
determine whether or not the transition can fire, 

 an optional action that updates the model data. 

The semantics of state machine processing is based on the UML 
run-to-completion processing assumption. Run-to-completion 
processing means that an event occurrence can only be taken from 
the pool of operations declared in the class diagram. Moreover, 
this event can be dispatched only if the processing of the previous 
current occurrence is fully completed (to avoid concurrency 
conflicts during the processing of events). The processing of a 
single event occurrence by a state machine is known as a run-to-
completion step. Before commencing on a run-to-completion step, 
a state machine has to be in a stable state configuration (a state in 
which no more transitions can be fired without external events). 
Thus, an incoming event will never be processed while the state 
machine is in some intermediate and inconsistent situation. A run-
to-completion step can also be viewed as a complex state 
transition between two stable states of the state machine. 
Just as OCL is used in class diagrams, to formalise the expected 
behaviour of class operations, OCL is also used within state 
machines to formalize transitions between states. – the guards and 
the effects of transitions are expressed as OCL predicates. 

2.2 OCL 2.0 subset 
To be able to execute transition actions and operation 
postconditions, UML-MBT uses an operational interpretation of 
OCL expressions used in such contexts. For example the OCL 
expression self.attribute=true can be used in two different 
contexts: a passive and an active context. A passive context is 
used to express constraints on the system under test, while an 
active context is used to express state changes in the model. So 
the expression self.attribute=true is interpreted and evaluated as a 
standard Boolean expression in a passive context. In an active 
context it is interpreted as an assignment of the value true to the 
Boolean state variable attribute. 
We found it necessary to introduce this active/passive operational 
interpretation of OCL into UML-MBT because of the lack of 
frame information in OCL. That is, an OCL postcondition such as 
attribute1=attribute2 states that the two attributes must be equal 



after the operation, but does not specify the operational details of 
which attribute (attribute1 or attribute2 or both) was updated in 
order to satisfy the postcondition.  
In this section, we explain how UML-MBT classifies each OCL 
Boolean expression as being either passive or active, and describe 
the meaning of each supported OCL operator in each context. 
This non-ambiguous interpretation of OCL expressions makes it 
possible to use OCL as an executable action language for model-
based testing UML models. 

The two interpretations (passive and active) were described 
briefly in [2], but are described in detail in Section 2.2.1 and 
Section 2.2.2. It should be noted that some OCL operators are 
allowed in both contexts so appear in both sections. 

2.2.1 Passive OCL contexts 
In UML-MBT, an OCL passive expression is an OCL expression 
that is used in a passive context. This includes operation 
preconditions, transition guards, decisions in conditional 
structures and all sub-expressions of other passive expressions. 
Passive expressions are used to test the state variables of a model -
- they do not modify the model state. This section defines the set 
of all supported OCL passive expressions in UML-MBT. 

2.2.1.1 Boolean operators 
Table 1 lists the Boolean operators available in the UML-MBT 
set. In this table p1 and p2 are passive Boolean expressions. 
Table 1. OCL Boolean operators 
OCL notation Operator  Result type 
p1 = p2 equals Boolean 
p1 <> p2 not equals Boolean 
p1 or p2 disjunction Boolean 
p1 xor p2 excl. disjunction  Boolean 
p1 and p2 conjunction Boolean 
not p1 negation Boolean 

 

2.2.1.2 Integer operators 
Table 2 lists the integer operators available in UML-MBT. In this 
table i1 and i2 are integer expressions. 

Table 2. OCL integer operators 

OCL notation Operator Result type 
i1 = i2 equals Boolean 
i1 <> i2 not equals Boolean 
i1 < i2 lesser Boolean 
i1 > i2 greater Boolean 
i1 <= i2 lesser or equal Boolean 
i1 >= i2 greater or equal Boolean 
i1 + i2 plus Integer 
i1 – i2 minus Integer 
- i1 unary minus Integer 
i1 * i2 multiplication Integer 
i1.div(i2) division Integer 
i1.abs() absolute value Integer 
i1.mod(i2) modulo Integer 
i1.max(i2) maximum Integer 
i1.min(i2) minimum Integer 

2.2.1.3 Enumeration operators 
Table 3 lists the enumeration operators available in UML-MBT. 
In this table e1 and e2 are enumeration literals. 

