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Strongly confined waveguiding is one of the main applications of phononic crystals that can be achieved at any fre-
quency and scale. Phononic crystal waveguides replace the cladding of classical homogeneous waveguides by a crystal
possessing a complete phonononic band gap. We review the different material systems used to implement phononic
crystal waveguides and how waveguiding is obtained by confining waves in a core or by coupling defects along a given
direction. Finally, we introduce topological principles to design defect-less waveguides by exploiting the symmetry of
crystals.

I. INTRODUCTION

The ability to conceive wave guiding devices by relying
upon the physical properties of phononic crystals has from the
beginning been a major incentive toward the developement of
this field at the crossroad of condensed matter physics, phys-
ical acoustics, wave physics, and engineering1–3. A phononic
crystal is an artificial and periodic structure that supports the
propagation of mechanical waves. By artificial, we refer to
its technological fabrication process by a human or a ma-
chine, at almost any available scale. The specification of pe-
riodicity is also very important and is the source of the ex-
istence of frequency band gaps, inside which no propagating
waves are allowed, only evanescent waves. Actually, the very
term ’phononic’ before crystal means that it has a band struc-
ture similar to the band structure of phonons in crystal lat-
tices. In Section II, we discuss the main material systems that
have been considered in the literature for the fabrication of
phononic crystals and briefly summarize why they have been.

Guiding waves is an important problem for both science
and technology. Nowadays, optical fibers supporting the prop-
agation of light waves are ubiquitous for building communica-
tion networks and the internet. Acoustic musical instruments
include guides for sound waves. Elastic waves guided by rails
and pipes are used to monitor their structural health. The
physical mechanism for guidance can be based on boundary
conditions only or on the spatial distribution of the material
constants in the structure. Only the latter option is relevant to
our discussion. In a classical, homogeneous, waveguide, the
structure is invariant in a given direction, as depicted by figure
1a. Waves are guided in a core surrounded by a cladding. In
the dispersion diagram represented in figure 1b, giving the re-
duced frequency ωd as a function of the reduced wavenumber
kd, with d the diameter of the core, the dispersion relation for
guided waves must appear in the cone delimited by two wave
lines. The slope of the bottom line is given by the wave ve-
locity in the core whereas the slope of the top line is given by
the wave velocity in the cladding, i.e. we have assumed the
velocity of waves to be smaller in the core compared to the
cladding. Apart from this condition, guided wave propagation
can be monomodal or multimodal, depending mostly on the
diameter of the core compared to the wavelength λ = 2π/k.

In a phononic crystal waveguide, the homogeneous
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FIG. 1. Waveguide principles. (a) The homogeneous waveguide is a
structure composed of a core and a cladding. If the velocity of waves
is smaller in the core than in the cladding, then guided waves are
laterally evanescent in the cladding, though propagating in the core.
(b) The dispersion of guided waves in a homogeneous waveguide ex-
tends in the region delimited by two sound lines, one for the core and
one for the cladding. (c) A phononic crystal with a complete band
gap replaces the cladding in phononic crystal waveguides. (d) As the
phononic crystal waveguide is periodic along its principal axis, the
dispersion of guided waves extends for frequencies inside the band
gap and for Bloch wavenumbers defined in the first Brillouin zone.
Guided bands fold at zone boundaries and can enter guided band
gaps.

cladding material is replaced by a heterogeneous phononic
crystal, but the core can be kept unchanged or not. The sit-
uation is depicted by figure 1c. For waves to be guided, there
must be only evanescent waves in the cladding, and hence a
complete phononic band gap is compulsory. Obviously, the
operation bandwidth of a phononic crystal waveguide can not
exceed the band gap width. As a corollary, the larger the band
gap, the more bandwidth is available. Since the phononic
crystal waveguide is periodic along its principal axis, the dis-
persion diagram becomes a phononic band structure, as figure
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1d illustrates. Periodicity implies that guided bands can fold
at the edges of the first Brillouin zone, just as the bulk bands
of the crystal do. As a result, band gaps for guided waves can
appear inside the bulk band gap. Such foldings and band gap
openings result from the interference of guided waves propa-
gating to the right with the guided waves propagating to the
left. In case such interferences occur, a consequence is that
the available waveguiding bandwidth can not be completely
used in practice.

