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Abstract: Emergency medical services (EMS) provide crucial emergency assistance and ambula-1

tory services. One key measurement of EMS’s quality of service is their ambulances’ response2

time (ART), which generally refers to the period between EMS notification and the moment an am-3

bulance arrives on the scene. Due to many victims require care within adequate time (e.g., cardiac4

arrest), improving ARTs is vital. This paper proposes to predict ARTs using machine learning (ML)5

techniques, which could be used as a decision-support system by EMS to allow a dynamic selection6

of ambulance dispatch centers. However, one well-known predictor of ART is the location of7

the emergency (e.g., if it is urban or rural areas), which is sensitive data because it can reveal who8

received care and for which reason. Thus, we considered the ‘input perturbation’ setting in the9

privacy-preserving ML literature, which allows EMS to sanitize each location data independently10

and, hence, ML models are trained only with sanitized data. In this paper, geo-indistinguishability11

was applied to sanitize each emergency location data, which is a state-of-the-art formal notion12

based on differential privacy. To validate our proposals, we used retrospective data of an EMS13

in France, namely, Departmental Fire and Rescue Service of Doubs, and publicly available data14

(e.g., weather and traffic data). As shown in the results, the sanitization of location data and the15

perturbation of its associated features (e.g., city, distance) had no considerable impact on predicting16

ARTs. With these findings, EMSs may prefer using and/or sharing sanitized datasets to avoid17

possible data leakages, membership inference attacks, or data reconstructions, for example.18

Keywords: Emergency medical services; Emergency medicine; Decision support system; Pre-19

hospital emergency care; Ambulance response time; Machine learning; Geo-indistinguishability;20

Differential privacy; Privacy-preserving machine learning; Input perturbation.21

1. Introduction22

Ambulance response time (ART) is a key component for evaluating pre-hospital23

emergency medical services (EMS) operations. ART refers to the period between the24

notification and the moment an ambulance arrives at the emergency scene [1,2], and it25

is normally divided into two periods: the pre-travel delay, from the notification to the26

ambulance dispatch, and the travel time, from the ambulance dispatch to arrival on-27

scene. In many urgent situations (e.g., cardiovascular emergencies, trauma, or respiratory28

distress), the victims need first-aid treatment within adequate time to increase survival29

rate [1–6] and, hence, improving ART is vital.30

In many parts of the world, such as France, fire departments are responsible for31

many critical situations, including fires, hazards, severe storms, floodings, as well as32

non-urgent and urgent EMS calls (e.g., traffic accidents, drowning). In this paper, we33

analyzed EMS operations of the Departmental Fire and Rescue Service of Doubs (SDIS34

25), which has 71 centers currently deployed across the Doubs region in France to attend35

to its population. As noticed in [7,8], the SDIS 25 and fire departments in general, have36

been facing a continuous increase in the number of interventions over the years, which37
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may have adverse consequences on ARTs. For instance, the pre-travel delay affects38

directly ARTs if there is a lack of human and material resources when a call is received.39

This means, if there is a lack of firefighters, ambulances, or both, ART may be higher40

than allowed and, hence, a breakdown in the SDIS 25 service occurs [9]. This inability to41

assist within the time limits impacts negatively both EMS and victims because the safety42

of a certain area or population will be at risk. Thus, there is a need for an intelligent ART43

prediction system, which can assist SDIS 25 (and EMS, in general) in the dispatching of44

ambulances.45

Indeed, predicting ART is useful for many reasons. First of all, it can help in46

choosing the best center to provide the ambulance. At present, for SDIS 25, each city47

in the department is associated with an ordered list of centers with the needed engine48

to respond, so that the first centers are the most likely to provide a rapid and adequate49

response. This sorting is guided both by the travel time needed to get from the center to50

the city and by the material and human resources of the center. However, this ordering51

of centers by city is fixed once and for all. While it does take into account the actual52

distance of the travel (not the Euclidean distance, for example), it does not consider53

the state of the road traffic, weather conditions, etc. This way, a center might be a little54

closer to the emergency scene than another, but may occasionally have a longer travel55

time due to traffic congestion. Predicting ART would therefore make it possible to move56

from static center scheduling to dynamic scheduling. It would also make it possible57

to estimate the exit time of vehicles partially and to see in advance whether, at a given58