Table 3. OCL enumeration operators 

OCL notation Operator Result type 
e1 = e2 equals Boolean 
e1 <> e2 not equals Boolean 

2.2.1.4 Object/Class operators 
Table 4 lists the UML-MBT operators applicable to classes or 
objects (class instances). In this table o1 and o2 are objects and c1 
is a class. 

Table 4. OCL class/objects operators 

OCL notation Operator Result type 
o1 = o2 equals Boolean 
o1 <> o2 not equals Boolean 
o1.oclIsUndefined() is null Boolean 
c1.allInstances() get all instances  Set 

2.2.1.5 Collection operators 
Table 5 lists the collection operators available in UML-MBT. In 
this table s1 and s2 are sets of objects and o1 is an object. 

Table 5. OCL collection operators 

OCL notation Operator Result type 
s1 = s2 equals Boolean 
s1 <> s2 not equals Boolean 
s1->size() size Integer 
s1->includes(o1) includes Boolean 
s1->excludes(o1) excludes Boolean 
s1->includesAll(s2) includes all Boolean 
s1->excludesAll(s2) excludes all Boolean 
s1->isEmtpy() is empty set Boolean 
s1->notEmpty() is not empty set Boolean 
s1->including(o1) including Set 
s1->excluding(o2) excluding Set 

2.2.1.6 Collection iterative operators 
Table 6 lists the collection iterative operators available in UML-
MBT. In this table s1 is a set of objects, p1 is a passive Boolean 
expression and o1 must be the name of an association link in the 
class diagram. Note that the expression s1->collect(o1) can also 
be written more simply as s1.o1. 

Table 6. OCL collection iterative operators 

OCL notation Iterative operator Result type 
s1->collect(o1) collect Set 
s1->select(p1) select Set 
s1->exists(p1)  exists Boolean 
s1->forAll(p1)  for all Boolean 
s1->any(p1) any Object 

 

2.2.2 Active OCL contexts 
In UML-MBT, an OCL active expression is an expression that is 
used in an active context. This includes operation postconditions, 
transition actions, action in the then or else part of a conditional 
structure, or a sub-expression of an active expression. Active 



expressions are used to change the values of state variables and to 
define values for the return parameter of operations. This section 
defines the set of all supported OCL active expressions in UML-
MBT. 

2.2.2.1 Assignment operator = 
OCL uses the equality symbol to compare two elements (e1=e2). 
However, in an active context, we interpret this operator as an 
assignment operator. The left hand variable is assigned the value 
of the right hand expression. Thus this operator becomes non-
commutative in an active context. For example the expression 
self.attribute = true sets the value of self.attribute to the Boolean 
value true. The assignment operator can be used to update any 
attribute value, any link and any set of links. 

2.2.2.2 oclIsUndefined / isEmpty operators 
In an active context these operators are used to delete links – 
association instances.  
The operator expr.oclIsUndefined(), where expr refers to an 
association between classes with multiplicity 1 or 0..1, deletes any 
existing link and sets expr to null. Similarly, expr.isEmpty(), 
where expr refers to an association whose maximum multiplicity 
may be greater than one, deletes all the related links and sets expr 
to the empty set. 

2.2.2.3 forAll iterative operator 
The active expression coll->forAll(expr) operator applies 
the active expression expr to each object in the collection coll. 
This is similar to a loop in an imperative language. 

2.2.2.4 and operator 
In an active context the operator and acts as a separator between 
two active expressions. 

2.2.2.5 if-then-else structure 
This structure makes it possible to perform conditional execution 
of active OCL expressions. 
The basic use is “if condition then action1 else action2 endif”, 
where condition is a Boolean passive expression and action1, 
action2 are active expressions. 

All these active expression operators will be used in the model 
example given in section 3. 

2.3 UML/OCL for MBT: key issues 
The UML-MBT subset of UML defined in this paper needs 
specific interpretations in order to manipulate behavioural models 
and generate tests. We present here some key issues we address 
when generating tests with UML using the UML-MBT subset. 

2.3.1 Model behaviours 
The UML-MBT subset allows designing behavioural models. 
These behaviours are designed in the operation postconditions (in 
the class diagram) and in the transition actions (in state machines). 

A set of consecutive actions – active expressions – defines the 
model behaviours. A conditional structure makes it possible to 
model alternative and complex behaviours in a single action or 
postcondition. 