As for any waveguiding structure, there are technologically
important questions that must be answered to evaluate prop-
erly the interest of a particular design or structural choice.
What is the degree of spatial confinement that is provided
by the phononic crystal cladding, how does it relate to the
available bandwidth, and should we expect propagation loss?
Section II considers those question in direct relation to the
choice of the material system. What is the dispersion relation
for guided waves and how can it be tuned to given purposes?
The answer generally means engineering of the design of the
core; Section III considers linear waveguides, built around an
homogeneous core, whereas Section IV considers instead the
coupling of defect cavities forming a guiding core. Can we
garantee monomodal operation, can we minimize backscat-
tering loss, and do we really need a core for wave guidance?
To answer those questions, Section V incorporates the novel
vision brought by topological physics and its relations with
symmetry.

II. MATERIAL SYSTEMS ACCESSIBLE TO EXPERIMENT

In this section, we review shortly the different material sys-
tems that have been considered for the realization of phononic
crystal waveguides. In either case, we give the range of fre-
quencies that is available, the potential losses, and discuss
possible limitations. Regardless of those specificities, the con-
cepts discussed in the other sections apply to all of them, mak-
ing phononic crystal waveguides available over a wide fre-
quency and scale range.

Airborne sound is well suited in the audible range (from a
few Hertz to about 10 kHz) and up into the ultrasonic range.
Since air is notably soft and light, especially compared to
rigid walls enclosing an atmosphere, airborne acoustic waves
hardly excite acoustic waves in water or elastic waves in
usual solids (e.g. concrete, plastic, steel, or wood). Hence
sonic crystals for airborne sound are easily modeled as a sin-
gle phase material enclosed by hard boundaries. They have
downsides, though, since they suffer thermo-viscous loss and
low frequencies mean long wavelengths, and hence long lat-
tice constants. For the latter reason, they are often consid-
ered in a waveguide configuration for confinement in the third
direction4, as depicted in figure 2a, based on the fact that air
slabs do not have a frequency cut-off. For thickness of the slab
h� λ , the sonic crystal slab can be effectively modeled as a
2D crystal.

The case of solid inclusions in a fluid has often been con-
sidered in conjunction with ultrasonic transducers operating
for frequencies between 100 kHz and a few MHz, especially
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FIG. 2. Schematic of two-dimensional crystal structures amenable
to experiments. (a) A 2D periodic array of rods sandwiched between
two parallel plates forms a waveguide for sound waves in air. (b) The
same array of rods, is they can be considered infinitely long, forms a
2D phononic crystal; such an arrangement is often used for acoustic
waves in water. (c) Cylindrical holes or solid rods in a plate form a
phononic crystal slab for elastic waves; if the slab is supported by a
semi-infinite substrate, surface acoustic waves (SAW) must be con-
sidered. (d) Cylindrical rods or pillars sitting on a plate can be con-
sidered alternatively; again they can be combined with a supporting
semi-infinite substrate.

with a lattice of steel rods immersed in water. This type of
sonic crystal, depicted in figure 2b, approximates a 2D sys-
tem that is infinite in the third direction. Viscous loss in water
is limited, permitting operation at high ultrasonic frequencies.
The case of a heavy and stiff solid material is favorable for
large phononic band gaps. On the modeling side, coupling of
acoustic waves in the fluid and elastic waves in the solid must
be taken into account for accurate numerical results3.

The case of holey crystals depicted in figure 2c is techno-
logically very important. Lattices of holes in a solid plate
or slab appear frequently with micro electro mechanical sys-
tem (MEMS) structures, at ultrasonic frequencies and micron
sizes5–7, and at the smaller scale with optomechanical struc-
tures operating at a few GHz (lattice constants of a few 100
nm)8–10. Viscoelastic losses can be rather limited, especially
with single-crystal materials such as silicon, quartz or sap-
phire. In case there is a supporting substrate underneath the
finite-thickness holey crystal, phononic crystals for surface
acoustic waves (SAW) can be fabricated. In this case, a piezo-
electric substrate or layer is frequently considered, including
lithium niobate or zinc oxyde. As a note, a circular hole are
usually not the best choice for the shape of the inclusion if
one wants to maximize the phononic band gap width; square-
lattice crystals of cross holes11 or hexagonal-lattice crystals of
snowflake holes8–10 are successful solutions and more com-
plex unit-cells can be conceived through topology optimiza-
tion or rational design.