moment, a center is at risk of running out of ambulances. In other words, it enables59

the anticipation of breakdowns and the redeployment of resources. Lastly, in the long60

term, it can be an element of a simulator to determine the evolution of response time and61

breakdowns during the creation or relocation of a center, the modification of resources62

by the center, etc.63

As aforementioned, an important factor of ART is the location of the intervention,64

e.g., in dense urban areas, the distance may be short, but the travel time may be longer65

due to traffic congestion. On the other hand, travel distance and travel time may be66

longer for rural areas. In other words, the location information is of great importance67

for the prediction of travel time and, naturally, ART [10,11]. However, the location of an68

emergency is also regarded as sensitive data because it can reveal who received care and69

for which reason. For example, by knowing that one intervention took place in front of70

the house of a debilitated person, attackers with auxiliary information may accurately71

infer that this person received care and (mis)use this information for their own good.72

Indeed, location privacy is an emerging and active research topic in the literature [12–14]73

as publicly exposing users’ location raises major privacy issues. A common way to74

achieve location privacy is by applying a location obfuscation mechanism. In [14], the75

authors proposed geo-indistinguishability (GI), which is based on the state-of-the-art76

differential privacy (DP) [15] model, to protect the location privacy of users. GI has77

received considerable attention due to its effectiveness and simplicity of implementation78

(e.g., Location Guard [16]).79

In this paper, we propose to sanitize, independently, each emergency location data80

with GI before training any ML techniques to predict ARTs. In our context, besides the81

own location, with the exact coordinates of both SDIS 25 centers and the emergency82

scenes, one can retrieve important features such as the distance and estimated travel83

time. However, if the location is sanitized via GI, many other explanatory variables84

(e.g., distance, travel time, city) would be ‘perturbed’ too. In the privacy-preserving data85

mining literature, training ML models with sanitized data is common practice [7,17–86

22], which is also known as input perturbation [23]. Different from objective [24] and87

gradient [25] perturbation settings, input perturbation is the easiest method to apply and88

it is independent of any ML and post-processing techniques. We also remark that input89

perturbation is in accordance with real-world applications where EMS would only use90
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and/or share sanitized data with trusted third parties to train and develop ML-based91

decision support systems.92

To summarize, this paper proposes the following contributions:93

• Recognize the most influential variables when building accurately ML-based mod-94

els to predict ART. This would allow other EMS to collect these variables and95

recreate our methodology or develop their own considering their policies.96

• Evaluate the effectiveness of several values of ε (i.e., the privacy budget), to sani-97

tize emergency location data with GI and train ML-based models to predict ART.98

To the author’s knowledge, this is the first work to assess the impact of geo-99

indistinguishability on sanitizing the location of emergency scenes when training100

ML models for such an important task. While predicting ART is a means to allow101

EMS to save more lives, we notice that it is also possible to do so while preserving102

the victims’ privacy.103

Outline: The remainder of this paper is organized as follows. In Section 2, we describe104

the material and methods used in this work, i.e., the geo-indistinguishability privacy105

notion that we are considering, the data presentation (context, collection, and analysis),106

the sanitization of emergency scenes with GI, the ML models, and the experimental107

setup. In Section 3, we present the results of our experiments and our discussion. Lastly,108

in Section 4, we present the concluding remarks and future directions.109

2. Materials and Methods110

In this section, we revise the notion of privacy considered in this paper, namely,111

geo-indistinguishability (Subsection 2.1), we provide a description of the processing of112

interventions by SDIS 25 (Subsection 2.2), the data collection process (Subsection 2.3),113

the analysis of SDIS 25 ARTs (Subsection 2.4), the GI-based sanitization of emergency114

location data (Subsection 2.5), the ML models used for predicting ARTs (Subsection 2.6),115

and the experimental setup (Subsection 2.7).116

2.1. Geo-indistinguishability117

Differential privacy [15] has been accepted as the de facto standard for data privacy.118

DP was developed in the area of statistical databases but it is now applied to several119

fields. Furthermore, DP has also been extended to a local model (a.k.a. LDP [23]) in120

which users sanitize their data before sending it to the server. While DP is well-suited to121

the case of trusted curators, with LDP, users do not need to trust the curator.122

Geo-indistinguishability [14] is based on a generalization of DP developed in [26]123

and has been proposed for preserving location privacy without the need of a trusted124

curator (e.g., a malicious location-based service – LBSs). A mechanism satisfies ε-GI125

if for any two locations x1 and x2 within a radius r, the output y of them is (ε, r)-geo-126

indistinguishable if we have:127

Pr(y|x1)

Pr(y|x2)
≤ eεr, ∀r > 0, ∀y, ∀x1, x2 : d(x1, x2) ≤ r.