Example 1. Behaviours from operation postcondition 

Given the static operation getType – from a class Triangle – 
which returns the type of a triangle defined by its sides (a, b and 
c). This example is a version from the well-known example 
mentioned in [6]. The operation expressed with OCL notation is 
the following:  
 
context: Triangle::getType(a:Integer, b:Integer, 
 c:Integer):TYPE 
pre: a>0 and b>0 and c>0 
post:  
 if a+b<=c or a+c<=b or b+c<=a then 
 result = TYPE::NO_TRIANGLE 
 else 
 if a=b or b=c or a=c then 
 if a=b and b=c then 
 result = TYPE::EQUILATERAL 
 else 
 result = TYPE::ISOSCELES 
 endif 
 else 
 result = TYPE::SCALENE 
 endif 
 endif 
 
In this postcondition of the “getType” operation, we clearly 
distinguish the four behaviours of the operation which define the 
four different triangle types. 

 
The model behaviours allow generating tests on the basis of 
cause/effects defined via OCL expressions. We call test target a 
pair cause/effect that corresponds to a path in a post condition of 
an operation. More precisely, a test target is a pair defining an 
operation (or action linked to a transition) including the effect of 
the test target and one target context that makes it possible to 
produce the effect. 
For the postcondition of the “getType” operation, the following 
test targets are computed:  

Table 7. Test targets of the getType operation 
Id Target context Target effect 
1 a+b<=c or a+c<=b or b+c<=a result= 

NO_TRIANGLE 

2 
not(a+b<=c or a+c<=b or b+c<=a)  
and (a=b or b=c or a=c)  
and (a=b and b=c) 

result= 
EQUILATERAL 

3 
not(a+b<=c or a+c<=b or b+c<=a) 
and (a=b or b=c or a=c) 
and not(a=b and b=c) 

result= 
ISOSCELES 

4 not(a+b<=c or a+c<=b or b+c<=a) 
and not(a=b or b=c or a=c) 

result= 
SCALENE 

 
Some structural coverage criteria [7] can be applied to these 
targets contexts to create new derived test targets. For example, 
the Decision/Condition Coverage applied to the target 1 produces 
the 3 new test targets defined as follows (target context → target 
effect): 

- a+b<=c → result=NO_TRIANGLE, 
- a+c<=b → result=NO_TRIANGLE, 
- b+c<=a → result=NO_TRIANGLE. 

In addition, our interpretation of OCL makes it possible to 
increase or decrease the number of model behaviours, and so the 
number of test targets. The Boolean keywords true and false used 
in an active context allow tuning the test target generation. The 
true keyword used in an active context is interpreted to mean skip 



(that is, no change), while the false keyword is interpreted to 
mean infeasible behaviour, so no test targets will be produced for 
any path through an OCL active expression that contains false. 
These active interpretations of true and false are typically used in 
one branch of a conditional structure, to control test generation. 
Table 8 shows the test targets generated from several examples of 
OCL conditional active expressions.  

Table 8. Test targets from conditional structures 
Test targets OCL expression Target context Target effect 

cond act1 if cond then act1  
else act2 endif not(cond) act2 

cond act1 if cond then act1 
else true endif not(cond) skip 
if cond then act1 
else false endif cond act1 

 
Notice that both branches of an OCL if-then-else structure must 
always be filled, which is why it is sometimes useful to use true or 
false in one branch. 

2.3.2 OCL undefined value 
Model-based testing is used to generate concrete tests from an 
abstract model. So an executable test must be defined with 
concrete values for each variable or parameter.  
Now, OCL suggests the specific value undefined to qualify an 
expression without defined value. This undefined value is similar 
to the null value in Java. In OCL it can be tested with the special 
operator oclIsUndefined(). 

An OCL expression is evaluated to the undefined value in the 
following cases:  
• When the expression coll->any(expr) has no object to return, 

because there are no objects in coll that satisfy expr. That is, 
coll->select(expr) is empty. 

• When the expression exp.role is applied to an empty association 
(that is, no link is defined between the object expressed by exp 
and the target object expressed by role).  

• When a division or a modulo by zero occurs. 