As an alternative to crystals of holes, one can consider solid
inclusions embedded in a plate12–15, as depicted in figure 2c.
Millimeter size beads can be included in an epoxy matrix, for
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instance, or wafer-level technologies can be used at the mi-
croscale. Growing pillars on a surface is often technologically
less demanding16,17, see figure 2d. Inclusions and pillars pro-
vide one with additional degrees of freedom, as they can act
as local resonators storing mechanical energy and interacting
with the waves propagating in the substrate. The so-called
locally-resonant crystals have been used as a basis to create
crystal waveguides for Lamb waves in plates18–20 and SAW
on substrates21,22.

III. LINEAR DEFECT WAVEGUIDES

The first designs of phononic crystal waveguides were nat-
urally based on the idea of replacing the cladding by a com-
plete bandgap crystal while keeping a homogeneous core23–25.
Straight and bent waveguides, and more general circuits are
readily imagined, as depicted in figure 3a. Naively, it may be
though that, because waves are evanescent in the cladding but
propagating in the core, their dispersion will be similar to that
of bulk waves in the homogeneous core material. This idea
definitely proves incorrect. Actually, when a defect is intro-
duced inside an otherwise perfectly periodic crystal, modes
localized around the defect must appear. If a whole row of
defects is introduced to create a core, then waveguiding bands
appear as the result of the axial coupling of the sequence of
defects. From a theoretical point of view, the number of peri-
odicities of the crystal is reduced by one and the band structure
for guided waves can be computed with a supercell technique.
This model leads to a re-interpretation: the defective super-
cells are very strongly coupled axially, thus leading to highly
dispersive and interfering bands26–29. Furthermore, band gaps
for guided waves can appear at the symmetry points of the
Brillouin zone of the super-cell, as we explained in the In-
troduction. Another consequence is that guided bands tend
to become flat and the group velocity is noticeably reduced
compared to the homogeneous core30.

Once a guided mode is excited inside a straight core, it will
propagate with little perturbations because the eigenmodes
of a crystal are translationaly invariant. Misalignments and
errors of fabrication lead to moderate scattering and energy
transfer between the normal guided modes. Difficulties arise,
however, whenever periodicity is broken31, as figure 3b de-
picts. First, it is difficult to couple from the exterior to the
inside of the core, because of the generally strong modal mis-
match between the two rather different regions of space. A
similar observation holds by reciprocity: at the end of the
waveguide large reflection / small transmission can occur for
the guided waves. Bends between straight waveguide sections
can also induce significant reflections. From a practical point
of view, phononic circuits can be modeled using scattering
matrices accounting for reflection and transmission between
normal modes. Elementary reflection and transmission coef-
ficients are functions of frequency (are dispersive). For in-
stance, even for a simple straight waveguide the reflections
occurring at the entrance and the exit lead to the formation of
a channeled spectrum in the overall transmission function32

(see figure 3c).
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FIG. 3. Schematic of the concepts of linear defect waveguides. (a)
Different linear, bent, and multiplexed structures can be imagined.
(b) Whenever periodicity is locally broken, guided waves are re-
flected and transmitted to the available normal modes. (c) Because
there is a strong impedance and structural mismatch at the entrance
and the exit of a phononic crystal waveguide, a channeled spectrum
can generally be expected in the transmission through the waveguide.
(d) Specifically in the case of a supporting semi-infinite substrate, ra-
diation to the bulk modes can occur.

Another issue specific to SAW is that surface guided waves
are not perfectly confined in the third dimension and hence
can radiate toward the bulk of the supporting substrate33–35.
That radiation is highly dispersive and is induced by the sur-
face structuration, as figure 3d depicts. In the SAW case, nor-
mal mode theory does not apply anymore and one needs to
consider quasi-normal, radiating, modes instead36. The sound
line concept comes into the picture and allows to isolate a cer-
tain region of dispersion space where radiation is cancelled35.

