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Abstract

With the further deterioration of environment and the depletion of fossil fuels,

the alternative energy sources are urgently needed to be discovered. Hydrogen

holds great promise thanks to its unlimited resources, high energy density and

the environmentally friendly nature. However, its low volume density under nor-

mal temperature and pressure becomes the main challenge for on-board storage.

Owing to its high potential of safety, one of the optimal solution for the future

hydrogen vehicle is storing hydrogen using metal hydride (MH) under proper

temperature and pressure. This work focuses on the state of charge (SOC) es-

timation of the embedded MH hydrogen storage tank. High precise estimating

of the remaining energy will contribute to both the evaluation of reliability and

the design of control strategy. A statistical model of SOC is proposed based on

the database collected form laboratory experiments and real operation vehicle

test. What’s more, a joint multi-classifier is designed to recognize the current

state of reaction. Under this condition, the SOC of MH hydrogen storage tank

is calculated through combining the state classifier and SOC model. This pro-

posed on-line SOC estimation procedure is validated with the real operation

vehicles in both charging and discharging process. It is proved to be effective
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with the estimation error of 0.2% during charging and 4.29% of discharging.

Keywords: Metal hydride, Hydrogen storage, On-line SOC estimation, State

classification

1. Introduction1

Hydrogen, produced from renewable energy, is being evaluated and promoted2

worldwide as an ideal power source for its inexhaustibility, cleanliness, conve-3

nience and independence from foreign control, which make it as the replacement4

for gasoline, heating oil, natural gas, and other fuels in both transportation and5

non-transportation applications [1, 2, 3]. For hydrogen vehicles, on-board hy-6

drogen storage is one of the main challenges due to its low energy density per7

unit volume. Currently, hydrogen storage technologies including compressed8

hydrogen, liquefied hydrogen and hydrides, among them hydrogen storage in9

reversible metal hydrides (MH) has received great attention as it offers the pos-10

sibility to store hydrogen at low pressure and moderate temperature with high11

volumetric density [4].12

Hydride storage is material-based storage that hydrogen is physical or chem-13

ical absorbed reversibly by solid compounds under certain temperature and14

pressure conditions. During chemical sorption, chemical reaction occurs be-15

tween hydrogen and material that hydrogen molecules are split into atoms and16

integrated with the storage material then generates hydride. The common used17

low temperature hydrides for hydrogen storage can be grouped based on the18

stoichiometries as AB5−type (e.g. LaNi5), AB2−type (e.g. Ti − Zr alloys),19

A2B−type (e.g. Sb2Ti, Sn2Co) and AB−type (e.g. Ti − Fe alloys), where20

A represents elements with high affinity for hydrogen typically rare-earth or21

alkaline earth metal (e.g., Ca, Ti, Zr, etc.) and B represents elements with22

low affinity for hydrogen typically a transition metal that forms only unstable23

hydrides (e.g., Cr, Mn, Fe, etc.) [5]. The quantities of hydrogen stored using24

metal hydride are quite large that the reaching volumetric density often higher25

than that of liquid hydrogen [6]. Besides, it holds potential benefits of security26
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compared to compressed hydrogen storage tank [7]. Although the compressed27

and low temperature liquid hydrogen storage tanks have already been widely28

used on commercial vehicles while the application of metal hydrides hydrogen is29

limited by the cost and weight for the current stage, storing hydrogen with MHs30

is still a promising method for embed hydrogen storing on the future hydrogen31

vehicle thanks to its high potential of density, safe and reliable.32

State of charge (SOC) estimation is always an important issue and great33

challenge for all the energy storage device like battery, super-capacitor, oil tank34

and gas tank. Monitoring the remaining energy like electric, oil or nature gas35

in the device precisely is quite important for the energy management strategy36

design and the vehicle power train reliability evaluation [8]. Moreover, an ac-37

curate and efficient SOC estimation result reflects the health condition of the38

real applied energy storage device, which have a great impact on the control39

for practical operation in both charging and discharging process. Similarly, the40

SOC of a MH hydrogen storage tank should also be estimated to evaluate the41

remaining useful hydrogen. Especially for the design of an on-line SOC estima-42

tion method, from which the information of hydrogen mass storing in the tank43

is of great importance for the practical automobile application.44

Generally, the hydrogen content of a MH sample is indicated by the hydrogen

to host atomic ratio that:

r =
H

X
=

nH

nX
=

mH/MH

mX/MMH
(1)

in which r represents the host atomic ratio, H and X indicate hydrogen and the45

host material separately. In this equation, nH and nX are the molar number46

of the hydrogen absorbed in the MH sample and the host material respectively.47

mH and mX are the mass of the hydrogen absorbed in the MH sample and48

the host material respectively. MH is the molar mass of hydrogen and MX49

represents that of host material. As to an energy storage device, the SOC at50

each sampling time i is the percentage of the remaining energy m(i) to the total51