An OCL expression is undefined if it contains any subexpression 
whose value is undefined. That is, all operators are strict in their 
interpretation of undefined. Note that this is one difference from 
the usual OCL semantics for Boolean operators, which use a 
three-valued non-strict interpretation of undefined – the UML-
MBT style is to use explicit if-then-else expressions in such cases.  
This strict interpretation has an effect on the model behaviours 
and so on the test targets extracted from the model. Thus a test 
target for which the target context and/or the target effect is 
evaluated to undefined cannot be reached and so will give no test 
for the corresponding behaviour. The expression if cond then 
action1 else action2 endif generates the test targets t1 defined by 
cond and action1 and t2 defined by not(cond) and action2. If cond 
is undefined both test targets are unreachable. If action1 is 
undefined then t1 is unreachable. If action2 is undefined then t2 is 
unreachable. 

2.3.3 Specific ANY operator 
The OCL any operator is used on a collection to obtain an 
arbitrary element of the collection. If several elements satisfy the 
any expression, the element is chosen non-deterministically. If no 
element respects the expression, then the any operator returns the 

undefined value. So our strict interpretation of undefined means 
that when no object satisfies an any operator, the corresponding 
behaviour will not be reachable. 

In addition, the any operator is normally non-deterministic. The 
expression coll->any(expr) returns an arbitrary object of coll for 
which expr is true. However, to ensure reproducibility of test 
generation the execution of such an expression must always return 
the same object for the same test. We satisfy these requirements 
by taking the test context into account when choosing the object 
to be returned by an any expression. The any operator 
interpretation is illustrated in the following example.  
 
Example 2. any operator interpretation 

Consider a class called A with an integer attribute named attr. 
Consider three instances, a1, a2 and a3, of the class A, with 
a1.attr=1, a2.attr=2 and a3.attr=3. Consider the following 
postcondition expressed in OCL.  
 
post:  
 let obj = A.allInstances()->any(attr>1) in 
  if obj.attr = 2 then 
   result = MSG::MSG1 
  else 
   if obj.attr > 2 then 
    result = MSG::MSG2 
   else 
    result = MSG::MSG3 
   endif 
  endif 
 
In this postcondition the first behaviour is reachable, because 
any(attr>1) is verified by instance a2, the second behaviour is 
also reachable, because any(attr>1) is verified by instance a3, 
but the last behaviour is unreachable. However if the any 
expression was attr<1, no behaviour would be reachable in this 
postcondition. 

The any operator can return different objects (a1 or a2 here), but 
always the same object for the same behaviour. In the example, 
a2 is always given to reach the first behaviour; a3 is always 
given to satisfy the second behaviour. 

2.3.4 Requirements traceability 
UML-MBT supports the expression of requirements that are 
external to the model (they usually come from the informal and 
often textual, specification of the system). A requirement can be 
related to any effect designed in the operation postconditions or in 
the transition actions. Such effects are also directly annotated in 
the OCL constraints with a specific identifier that refers to the 
expression of the related requirement.  

Concretely a requirement is expressed with a specific form of 
comment block. The start and the end requirement markers are 
“/*@REQ:” and “@*/”. Everything enclosed in this specific 
comment block is considered to be a declaration of requirements. 

The Stack example of the next part illustrates the use of these 
requirement identifiers to achieve requirement traceability. 



3. APPLICATION EXAMPLE 
We propose in this section an example of the application of 
model-based testing with the UML-MBT set in order to generate 
tests from a specification modelled with UML/OCL.  

In this example, the system under test is a chained stack of generic 
elements. The stack is loaded via a push operation and is emptied 
via a pop operation. The elements to push are randomly chosen 
from a pool of elements. The maximum size of the stack is the 
constant MAX. A list of functional requirements which must be 
assumed is given in Table 9. 

In addition this example shows the different specific points 
presented in the previous section.  

 

3.1 Requirements 
We consider that the system under test has to satisfy the following 
requirements. 
Table 9. Stack Requirements 

Identifier Requirement description 

pool_empty The pool can be emptied out by one 
operation 

pool_fill The pool can be completely filled by 
one operation 

empty_stack_exception A pop operation on an empty stack 
generates an exception 

full_stack_exception 
When the stack size equals MAX, a 
push operation on the stack generates 
an exception 

random_element, 
automatic_delete 

The stack is loaded with elements 
from the pool. The elements are 
loaded one by one and chosen 
randomly from the pool. This element 
is automatically deleted from the 
pool. 

automatic_reinsertion A popped element is automatically 
put into the pool. 

 

3.2 The Stack Model 
We present here a model of the Stack system, designed for test 
generation purposes. Some modelling choices are discussed too. 