IV. COUPLED-RESONATOR ACOUSTIC WAVEGUIDES

Instead of considering directly adjacent defects forming a
whole row and thus an homogeneous core, they are spaced a
few lattice constants away. This idea, inspired originally by
a similar photonic crystal concept37,38, is exemplified by fig-
ure 4a. The adjacent defects are separated by a small section
of the phononic crystal; since the considered frequencies lie
within a complete band gap, they are coupled evanescently,
in their near-field. As a result, the strength of near-neighbor
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FIG. 4. Schematic of the coupled-resonator acoustic waveguide
(CRAW) concept. (a) Defects spaced by a few lattice constants form
a CRAW in a hexagonal-lattice crystal. (b) The dispersion relation
inside the complete phononic band gap is composed of very flat, pe-
riodic bands centered around the resonance frequencies of the de-
fect. (c) Reconfigurable and reusable phononic circuits can be im-
plemented by selective filling of hollow cavities in a solid phononic
crystal. (d) Experimental measurement of surface vibrations confirm
that guided waves in a CRAW have no obligation to take straight lines
(experimental data obtained with the sample of Ref.42). The square-
lattice array of cross-holes has a lattice constant of 715 µm, the plate
thickness is 500 µm, and the operation frequency ≈ 2.5 MHz.

coupling decreases very fast with the separation of defects.
Guided bands extend around the resonant frequencies of the
defect surrounded by an infinite crystal. Their dispersion is
directly dictated by the coupling coefficients between nearest-
neighbor defects39,40. They thus become separated and have
a very smooth dispersion; furthermore they become very flat
and thus the available bandwidth is greatly reduced though
very low group velocities can be achieved41. Those properties
are illustrated by figure 4b.

One limitation of the concept of coupled-resonator acoustic
waveguide (CRAW) is that the original modes must be non de-
generate, otherwise the situation becomes more complicated,
with possible interference between guided bands occupying
the same frequency bandwidth. Reconfigurable CRAW can
be formed from a solid holey crystal filled selectively with a
fluid43,44, as figure 4c depicts. Each fluid-filled hole becomes
naturally a local defect introducing new acoustoelastic modes
and guided bands when they couple. Following that strategy,
reconfigurable and reusable waveguides are formed.

Rather arbitrary circuits can be defined using the concept of
CRAW, including multiple changes of the direction of prop-
agation. Indeed, the evanescent coupling is in principle valid
in every direction, within a complete band gap. What deter-
mines if defect modes can couple is their relative symmetry.

Figure 4a already illustrated how guided waves hop from de-
fect to defect inside a hexagonal crystal. Figure 4d shows
the example of a square-lattice solid glass plate where de-
fects are distributed along the path a knight could follow on
a chessboard42.

V. TOPOLOGICAL WAVEGUIDES

All waveguides discussed so far were based on the intro-
duction of coupled defect states in a crystal. Starting from
2015 approximately, different guiding principles based on the
topological properties of the phononic band structure started
to emerge45,46. This topological revolution was inspired origi-
nally by topological insulators47,48 and follows a similar trend
in photonics. In the theory of the quantum Hall effect, edge
states emerge in a band gap if the bands below the gap have
non zero Chern numbers, an integer labelling the topological
order of each particular band. By the bulk-boundary princi-
ple, the number of edge states equals the sum of the Chern
numbers of bands below the band gap; hence they exist with-
out requiring the presence of a core, but only of an edge or
an interface. The first implementation of topological ideas
in phononics required breaking time reversal symmetry. This
can be performed with classical waves by imposing the prop-
agation medium to move at some speed, for instance. Be-
yond the first experimental implementations at low frequen-
cies49–51, experimental difficulties to move to higher frequen-
cies are immense, notwithstanding the case of GHz elastic
waves. For that reason, we discuss in the following an al-
ternative approach for passive systems, that is based on sym-
metry properties of the bulk crystal and their transformation
in a topological transition.