Intuitively, this means that for any point x2 within a radius r from x1, GI forces the128

corresponding distributions to be at most l = εr distant. In other words, the level of129

distinguishability l increases with r, e.g., an attacker can distinguish that the user is in130

Paris rather than London but can hardly (controlled by ε) determine the user’s exact131

location. Although both GI and DP use the notation of ε to refer to the privacy budget,132

they cannot be compared directly because ε in GI contains the unit of measurement (e.g.,133

meters).134

On the continuous plane (as we consider in this paper), an intuitive polar Laplace135

mechanism has been proposed in [14] to achieve GI, which is briefly described in the136

following. Rather than reporting the user’s true location x ∈ R2, we report a point137

y ∈ R2 generated randomly according to Dε(y) = ε2

2π e−εd2(x,y). Algorithm 1 shows the138
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pseudocode of the polar Laplace mechanism in the continuous plane. More specifically,139

the noise is drawn by first transforming the true location x to polar coordinates. Then,140

the angle θ is drawn randomly between [0, 2π) (line 3), and the distance r is drawn from141

C−1
ε (p) (line 5), which is calculated using the negative branch W−1 of the Lambert W142

function. Finally, the generated distance and angle are added to the original location.143

Algorithm 1 Polar Laplace mechanism in continuous plane [14]

1: Input : ε > 0, real location x ∈ R2.
2: Output : sanitized location y ∈ R2.
3: Draw θ uniformly in [0, 2π)
4: Draw p uniformly in [0, 1)
5: Set r = C−1

ε (p) = − 1
ε

(
W−1

(
p−1

e

)
+ 1
)

6: return : y = x + 〈r cos (θ), r sin (θ)〉

2.2. Process Flow description144

The Departmental Fire and Rescue Service of Doubs currently has 71 centers de-145

ployed throughout the region of Doubs, France, serving a population of around 540,000146

people. The focus of this paper is on interventions with victims that were further trans-147

ported to hospitals. In these interventions, there was a need for an emergency and victim148

assistance vehicle (a.k.a. Véhicule de Secours et d’Assistance aux Victimes - VSAV). VSAVs149

are equipped with adequate material and personnel for first-aid treatment in urgent150

situations. In this paper, we interchangeably use the term ‘ambulance’ when referring to151

VSAV.152

The process of an intervention is briefly described in the following. First, an153

emergency call is received and treated by an operator. Next, the adequate crew/engine154

is notified (t1). Once the sufficient armament is gathered, the ambulance goes to the155

emergency scene (t2). Upon arriving on-scene, the crew uses a mechanical system to156

report their arrival (t3). We focus on the ART period, which is calculated as: ART =157

t3 − t1.158

The operation process to decide the adequate SDIS 25 center to attend the interven-159

tion depends on the exact location of the intervention. As stated previously, there is a city,160

a district, and a zone that jointly define a list of priority centers, which are responsible161

for the call. The reason for such a list is because a single center may not have sufficient162

resources at time t1 to attend an intervention. In this case, if the first center of the list163

does not have sufficient resources, another center(s) would be in charge of the call. Also,164

many situations may generate several victims (e.g., traffic accidents, floods). In these165

cases, a single intervention can require more than one ambulance, which can come from166

different centers depending on the availability of resources. This means different ARTs167

for the same intervention and, therefore, we focus on each ambulance in our analysis168

and predictions.169

In addition, although in some countries the reason of the emergency may require170

a recommended ART [27,28], for SDIS 25, ART depends on the Zone as detailed in [9].171

There are three zones: Z1 refers to urban areas, Z2 refers to semi-urban areas, and172

Z3 refers to rural ones. Therefore, SDIS 25 ambulances should arrive on-scene with173