3.2.1 Class diagram 
Figure 1 presents the class diagram. It depicts the different objects 
of the system under test and the dependencies between them. 
 
We have three object types in the system. The stack is composed 
of chained elements taken from a pool. This pool contains a 
collection of elements.  
 

 
Figure 1. The class diagram of the Stack model 
 
The Stack::push() and Stack::pop() operations are events used in 
the state-machine. Pool::emptyOut() and Pool::fillOut() are 
defined as follows: 
context: Pool::emptyOut():OclVoid 
post: self.elements->isEmpty() 
 /*@REQ:pool_empty@*/ 

context: Pool::fillOut():OclVoid 
post: self.elements = Element.allInstances() 
 /*@REQ:pool_fill@*/ 

Notice the use of the isEmpty() operator in an active context in 
order to empty out the pool. Also notice the two requirements set 
on these operations: pool_empty and pool_fill.  

3.2.2 Initial state 
Figure 2 presents the object diagram that depicts the initial state of 
the system under test. 
 

 
Figure 2. The initial state of the Stack model 

 
In the initial state, the stack and the pool are empty. The link 
between the stack and the pool is created. Note the MAX 
constant, arbitrarily set with 3. 



3.2.3 State-machine 
Figure 3 presents the state-machine used to describe the different 
dynamic states of the system under test.  

The state-machine is clearly comprehensive. We can push and pop 
elements. The different states in which the stack can be are 
designed in this diagram. The transition actions are defined as 
follows: 
action pushOnEmptyStack 
post: 
 let element = self.pool.elements->any(true) in 
  self.top = element 
 /*@REQ:random_element@*/ 
 and self.size = self.size + 1 
  and self.pool.elements = 
 self.pool.elements->excluding(element)
 /*@REQ:automatic_delete@*/ 

 

 
action pushOnLoadedStack 
post: 
 let element = self.pool.elements->any(true) in 
  element.down = self.top 
 /*@REQ:random_element@*/ 
 and self.top = element 
 and self.size = self.size + 1 
 and self.pool.elements = 
 self.pool.elements->excluding(element)
 /*@REQ:automatic_delete@*/ 

 

action popForEmptyStack 
post: 
 let element = self.top in 
  self.top.oclIsUndefined() 
  and self.size = self.size - 1 
  and self.pool.elements = 
  self.pool.elements->including(element) 
 /*@REQ:automatic_reinsertion@*/ 

 

 
action popForLoadedStack 
post: 
 let element = self.top in 
  self.top = element.down 
 and element.down.oclIsUndefined() 
  and self.size = self.size - 1 
  and self.pool.elements =  
  self.pool.elements->including(element) 
 /*@REQ:automatic_ reinsertion @*/ 

 

Notice the particular use of active expression expressed with 
operators that are interpreted as mentioned in Erreur ! Source du 
renvoi introuvable.  (oclIsUndefined()). The two requirements 
random_element and automatic_delete are linked with the actions 
push*. The requirement automatic_reinsertion is set on the 
actions pop*. The requirements empty_stack_exception and 
full_stack_exception are both linked to empty actions, written 
with the keyword true. 

 

 

Figure 3. The state-machine of the Stack model 

 



3.3 Test targets and generated tests The test targets computed from the model shown in the 
previous diagrams are given in Table 10. From these targets 
we generate the following tests presented in 

Table 11. More precisely, for each test target, we use an 
automated theorem prover [8] to search for a path from the initial 
state to that target, and data values that satisfy all the constraints 
along that path. This is similar to a symbolic model-checking 
approach [9, 10]. A test is also composed of: 

• a preamble (potentially empty); the sequence of operations 
called to reach the targeted behaviour, 

• a body, the execution of the targeted behaviour, 
• a postamble (potentially empty); the sequence of operations to 

return to the model initial state. 
 
The generation of postambles is optional. 

In the Stack model, the generated tests cover all the behaviours 
that were modelled, and all the states and transitions of the state-
machine. 

In addition we can construct the traceability matrix of the 
requirements that are designed in the model and linked with the 
test targets. 

Note that some tests have no postamble. This means that the 
model initial state is not reachable from the state, in which the 
system under test is. 