3



Table 1 - List of symbols

Nomenclature

MH Metal hydride

SOC State of Charge (%)

SVM Support Vector Machine

NB Naive Bayes

FCHEV Fuel cell hybrid electrical vehicle

P-C-T Pressure-Composition-Temperature

MH Molecular weight of hydrogen (g/mol)

MMH Molecular weight of one kind of MH (g/mol)

Subscripts

ini Initial State of the MH tank

end Final state of the MH tank

amount of mtotal, which can be written like the follow equation:52

SOC(i) =
m(i)

mtotal
∗ 100% (2)

53

From literature works, researchers proposed several methods for investigat-54

ing the hydrogenation properties of a solid hydrogen storage sample. A number55

of techniques are available to measure the hydrogen sorption capacity of a solid56

reactor including the measurements of hydrogen pressure, component volume,57

hydrogen flow and sample mass in a sample chamber, connected to a hydrogen58

source, a hydrogen sink and a gas manifold [9]. One can also quote the Sievert59

technique using the variation of pressure in a constant and calibrated system60

volume to determine the hydrogen storage capacity [10]. It’s well known for61

the advantages of cost-effective, easy to set up, simple, physically robust and62

reasonably reliable. However, researchers found it critically dependent on the63

accurate volume calibration, especially for the high pressure measurement [11].64

Gravimetric method is a reliable tool to measure the absorbed hydrogen mass65
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at high pressure condition, which determines the hydrogen sorption isotherm at66

equilibrium state via mass measurement [12]. Secondary ion mass spectrome-67

try and neutron scattering are techniques based on the chemical composition68

and physical structure analysis of the hydrogen storage materials. Using these69

method, except for the accurate hydrogen capacity measurement, detailed in-70

formation of hydrogenating reaction can be achieved and wider scale of material71

can be tested [13, 14, 15]. Nevertheless, strict experimental conditions and ex-72

pensive equipment make it confined to the sample analysis in laboratory. These73

techniques are effective for the characterization of hydrogen and SOC estimation74

of hydrogen storage materials while it is not suitable for practical application75

of a hydrogen reactor, especially for the on-board hydrogen storage tanks in76

transportation applications. For these applications of a MH hydrogen storage77

reactor, the required SOC estimation method should be efficient, reversible and78

movable.79

Designing and simulating of the mathematical model is also an effective80

method to observe the MH state variation during absorption or desorption pro-81

cess [16]. Meanwhile, the relationship of the different effective factors like trans-82

port properties, equilibrium situations and reaction kinetics can be determined83

by the coefficients and functions [17, 18]. Researchers have proposed some MH84

tank models to describe the reaction process. The first two-dimensional nu-85

merical model is proposed by A. Jemni et al to emphasize the effect of the86

shape, pressure and cooling system [19]. What’s more, the three-dimensional87

model figured out the parameters could be optimized to get an optimal storage,88

including the pressure, permeability and thermal conductivity of the hydride89

[20, 21]. However, there are too many complex elements like heat transfer,90

metal hydride density should be taken into consideration in these models.91

In the current stage of study for the embedded MH tank, the remaining92

hydrogen mass is generally calculated by the integration of hydrogen flow rate93

refueled in and released out. A gas flow sensor is well applied to measure the94

gaseous hydrogen. However, during long-term operation, the measurement error95

of flow sensor is accumulated along with the increased charging and discharging96
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cycle numbers. The expanding error of hydrogen flow leads to the decline of97

estimation accuracy, it might resulting in an erroneous control strategy and an98

irreversible damage on the properties of the MH hydrogen storage tank or other99

related devices like fuel cell [22, 23]. Besides, the uncertain information of the100

initial hydrogen concentration makes the SOC calculation inaccuracy. Thus, an101

effective on-line SOC estimation method is necessary to measure and calibrate102

the remaining hydrogen mass.103

This work provides a new, simple, direct and effective method to evaluate104

the hydrogen content stored in a MH hydrogen storage tank based on its char-105

acterization and performance. The on-line SOC estimation process is developed106

with physical analysis, statistical modeling and state classification, which is val-107

idated by the database recorded on the real operation vehicles and proved to be108

useful and efficient. In our study, a statistical model reflecting the relationship109

between equilibrium pressure, temperature and SOC is proposed for describing110

the performance of hydrogen storage and estimating the hydrogen capacity. The111

operation condition and performance of the embedded hydrogen storage reactor112

is more complicated with real operation requirements. So, the proposed statisti-113