ART ≤ 10 minutes (min) on Z1 and with ART ≤ 25 min on Z2 and Z3, i.e., including174

the pre-travel delay (gathering armament) and travel-time. If these time limits are not175

reached, a breakdown in SDIS 25 services is generated [9] and the victim state may be176

negatively impacted [1,5]. Lastly, SDIS 25 may also help other EMS outside the Doubs177

region, and in this case, there is no pre-defined ART limit by SDIS 25.178

2.3. Data collection179

We used retrospective data of EMS operations recorded by SDIS 25. All interven-180

tions with victim, that were attended by SDIS 25 centers with a VSAV, were eligible181
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for inclusion. These data covered the period of January 2006 to June 2020. The main182

attributes of these data are described in the following:183

• ID is a unique identifier for each intervention;184

• SDate is the time SDIS 25 took charge of the intervention by processing the call;185

• ADate is the time when an ambulance arrived on the emergency scene;186

• Center is the SDIS 25 center from which the ambulance left;187

• Location is the precise location (latitude, longitude) of the intervention;188

• Zone is either urban (Z1), semi-urban (Z2), or rural (Z3);189

• City is the municipality where the intervention took place. A city may have zero or190

more Districts.191

Each ambulance represents one sample, i.e., a single intervention may have received192

one or more ambulances. The ART variable was calculated as ART = ADate− SDate.193

We excluded outlying observations with ART of less than 1 minute and with ART of more194

than 45 minutes, which represented less than 1.4% of the original number of samples.195

Using SDate, we have added temporal information such as: year, month, day,196

weekday, hour, and categorical indicators to denote holidays, end/start of the month,197

and end/start of the year. Besides, with the exact coordinates from both Center and198

emergency’s Location, we calculated the great-circle distance1 to add as a feature, which199

is the shortest distance between two points on the surface of a sphere. We have added200

the number of interventions in the past hour and the number of active interventions in201

the current hour. As also remarked in the literature [3,10], the number of interventions202

on previous hours might impact ART. In addition, external data that may affect ART203

were gathered from the following sources:204

• Bison-Futé [29] provides prediction of traffic level for the Doubs region as indicators205

ranging from 1 (regular flow) to 4 (extremely difficult flow) per day. We added206

these indicators according to SDate;207

• Météo-France [30] supplies historical weather information such as precipitation,208

temperature, wind speed, and gust speed. We added weather data per hour accord-209

ing to SDate;210

• OSRM API [31] gives the driving distance on the fastest route and its travel time211

duration. This way, with the coordinates from both Center and emergency’s Location,212

we added these two features, i.e., estimated travel time in minutes and driving213

distance in kilometers (km), for each ambulance.214

2.4. Data analysis215

After removing outlying observations, the dataset at our disposal has 186, 130 dis-216

patched ambulances from SDIS 25 centers that attended 182, 700 EMS interventions. The217

frequency on the number of dispatched ambulances per zone is 39.62% (Z1), 33.38%218

(Z2), 26.71% (Z3), and 0.29% (outside the Doubs region), respectively. Figure 1 illus-219

trates the distribution of our variable of interest, namely ART, via three histograms220

with bins of 1 minute for each zone within the Doubs region. One can notice that the221

ART distributions follow a typical right-skewed distribution also observed in other222

works/countries [3,27,32]. The mean and standard deviation (std) values for zones Z1,223

Z2, and Z3 are 8.79± 5.66 min, 11.43± 6.15 min, and 15.38± 6.41 min, respectively. SDIS224

25 had about 79.52% of the time ART ≤ 10 min on zone Z1, and had about 95.76% and225

92.50% of the time ART ≤ 25 min on zones Z2 and Z3, respectively.226

Figure 2 illustrates the hourly number of dispatched ambulances (left-hand plot)227

and the cumulative ART in hours per day of the week and hour in the day (right-hand228

plot). One can notice that the number of dispatched ambulances is notably related to229

the hour in the day, i.e., there were more interventions in working periods rather than230

between 0h to 6h. This behavior is also noticed in the works [11,27]. Besides, from 8h in231

1 https://en.wikipedia.org/wiki/Great-circle_distance

https://en.wikipedia.org/wiki/Great-circle_distance
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Figure 1. Distribution of the ART variable for zones Z1, Z2, and Z3, respectively.
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Figure 2. Histogram of the number of dispatched ambulances per hour in the day (left-hand plot)
and cumulative ART in hours per day of the week and hour in the day (right-hand plot).