Table 10. Test targets from the Stack model 

Target definition 
Id Tested 

 UML element context effect 
Tested Requirements 

Operations 

1 POOL::emptyOut - elements->isEmpty() pool_empty 

2 POOL::fillOut - elements=Element.allInstances() pool_fill 

Transitions 

3 Empty  
EmptyStackException 

- true empty_stack_exception 

4 Empty  
Loaded 

- 

let element = pool.elements->any(true) in 
top=element and  
size=size+1 and  
pool.elements->excludes(element) 

random_element, 
automatic_delete 

5 Loaded  
Loaded 

size < max-1 

let element = pool.elements->any(true) in 
element.down=top and  
top=element and  
size=size+1 and 
pool.elements->excludes(element) 

random_element, 
automatic_delete 

6 Loaded  
Full 

size = max-1 

let element = pool.elements->any(true) in 
element.down=top and  
top=element and  
size=size+1 and  
pool.elements->excludes(element) 

random_element, 
automatic_delete 

7 Full  
FullStackException 

- true full_stack_exception 

8 Full  
Loaded 

- 

let element = top in 
top=element.down and 
element.down.oclIsUndefined() and 
size=size-1 and 
pool.elements->includes(element) 

automatic_reinsertion 

9 Loaded  
Loaded 

size > 1 

let element = top in 
top=element.down and 
element.down.oclIsUndefined() and 
size=size-1 and 
pool.elements->includes(element) 

automatic_reinsertion 

10 Loaded  
Empty 

size = 1 

let element = top in 
top.oclIsUndefined() and 
size=size-1 and 
pool.elements->includes(element) 

automatic_reinsertion 

 



  
Table 11. Generated tests on Stack model 

Corresponding test Target 
Id preamble body postamble 

1  pool.emptyOut()  
2  pool.fillOut() pool.emptyOut() 
3  stack.pop()  
4 pool.fillOut() stack.push() stack.pop(), pool.emptyOut() 
5 pool.fillOut(), stack.push() stack.push() stack.pop(), stack.pop(), pool.emptyOut() 
6 pool.fillOut(), stack.push(), stack.push() stack.push() stack.pop(), tack.pop(), stack.pop(), pool.emptyOut() 
7 pool.fillOut(), stack.push(), stack.push(), stack.push() stack.push()  
8 pool.fillOut(), stack.push(), stack.push(), stack.push() stack.pop() stack.pop(), stack.pop(), pool.empty() 
9 pool.fillOut(), stack.push(), stack.push() stack.pop() stack.pop(), pool.empty() 
10 pool.fillOut(), stack.push() stack.pop() pool.empty() 

 

4. RELATED WORK 
They are numerous model-based testing approaches that use 
UML as modelling notation4. Some of them are based on 
sequence or interaction diagrams to express scenarios (see e.g. 
[11]), state machines to express behaviour models (see e.g. [12]) 
or combine them (see e.g. [13]). Few approaches are using OCL 
as an action language for model-based testing. B. K. Aichernig 
proposes an approach based on mutation analysis of OCL 
specifications [14], and Bruel et al [15] proposes a combination 
of test cases using an approach very similar to the test target 
computation proposed in this paper. But there is currently no 
subset of UML/OCL clearly proposed for model-based testing. 

5. CONCLUSION 
This paper introduced a subset of UML/OCL for model-based 
testing. In Section 3, we illustrated how this UML-MBT subset 
of UML can be used to write a precise model of a Stack system, 
which is executable and a good basis for test generation. The 
stack model is very small, and it would not be difficult to 
generate a similar test suite manually – but with larger industrial 
models many more tests are needed to cover the model, and the 
cost benefits of model-based testing become more significant. 
The UML-MBT subset of UML is fully supported by the 
LEIRIOS Test Designer v3.0 tool (see [3, 4] for more detail on 
test generation strategies). This test generator takes UML 
models from Borland Together and IBM Rational Software 
Modelling tools and provides a plug-in that verifies the 
compliance of the UML model with the defined UML-MBT 
subset. It checks the model for OCL syntactic verification and 
consistency (e.g. verification that the instances verify the 
corresponding multiplicities in the class diagram). LEIRIOS 
Test Designer provides adapters to export generated test cases 
and test scripts in test management and execution tools such as 
HP/Mercury Quality Center. This UML-based model-based 
testing solution is currently deployed on large applications in the 

                                                 
4 See “model-based testing” section on Wikipedia to have an updated list 
of MBT tools - http://en.wikipedia.org/wiki/Model-based_testing  

domains of Enterprise IT information systems and eTransactions 
systems (banking, ticketing or e-Admin applications). 
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