cal model might not satisfy to the precision requirement of the SOC estimation114

mission at each time. In this study, the dynamic performance of the hydrogen115

tank is analysed, from which a certain period is found to be available to apply116

the statistical model for SOC estimation. Then, a state classifier is designed117

to identify this state to realise the on-line SOC estimation of a MH hydrogen118

storage tank embedded on fuel cell vehicle. Finally, the proposed on-line SOC119

estimation process is validated by the database recorded on the real operation120

vehicles in both charging and discharging situation.121

2. P-C-T based statistical model for SOC estimation122

In order to detect the features of the applied MH hydrogen storage tank on123

the vehicle, a test bench in laboratory is built. On this test bench, a group of124

validation database is collected using the similar way of D. Chabane did [24].125
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The experiments are carried out for both absorption and desorption reaction. In126

absorption process, the initial conditions were set as the ambient temperature127

and empty tank. The hydrogen flow rate is as low as 0.6kg/h for the purpose128

of avoiding high kinetics and limiting temperature variations. The experiments129

are carried out for both absorption and desorption reaction. In absorption130

process, the initial conditions were set as the ambient temperature and empty131

tank. During hydrogenation reaction, the exothermic absorption process causes132

the temperature in the tank to raise, which also lead to the pressure increase.133

By defining the threshold of temperature, the hydrogen mass flow filling into134

the tank was controlled, which will be stopped when the temperature reached135

the threshold. The system returns naturally to the ambient temperature after136

energy convection and heat transfer. This process of charge will be repeated137

several times until the tank is fully charged or completely empty. The desorption138

process is in opposite direction. During the test, the remaining hydrogen mass139

and the SOC of the MH tank are carefully controlled and calculated by the140

hydrogen flow rate. The cumulative error is considered to be artificially avoided.141

Thus, using a new tank in a strictly controlled experiment, the estimated SOC142

is reliable to be considered as the calibrate reference.143

From this database one can find that the data points of pressure at same144

temperature are parts of a corresponding P-C-T isotherm of the tested MH145

hydrogen storage tank. For each P-C-T isotherm of the tested MH tank, the146

complete process of both hydrogenation and hydrogen extraction can be de-147

scribed in three phases, including start to increase phase, slowly increase phase148

and speedy increase phase. Moreover, all these P-C-T curves have the same149

trend [25].150

Correspondingly, the variation of the hydrogen mass absorbed by the MH151

tank presents three stages, namely, slowly increase stage, speedy increase stage152

and the stage of tend to be constant. During the first stage, the hydrogen153

concentration is too low to active the hydrogenation reaction in a high speed.154

Although the pressure increases rapidly, the absorption of hydrogen is slowly.155

It comes to the second stage when the hydrogen to metal ratio reaches a certain156
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value, in which the reaction reaches to equilibrium state and advances smoothly.157

Thus, the hydrogen is absorbed in a high speed. When the MH tank is fully158

charged, the input hydrogen flow leads to the raise of pressure since no more159

hydrogen can be stored in the MH crystal. This feature of hydrogen mass160

variation is similar to the probability distribution function. Under this situation,161

the relationship among mass of hydrogen absorbed, pressure and temperature162

is able to be identified through the least squares method and the hydrogen mass163

can be directly described by the following equation, which means the statistical164

model to describe the variation of the hydrogen mass as a function of pressure165

P can be expressed as:166

Mass = k1 +
k2

1 + exp(k3 ∗ P + k4)
(3)

In this equation, Mass represents the hydrogen mass stored by the MH tank167

and P is the tank pressure. k1, k2, k3 and k4 are the coefficients reflecting168

the influence of temperature and durability on hydrogenation reaction. k1 cor-169

responds to the initial condition of the MH tank, ideally at the beginning of170

charging process, the tank is empty and k1 is zero. k2 corresponds to the hy-171

drogen storage capacity of the MH tank, namely, the hydrogen mass stored in172

a fully charged tank. The coefficients k3 and k4 are effected by temperature T173

and correspond to the equilibrium pressure in the tank, which will determine174

the shape of P-C-T isotherms.175

In practical application of a MH hydrogen storage tank, the performance176

is also influenced by the state of health and the operation temperature. After177

larger number of charging and discharging cycles, the MH tank suffers from178

degradation so that the hydrogen storage capacity declines. Besides, the MH179

tank can not be completely discharged after degradation. Thus, the coefficient180

k1 = massini(n), which varies along with cycle number n. The capacity not181

only depends on the number of cycles n determined by the effect of ageing,182

but also corresponds to temperature. So, the coefficient k2 can be expressed183

as mass(n, T ). At the end of a charging process, the whole mass of hydrogen184
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stored in the MH tank massend can be calculated by k1 + k2. In one cycle, the185