the morning on, the ART starts to increase and remains high up to 19h when it starts to232

decrease. For instance, ambulances dispatched during working periods are more likely233

to traffic congestion and, naturally, to undergo through longer travel time. Secondly, due234

to the number of interventions in a given hour, SDIS 25 centers may have taken more235

time to dispatch ambulances if their resources were in use in other incidents. A slightly236

different profile can be seen on weekends, with noticeable higher cumulative ARTs in237

the late night (0-6h) and during some hours of the day too.238

Summary statistics per year and per zone are shown in Table 1. The metrics in this239

table includes the total number of dispatched ambulances (Nb. Amb.), and descriptive240

statistics such as mean and standard deviation (std) values for the ART variable. We241

recall that for the year 2020, these statistics are up to June 2020 only. As also noticed242

in [7,8], the number of interventions increases throughout the years. The year 2010243

presented high values in comparison with all other years, e.g., for Z1, the average ART244

was above the 10 min recommendation.245

2.5. Preserving emergency location privacy with geo-indistinguishability246

To preserve the privacy of each emergency scene, we apply the polar Laplace247

mechanism in Alg. 1 to the Location attribute of each intervention. This means, even248

if our dataset is per ambulance dispatch (i.e., 186, 130 ambulances), we used the same249

sanitized value per intervention (i.e., 182, 700 unique interventions). Although in [14] the250

authors propose two further steps to Alg. 1, i.e., discretization and truncation, both steps251

can be neglected in our context. This is, first, because SDIS 25 may also help other EMS252

outside the Doubs region as we discussed in Subsection 2.2, and second, we assume253

that any location in the continuous plane can be an emergency scene. While reporting254

an approximate location in the middle of a river may not have much sense in LBSs,255

in an emergency dataset with approximate locations, this may indicate an urgency for256

someone who drowned in the river, for example.257

We used five different levels for the privacy budget ε = l/r, where l is the privacy258

level we want within a radius r. Table 2 exhibits the five different levels of privacy. For259
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Year Z1 Z2 Z3
Nb. Amb. Mean Std Nb. Amb. Mean Std Nb. Amb. Mean Std

2006 197 9.23 4.41 367 11.25 5.50 354 14.27 5.40
2007 236 7.39 3.05 671 10.79 5.04 595 14.35 5.52
2008 799 8.69 6.04 1,055 11.19 5.32 911 14.53 6.02
2009 1,363 8.76 6.05 2,087 11.08 5.67 1,872 14.94 6.46
2010 2,643 10.08 7.23 2,797 12.48 6.85 2,483 16.01 7.22
2011 5,971 8.26 5.61 4,276 11.24 6.13 3,295 14.50 6.25
2012 6,078 8.66 5.89 4,661 11.18 6.39 3,602 14.86 6.24
2013 6,780 8.82 5.72 5,048 11.03 6.11 3,972 15.07 6.30
2014 6,847 8.37 5.23 5,481 10.80 5.86 4,240 14.91 6.34
2015 7,226 8.46 5.50 5,596 10.86 5.78 4,643 15.02 6.12
2016 7,510 8.50 5.35 6,179 11.19 5.92 4,861 15.32 6.35
2017 8,650 8.76 5.32 7,251 11.49 6.01 5,523 15.51 6.36
2018 9,051 8.90 5.46 7,641 11.64 6.11 5,956 15.59 6.23
2019 7,030 9.42 6.02 6,238 12.29 6.66 5,016 16.60 6.88
2020∗ 3,397 9.73 5.87 2,843 12.59 6.56 2,449 16.46 6.44

Table 1: Mean and std values for the ART variable and the total number of dispatched
ambulances (Nb. Amb.) per year in zones Z1, Z2, and Z3, respectively. For 2020, we
only consider cases of the first semester.

the sake of illustration, Figure 3 exhibits three maps of the Doubs region with the points260

of original raw location (left-hand plot), ε = 0.005493-GI location (middle plot), and261

ε = 0.002747-GI location (right-hand plot). As one can notice, with an intermediate262

privacy level (l = ln (3), r = 400), locations are more spread throughout the map while263

with a lower privacy level (l = ln (3), r = 200), locations approximate the real clusters.264

ε = l/r l r (meters)
0.005493 ln (3) 200
0.002747 ln (3) 400
0.001155 ln (2) 600
0.000866 ln (2) 800
0.000693 ln (2) 1, 000

Table 2: Values of ε = l/r for sanitizing emergency location data with GI.