A. Valley Hall crystals

Let us consider in figure 5a the p6m space group of a hexag-
onal crystal, in Hermann-Mauguin notation. The reciprocal
lattice also has a hexagonal symmetry, characterized by the
C6v point group in Schoenflies notation. The primitive unit-
cell is a parallelogram. The hexagonal lattice has a 6-fold
rotation center at corners of the unit-cell and two 3-fold ro-
tation centers. M points lie half-way between zone centers,
while K points are actually 3-fold rotation centers in recip-
rocal space. There are also many reflection symmetry axes
that we do not detail, but that typically join nearest cell cen-
ters or run along cell boundaries. The valley Hall type crystal
proceeds by breaking slightly the symmetry of the hexagonal
lattice, not touching rotations but reducing reflection symme-
tries, as depicted in figure 5b. The first step is to replace the
circular inclusion by a triangular inclusion4,52. With the ori-
entation angle α = 0◦, the space group is changed to p31m:
reflection axes are reduced to the horizontal axis. This reflec-
tion axis mirroring the 3-fold rotation centers is untouched.
When α 6= 0◦, the space group changes to p3; the previous
reflection axis is lost and chirality is introduced in the crystal,
lifting the degeneracy at the K and K’ points and opening the
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FIG. 5. Valley Hall crystals. (a) With highly symmetric inclusions,
the hexagonal crystal is invariant under the p6m space group and
the reciprocal lattice is haracterized by the C6v point group. (b) Tri-
angular inclusions reduce symmetry. (c) For non rotated triangles,
there is a Dirac cone forming at the K point of the Brillouin zone that
breaks and opens a complete band gap when triangles are rotated.
The band structure is here shown for sound waves in air. (d) Two
non equivalent domain walls can be formed by pilling two instances
of the crystal with opposite rotations. Guided waves appear along the
domain wall, in the absence of defects.

band gap at those points, as shown in figure 5c.
As an example, let us consider the hexagonal-lattice sonic

crystal composed of rigid triangular inclusions in an air
background4. As the angle of the inclusions is continu-
ous tuned, the band gap that was closed for α = 0◦ gradu-
ally opens at the K point, reaching its maximum width for
α = ±30◦. The rotation of the inclusion is periodic with pe-
riod 60◦. The dispersion is further isotropic around point K
(or K’), which in the hexagonal lattice results only from sym-
metry. A domain wall can then be formed by pilling two in-
stances of the crystal with opposite rotations. The domain
wall must also be oriented along that axis and the crystal cells
must respect the hexagonal tiling of the plane. The resulting
composite crystal is depicted in figure 5d. Since there are two
crystal phases, we can choose to place A over B, or the con-
verse. The band structures computed for super-cells AB and
BA are identical. Two bands appear inside the band gap: they
are the dispersion of topological guided waves. The two bands
cross without forming an avoided crossing, indicating that the
corresponding Bloch waves are orthogonal.

Topological backscattering protection is a concept that is
frequently put forward in comparison with defect crystal
waveguides that do not possess that property. In the case of the
valley Hall crystal, topological protection can be understood
based on symmetry. There are indeed two orthogonal groups
of bands, as a result of symmetry with respect to the axis of
the waveguide. Robustness is dictated by the symmetry of
the Bloch waves traveling to the right and to the left: the dif-
ferent bands of guided waves cross without interfering at the
edges of the first Brillouin zone. As a result, within the crys-

tal they are protected from backscattering or modal conversion
on scattering defects that preserve symmetry. There is no uni-
directional propagation: the edge modes propagate both right
and left and the band structure is symmetrical in the exchange
k↔−k. Any obstacle that breaks spatial symmetry will re-
sult in some modal conversion and scattering. For instance,
guided modes can still be backscattered at the terminations of
the waveguide, as usual. Implementations of valley Hall crys-
tals have been demonstrated for acoustic waves4,53–55, elastic
waves56–59, but also water waves60,61.