behaviour is determined by temperature. Therefore, the coefficients k3 = f1(T )186

and k4 = f2(T ) are the functions of temperature.187

The SOC of MH tank at each moment i is the percentage of the available188

hydrogen mass stored in the tank to the total amount, which can be expressed189

as following equation:190

SOC(i) =
Mass(i) −massini

massend
∗ 100% (4)

where Mass(i) corresponds to the mass of hydrogen extracted from the MH191

tank at this sampling time, massini represents the hydrogen mass rest in the192

crystal which can not be released under normal operation condition and massend193

is the hydrogen mass in a full tank.194

Based on Eq. 3, the SOC model of a MH tank can be also expressed as

follows:

SOC(i) =
1

1 + exp(f1(T ) ∗ P + f2(T ))
∗ 100% (5)

It shows that the SOC of a MH tank is possible to be reflected by the pressure195

and temperature, no matter of the ageing degree. Thus, through measuring the196

performed state of a MH tank during charging or discharging process, its SOC197

can be estimated.198

3. On-line SOC estimation with a state classifier199

3.1. Framework of the process200

The SOC estimation using the model presented in Eq. 5 is only adapted201

to a well-controlled experimental condition in the laboratory. The situation in202

practical application of the MH tank is more complicated, especially in trans-203

portation using. Taking the embedded MH hydrogen storage tank on a driving204

fuel cell vehicle as an example, the usage is under the requirement of driving205

mission. A whole continually charging or discharging process may not occur,206

namely, the discharging process might start from an uncertain SOC instead of207
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100%. At the beginning period, the gaseous hydrogen in the tank raised rapidly208

and the performance is mainly determined by the pressure difference between209

inside and outside of the tank. Therefore, the fault of SOC estimation cannot be210

avoided at this stage. When the dehydrogenating reaction is stable, the physical211

state of the tank is mainly depending on the equilibrium condition presented as212

P-C-T curves, which means that the pressure and temperature in this stage is213

determined by the hydrogen concentration. The SOC of the MH tank can be214

estimated with high accuracy using the proposed model in Eq. 5. Thus, the215

current state of reaction should be firstly recognized.216

Fig. 1 - Framework of the on-line SOC estimation with a state classifier.

Fig. 1 gives the schematic of the framework for on-line SOC estimation. In217

this process, based on the property analysis of the reaction, a state classifier218

is firstly designed to identify the physical state of the MH reaction bed inside219

tank during operation. Then, after training the state classifier off-line using the220

historical database, it could characterize the real data recorded during opera-221

tion into its relating stage. This process can be realized on-line. Finally, the222

hydrogen concentration of a MH tank can be calculated rapidly to estimate the223

SOC on real time.224
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The off-line stage focuses on the historical database analysing and prepos-225

sessing. In order to classify the state in a high speed, the optimal feature vectors226

are required to be extracted from the database. The statistical characters reflect-227

ing the properties including slope, kurtosis, entropy, etc, are of great potential as228

the feature vectors for classify. Afterwards, the state classifier is trained by the229

training set and adjusted by the testing set of feature vectors. Then, when the230

well trained classifier comes to the on-line stage, the feature vectors extracted231

from the real measured database is able to be classified. Therefore, the SOC232

of the tank can be finally estimated. In this process, classifier is a model set233

describing the characteristics and features of the database, which can be used234

to identify the category of the unknown data, namely, map the unknown state235

to a discrete classification set. The data-based classification method includes236

fuzzy logic identification, neural network, Bayes classify, support vector ma-237

chine (SVM) and so on. In this work, a joint multi-classifier is designed through238

combining the Naive Bayes (NB) classifier and SVM classifier. The detailed239

information will be presented below.240

As discussed above, the hydrogenation reaction is stable in the second stage.241

In addition, the hydrogen concentration can be achieved by the dynamic per-242

formance of pressure and temperature. The stored hydrogen mass can therefore243

be calculated by the proposed mathematical model, and the SOC of the MH244

hydrogen storage tank can be estimated.245

3.2. Design of the state classifier246

As mentioned above, a joint multi-classifier constructed by a basic NB clas-247

sifier and a multi SVM classifier are designed for state classification and identi-248

fication of the MH tank reaction process.249

NB classifier is developed based on the Bayes statistical theory, which can250

be used to identify which category the observer belongs to. It has been widely251

applied in many situations thanks to its high efficiency, high precision, and solid252

theoretical foundation [26]. In practical applications, the application scope is253

limited since it’s hard to get the prior probability and the class conditional254
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probability density of each category. However, with appropriate independence255

assumption, a smallest misclassification rate can still be achieved using NB clas-256

sifier. SVM is a robust machine learning model that shows high accuracy with257

different classification problems [27]. The accuracy of classification is guaranteed258

for the high dimensional spaces and complex interaction characteristics. The259

limitation of this method is that only two category classification problems can be260

solved, which limits the application in complex state classification. Thus, a multi261

SVM classifier is designed, which can decompose the multi-classification prob-262

lem into several number of two-classification problems. Through decomposition263

and reconstruction, two-classification problems can be solved respectively, and264

the optimal results can then be determined. For the multi-classification prob-265

lem with the category number of c, the SVM classifier is constructed between266

each category. Therefore, the required SVM classifier number is c(c−1)/2. The267

training samples of each SVM classifier are two related categories. The voting268

method is used to determine the classification results that the category got the269

maximum votes is the class that test sample belongs to. This kind of multi-270

classifier has significant advantages. Since each SVM classifier only considers271

two types of samples, the training process is simple to be achieved. Using the272

majority voting method for making the final decision is easy to implement with273

a high speed. Meanwhile, the classification accuracy is high. However, when274

there are many categories to be distinguished, the number of SVM classifiers275

increases sharply, which affects the training and testing speed, the accuracy276

might be decreased as well.277

Normally, the multi-classification model is integrated by the simple classi-278

fiers in two ways that they connected in series or in parallel. In the series279

multi-classifier, the classification information is transferred from the previous280

simple classifier to the next one, which means the results of the previous simple281

classifier and the other input information are combined as the input of the next282

simple classifier. While in parallel multi-classifier, each simple classifier oper-283

ates separately and the classification results are concluded in the end. Thus, its284

speed of classification is significantly increased than that of series multi-classifier.285
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Fig. 2 - Flow chart of joint multi-classification.

What’s more, the results of each simple classifier can be complementary. How-286

ever, if the simple classifiers and the combination rules are not properly selected,287

the results of the parallel multi-classifier may not rise but fall.288

In this study, a joint multi-classifier in parallel structure is designed for289

the purpose of fully demonstrating the advantages while suppressing the weak-290

ness of each single basic classifier. Fig. 2 gives the flow chart of this joint291

multi-classifier. The multi SVM classifier and NB classifier are trained by the292

historical data separately, the results of each simple classifiers are afterwards293

learned and remembered. An optimization algorithm is used to search an opti-294

mal weight for the weighted summation of each simple classifier output result295

on the measurement layer. The final classification result is therefore be deter-296

mined. In this process, the combination weight is effected by the classification297

ability of simple classifiers and the state characteristics of the analyzed system.298
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4. Experiments and validation299

4.1. SOC estimation on test bench300

4.1.1. Experiments on the test bench301

In our work, a test bench is built to validate the P-T-C based model for302

SOC estimation in the laboratory. As presented in Fig. 3, two MH hydrogen303

storage tanks are connected in parallel as the testing object. The properties304

and reaction state are monitored and recorded. At the outlet of the tank, a gas305

flow sensor is installed to record the hydrogen flow rate in and out the tank.306

Besides, a pressure sensor is put at the tank gate to test the pressure inside the307

tank. Two temperature sensors are attached at the surface of the MH tanks and308

the measured results are considered as the reaction bed temperature. During309

the reaction, the fan matrix, heater and circulation water operates together to310

control the thermal condition. The fan matrix is used for heat transfer and heat311

dissipation when the temperature is too high, while the heater is used to warm312

the circulation water to provide more energy for reaction. Fig. 4 gives the photo313

of the test bench.314

Fig. 3 - Schematic of the test bench.
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Fig. 4 - Experimental setup.

During the test, the hydrogen is provided by the hydrogen tube in laboratory315

with the pressure of 7.5bar. The discharged hydrogen from the MH tank is316

released to the air circulation system. In other words, the hydrogen flow rate317

input and output of the MH tank is determined by the differential pressure.318

The experimental process is controlled by temperature. The temperature inside319

the test room is always kept as 19◦C.320

4.1.2. SOC estimation in absorption case321

When charging the tanks, the generated heat raises the temperature of MH322

tanks. When the measured temperature reaches 26◦C, the charging flow is323

stopped manually and the fan matrix is turned on to remove the heat. Until the324

MH tank temperature drop to 19◦C, the charging process is restarted. This pro-325

cess repeats several times until the internal and external pressure is balanced,326

which means the MH tanks are fully charged. In contrary, the desorption reac-327

tion is an endothermic reaction that the MH tank temperature decreases during328

discharging. The circulation water is warmed by heater in order to raise the329

temperature of reaction bed. The temperature threshold is set as 22◦C to 26◦C.330
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From the database obtained on the test bench, the pressure and temperature331

under certain equilibrium state can be extracted. Then the SOC of the MH tank332

can be figured out through the statistical model presented in Eq. 5.333

Fig. 5 - Parameter identification of the charging model.