B. Quantum spin Hall crystals

In the description of the quantum spin Hall effect (QSHE)
of graphene or semiconductor heterostructures, the band gap
at a Dirac point can be opened by strong spin-orbit coupling47.
The system can be described as two copies of a quantum Hall
system for which electrons with spin up or down feel opposite
magnetic fields; as a whole time-reversal is not broken. At
time-reversal-invariant points, electronic states are two-fold
degenerate and form Kramers pairs (one spin-up state and
one spin-down state). At an edge, there appears two oppo-
sitely propagating and dispersive edge states carrying opposite
spins.

How can a classical wave system mimic the quantum spin
Hall effect? We first need an equivalent of the Kramers pair
for ’quasi-particles’ with no intrinsic spin. This can be im-
plemented in a crystal lattice by a band folding technique62.
We can further understand how that happens by considering a
hexagonal unit-cell for the honeycomb crystal, as depicted in
figure 6a. The hexagonal unit-cell is not primitive, since its
area is three times larger than the original primitive unit-cell.
The first Brillouin zone in figure 6b is an hexagon rotated by
π/6 compared to the initial first Brillouin zone and has a sur-
face reduced by one third. High-symmetry points K and K’
of the initial Brillouin zone are now reciprocal lattice trans-
lations of point Γ in the transformed Brillouin zones. Hence,
band folding results from crystal symmetry and interference
of the folded bands opens the gap at the Γ point.

The band folding trick is still not sufficient, since a topo-
logical transition is needed. The second step is then to rely
on an accidental degeneracy at the Γ point of the two groups
of folded bands. For the sonic crystal of rigid cylinders
in air, such an accidental four-fold degeneracy occurs for
d/a = 0.453663, as shown in figure 6c. If d/a is increased
or decreased continuously around the transition value, then
the band gap opens at the Γ point, a signature of a topological
transition. It should be noted that varying d/a is not the only
option to achieve the topological transition, since any real pa-
rameter that preserves the space group of the crystal can be
selected. For instance, one can move the inclusions toward or
away from the unit-cell center62.

Waves guided along a domain can be obtained similarly
to the valley Hall case by exploiting the topological transi-
tion. We consider in figure 6d a domain wall between crys-
tals A (d/a = 0.5196) and B (d/a = 0.3464). The domain
wall is along the transformed ΓK direction or equivalently the
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FIG. 6. Quantum spin Hall crystals. (a) The rhomboedric primitive unit-cell of the honeycomb crystal and its non-primitive hexagonal-unit
cell are shown. (b) The first Brillouin zone shrinks when passing from the primitive to the hexagonal unit-cell. (c) A double Dirac cone is
formed by degeneracy for an accidental value of d/a. Continuously tuning that parameter yields a topological transition that breaks the double
Dirac cone and opens a complete band gap. (d) A domain wall between crystals A (d/a = 0.5196) and B (d/a = 0.3464) supports a pair of
non-interacting guided waves.

original ΓM direction of the honeycomb crystal. The lattice
constant of the supercell is a′ =

√
3a. Two guided bands are

found, as expected from our initial discussion, and each can
be associated with a Kramers-like pair of states. Dispersion
is almost linear close to the Γ point. The common band gap
of crystals A and B is not very large and the exponential de-
cay away from the domain wall is slow, hence many rows are
required for the supercell to operate correctly. Besides the
acoustic case63, quantum spin Hall phononic crystals for elas-
tic waves have been proposed64,65.

VI. CONCLUSION

In this short review, we have summarized the principles and
the properties of phononic crystal waveguides. The basic idea
is to replace the cladding of homogeneous waveguides by a
crystal with a wide complete band gap. Guidance can then
be obtained inside an homogeneous core, a sequence of cou-
pled defects, or at an interface or domain wall by relying on a
topological transition. Those possible choices result in differ-

ent dispersion properties. Linear defect and coupled-resonator
phononic waveguides are now often considered in the context
of tunable manipulation of acoustic or elastic waves66. The
goal is then to design metamaterial structures for active or
smart wave control. Topological46 phononic crystal waveg-
uides are presently attracting a lot of attention because they
can provide waveguides with backscattering immunity, for in-
stance protected by symmetry. More progress is required to
increase their bandwidth of operation, which is presently lim-
ited by the necessary topological transition around an initially
closed gap.
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