Fig. 5 shows the identification results of the statistical model for SOC esti-334

mation of embedded MH tank during the whole process of absorption. As can be335

seen from each isotherm curve, the absorption process mainly occurred during336

the pressure varies from 2bar to 5bar. When the hydrogen concentration is too337

low, hydrogen cannot be absorbed. The hydrogenation process will start after338

the concentration reaches a certain value. After the MH material in the tank339

was fully charged, the pressure rises steeply with the increased concentration340

of gaseous hydrogen. Table 2 presents the coefficients f1(T ) and f2(T ) used to341

draw these curves of the model in Fig. 5. The errors between the proposed342

model and the experimental data are acceptable that the maximum and the343

minimum value are 9.6% and 2.5%.344

The hydrogen mass put into the MH tank is calculated by the measured345

hydrogen flow rate. Taking the calculated SOC as the calibration for evaluating346

the estimation results. From Fig. 5 one can see that the deviation of SOC347

estimation under different pressure are concentrated in the pressure zone of less348

than 2bar, where the hydrogen concentration is not high enough and the main349
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absorption reaction is not carried out. Moreover, at the end period of charging350

process, the absorption speed is slow down and the gaseous hydrogen leads to351

the rapid increase of pressure. Thus, the SOC estimation based on the statistical352

model is not reliable enough when the pressure is high than 5bar.353

Table 2 - Identified parameters for absorption model.

T f1(T ) f2(T ) Error

22◦C -4.33 12.05 5.07%

23◦C -3.85 11.19 5.81%

24◦C -3.61 10.92 8.74%

25◦C -3.44 10.98 8.33%

26◦C -3.05 11.28 9.12%

In the SOC model, f1(T ) and f2(T ) reflect the influence of temperature on

the equilibrium pressure, which will determine the shape of P-C-T curves of the

reaction. The values of equilibrium pressure under each temperature could also

be obtained by fitting the functions of f1(T ) and f2(T ). Through identifying

how the coefficients variation with different temperatures, the function of f1(T )

and f2(T ) are identified as follows:

f1(T ) = 0.29 ∗ T − 10.6 (6)

f2(T ) = −0.368 ∗ T + 19.1 (7)

4.1.3. SOC estimation in desorption case354

Similar to the absorption case, the data points of pressure under certain tem-355

perature during hydrogen desorption process can be extracted. Fig. 6 presents356

the results of the mathematical models representing the hydrogen concentra-357

tion stored in a MH hydrogen storage tank during desorption process, all these358

models are identified under different temperature while in one cycle.359
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Fig. 6 - Parameter identification of the discharging model.

Obviously, the desorption process is normally carried out in a lower pressure360

zone than that of absorption. For the tested tank, the pressure is between361

1bar to 2bar. At the end period of discharging process, because of the small362

hydrogen concentration and low pressure, the desorption reaction cannot keep363

going automatically. Special measures are necessary to fully discharge a MH364

hydrogen storage tank like heating. However, during practical application the365

high temperature can not be achieved. The hydrogen retention in the tank will366

lead to the capacity degradation of an embedded MH tank after long time usage,367

which deserves special attention, which will be discussed later. The coefficients368

of the model for desorption process are presented in Table 3, in which the369

maximum error is as low as 2.47%. Similar to the charging process, the errors370

focus on the low pressure situation, namely, higher difficulty is inevitable for371

SOC estimation at low hydrogen concentration.372
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Table 3 - Identified parameters of SOC estimation model for desorption process.

T f1(T ) f2(T ) Error

18◦C -10.74 12.26 1.14%

19◦C -10.14 12.58 2.73%

20◦C -9.29 12.69 4.55%

21◦C -8.72 12.92 9.56%

22◦C -8.49 13.23 9.36%

23◦C -8.22 13.58 9.35%

24◦C -800 13.97 9.21%

The function of f1(T ) and f2(T ) in SOC model during discharging process

are identified as follows:

f1(T ) = 0.4782 ∗ T − 19.1 (8)

f2(T ) = 0.2422 ∗ T + 7.9 (9)

4.2. On-line SOC estimation in real operation case373

4.2.1. Validation procedure374

The online SOC estimation method, that combines the state classifier and375

SOC model, is verified on the database of the real fuel cell hybrid electrical376

vehicle (FCHEV) test[28]. In this project, ten FCHEVs are designed and op-377

erated. On these vehicles, two MH hydrogen storage tanks, same as the ones378

tested in laboratory, are connected in parallel to store hydrogen and supply the379

embedded fuel cell. The refuelling station provides gaseous hydrogen flow with380

constant pressure 10bar to charge the MH tank. During operation, the fuel cell381

system on the FCHEVs is used as the first power source to charge the batteries382

and then supply the vehicle load. Therefore, stable hydrogen flow is required383
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for constant fuel cell output power. The variation of the physical state during384

charging and discharging process of the embedded MH hydrogen storage tank385

are recorded separately.386

Fig. 7 - Physical state variation: (a)Hydrogen flow variation during charging

process; (b)Hydrogen flow variation during discharging process; (c)Pressure

variation during charging process; (b)Pressure variation during discharging pro-

cess; (e)Temperature variation during charging process; (f)Temperature varia-

tion during discharging process.

Fig. 7 show the examples of the dynamic response of the MH hydrogen stor-387

age tanks. During charging process, the physical state variation presents two388

different stages. The first stage is dominated by the pressure difference so that389

the pressure and temperature increased rapidly with the high gaseous hydrogen390

flow imported to the tank. Then the hydrogen is absorbed by MH host material391

continuously, which leads to the pressure and temperature tend to constant.392
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In this stage, the temperature decreases due to the heat remove of the thermal393

control system, which is used for accelerating the hydrogenation reaction. Com-394

pared to the three hydrogenation reaction phases introduced above, these two395

stages of practical application are also driven by external factors like pressure.396

No matter of the initial hydrogen remaining in the tank, the performance of397

the first stage shows the same tend. When the gaseous hydrogen concentra-398

tion meets the hydrogenation conditions, the second stage starts, which will be399

determined by the hydrogen to metal ratio.400

The discharging process is separated into three stages. The hydrogen release401

flow rate is controlled to be constant to meet the requirement of fuel cell con-402

sumption. The thermal control system provide stable energy to heat the tank.403

Similar to charging process, due to the pressure deference, the hydrogen pres-404

sure drops quickly in the first stage. The temperature of MH tank raised rapidly405

because of the low hydrogen generation reaction speed. When the hydrogen des-406

orption reaction occurred stable and rapidly, the hydrogen generation speed is407

high enough to satisfy the releasing requirement so that more heat is absorbed408

for reaction. Thus, in the second stage, the pressure is maintained stable and409

the temperature raised speed is slow down. The performance of third stage is410

determined by the low SOC of MH tank. During the sorption procedure, the411

equilibrium pressure drops at low hydrogen concentration, which also leads to412

the decreased hydrogen generation speed. In order to hold the hydrogen releas-413

ing speed, more heat absorption is needed. As a result, the pressure drops and414

the rate of temperature raise decreases at the third stage.415

The feature vectors selected for classification can reflect the characteristics416

of each physical state in different stage. The time domain features of these417

data based on statistical characteristics are typical for the performance since418

the recorded data is time sampled. The energy density variation could also419

present the characteristic of the data. Therefore, in this work, kurtosis feature420

and entropy feature are also picked as classification feature vectors.421

The optimal weight is searched during classifier training process using Grid422

Search (GS) method. GS is an exhaustive search method that tests all the423
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set of the candidates’ weights to find out the best performing one as the final424

result. Thus, the optimal weight with highest classification precision is then425

obtained. Since the number of categories is not too much, the disadvantage of426

time consuming can be ignored.427

Actually, both two single classifiers have a good consequent on the state clas-428

sification of hydrogenation and dehydrogenating process, and the classification429

accuracy rate of the tested databases have reached more than 70%. The NB430

classifier has a simple structure, so the time required for classifier training and431

state classification of each test data group is short. While the multiple SVM432

classifier is composed of more than one single SVM classifiers, in which each433

state category of the data is trained in pairs and takes a relatively long time.434

However, the correct recognition rate of the test database by the joint multi-435

classifiers is much higher than that of each single classifier, which has higher436

application value. In the joint multi-classifier training, the GS algorithm needs437

to perform multiple iterations when seeking the optimal weight, which leads to438

a significant increase in training time compared to the single classifier. However,439

the classification time for each set of test data is still short, which can meet the440

time limit in practical applications.441

4.2.2. Method evaluation442

In order to evaluate the proposed on-line SOC estimation method, ten group443

of real operation data are picked form charging and discharging database ran-444

domly for validation. K-folds cross validation method is applied for testing the445

classification accuracy of the designed joint multi-classifier. In each test pro-446

cedure, 9 groups of data are set as the training set and the other one is set447

for testing. After repeating the procedure for 10 times, the average value of448

the mean square error of all the test procedure is regarded as the error of the449

classifier.450

For the SOC estimation of charging process, the combine weight of NB451

classifier and SVM classifier are 0.5. Under this situation, the highest state452

classification accuracy of 91.3% is achieved. While for discharging process, the453
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highest accuracy of state classification using joint multi-classifier is 83.2% with454

the combine weight of 0.6 and 0.4, respectively for NB classifier and SVM clas-455

sifier.456

4.2.3. On-line SOC estimation during vehicle charging457

As discussed above, the on-line SOC estimation during charging and dis-458

charging process are quite difficult but important. Several groups of real opera-459

tion data from Mobypost database are selected to validate the proposed on-line460

SOC estimation algorithm. In the used database for charging process, the data461

was recorded in refuelling station. On the vehicle management system, the hy-462

drogen mass filling into the tank is calculated by the information from hydrogen463

flow rate, which is used for calibrating the on-line estimation result.464

Fig. 8(a) presents the state classification result during one charging process.465

Obviously, the classification error is merely appears in transition of the first466

stage to the second stage, which provides the possibility to estimate the SOC467

using the statistical model in accuracy.468

Fig. 8(b) gives the on-line SOC estimation result. Here, the source of the469

picked data for validation is a charging process from completely released state470

to fully charged state occurred on one FCHEV of Mobypost project. In this471

project, the fuel cell mode stops when the SOC of the MH tank is lower than472

10% for protecting fuel cell. As a result, the initial SOC is set as 10%. As473

discussed above, the SOC estimation based on the proposed statistical model474

is inaccuracy. Therefore, when the output of the on-line state classifier shows475

the reaction is under the first stage, the SOC is calculated by the integration476

with time of the hydrogen flow rate entered. Taking the calculated value on477

the vehicle as calibration, the SOC estimation error is 0.2%. The fluctuation of478

ambient temperature and the measurement deviation might be the main reason479

causes the estimation error.480
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Fig. 8 - On-line test results for charging process. (a)On-line state classification

result; (b)SOC estimation result.

4.2.4. On-line SOC estimation during vehicle operation481

The discharging process is more complicated than charging, while it is more482

significant to estimate the SOC of embedded MH tank during vehicle operation.483

The used database for validation was recorded in a continuously vehicle484

operation process, before that the hydrogen storage tank is fully charged at485

refuelling station. Therefore, the recorded data of remaining hydrogen mass is486

calculated by the released hydrogen flow rate.487

Fig. 9(a) presents the on-line state classification result of the joint multi-488

classifier. It can be seen that the classification error is concentrated in the first489

stage and the third stage, while in the second stage, the performance of the490

classifier is excellent.491
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Fig. 9 - On-line test results for discharging process. (a)On-line state classifica-

tion result; (b)SOC estimation result.

The classification result is used to estimate the SOC of the embedded MH492

hydrogen storage tank. Based on the mathematical model proposed above,493

the SOC of the tank can be calculated by the data point recognized as second494

stage. Since the degradation of the MH hydrogen storage tank is not taken495

into consideration, the hydrogen mass remained in the tank at the period of496

recognized second stage can be estimated. Fig. 9(b) gives the estimation result,497

in which the hydrogen mass in the first stage and third stage is calculated by498

the recorded data of hydrogen flow rate. Compared to the value of hydrogen499

mass in the tested database, the on-line SOC estimation results shows a great500

agreement with the mean square error of 4.29%, which is acceptable. Besides,501

the real operation data is recorded every second, and the testing time for one502

group of data is less than 1 × 10−4s. Thus, this on-line SOC estimation with503

high accuracy and low time consumption is of high practical value.504
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5. Conclusion505

This work focuses on the data based study of the MH hydrogen storage tank.506

The studied database is collected from laboratory experiments and Mobypost507

project separately, which are representative for reflecting the performance of508

the hydrogenation reaction. The models designed in this work is based on509

the statistical theory to characterize the performance of the main parameters510

of reaction including pressure, temperature, hydrogen flow rate and hydrogen511

mass. The P-C-T based SOC estimation method is proposed on the basis of512

the main physical character of the reaction process. More data in a wide range513

of distinct temperatures and long-term tests will be of great help to validate or514

improve the proposed model. In addition, an effective on-line SOC estimation515

method is proposed through designing a joint multi-classifier to recognize the516

stage of reaction. Combined with the P-C-T based SOC model, the hydrogen517

remaining in the tank can be estimated on real time. This method might be518

not an accurate measurement of hydrogen sorption. However, it gives a solution519

for on-board hydrogen storage SOC estimation, which can provide significant520

information for the embedded energy management system.521
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