With the new Location values of each intervention, we also reassigned the city,265

the district, and the zone when applicable. In addition, we recalculated the following266

features associated with it: the great-circle distance, the estimated driving distance, and267

estimated travel time. The two features recalculated with OSRM API only consider268

roads, i.e., if the obfuscated location is in the middle of a farm, the closest route estimates269

the driving distance and travel time until the closest road. We also highlight that if the270

new coordinates of the emergency scene indicate a location closer to another SDIS 25271

center, even in real life, it would not imply that this center took charge of the intervention.272

Therefore, the center attribute was not ‘perturbed’.273

To show the impact of the noise added to the Location attribute, Table 3 exhibits the274

percentage of time that categorical attributes (zone, city, and district) were ‘perturbed’275

(i.e., reassigned); the mean and std values of the great-circle distance attribute and its276

correlation with the ART variable (Corr. ART). In Table 3, we report the mean(std)277

values since we repeated our experiments with 10 different seeds (i.e., DP algorithms are278

randomized). Although we did not include the estimated driving distance and estimated279

travel time from OSRM API in this analysis, in preliminary tests, we noticed that these280

two features follow a similar pattern as the great-circle distance attribute.281
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Figure 3. Emergency locations and SDIS 25 centers throughout the Doubs region: original data
(left-hand plot), ε = 0.005493-GI data (middle plot), and ε = 0.002747-GI data (right-hand plot).

From Table 3, one can notice that many features are perturbed due to sanitization282

of emergency’s location with GI. With high levels of ε (i.e., less private), the city and283

the zone suffer low ‘perturbation’. On the other hand, district is reassigned many times284

as it is geographically smaller than the others. When ε = 0.000866, the city is already285

reassigned more than 50% of the time and the district about 75% of the time. Moreover,286

one can notice that the mean and std values of the great-circle distance increase as the287

ε parameter decreases (i.e., more private). Because ε = l/r, making l smaller and/or r288

higher, the stricter ε becomes, and therefore more noise is added to the original locations.289

Besides, the correlation between the great-circle distance with the ART variable decreases290

proportionally as ε becomes smaller.291

Data Zone City District Great-circle Dist. (km)
‘Perturbation’ (%) Mean std Corr. ART

Original - - - 3.44 3.72 0.369
ε = 0.005493 5.20(0.05) 7.68(0.06) 25.8(0.05) 3.48(1e-3) 3.72(7e-4) 0.367(2e-4)
ε = 0.002747 11.3(0.05) 17.6(0.10) 41.5(0.12) 3.57(1e-3) 3.72(1e-3) 0.362(2e-4)
ε = 0.001155 28.1(0.06) 42.3(0.10) 66.2(0.09) 4.03(3e-3) 3.74(3e-3) 0.335(5e-4)
ε = 0.000866 35.5(0.10) 52.4(0.11) 74.0(0.11) 4.38(3e-3) 3.81(4e-3) 0.313(1e-3)
ε = 0.000693 41.4(0.12) 60.3(0.09) 79.4(0.05) 4.77(6e-3) 3.92(5e-3) 0.288(1e-3)

Table 3: Percentage of perturbation for categorical attributes (city, zone, and district)
according to ε and statistical properties (mean and std values and correlation with ART)
of the original and GI-based datasets for the great-circle distance attribute. Mean(std)
values are reported since we repeated our experiments with 10 different seeds.

2.6. Machine learning models292

Four state-of-the-art ML techniques have been considered during our experiments,293

to predict the scalar ART outcome in a regression framework. They are briefly described294

in the following:295

• Extreme Gradient Boosting (XGBoost) [33] is a decision-tree-based ensemble ML296

algorithm that produces a forecast model based on an ensemble of weak forecast297

models (decision trees). XGBoost uses a novel regularization approach over stan-298

dard gradient boosting machines, which significantly decreases model’s complexity.299

The system is optimized by a quick parallel tree construction and adapted to be300

fault-tolerant under distributed environments.301

• Light Gradient Boosted Machine (LGBM) [34] is a novel gradient boosting frame-302

work, which implemented a leaf-wise strategy. This strategy significantly reduces303
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computational speed and resource consumption in comparison to other decision304

tree-based algorithms.305

• Multilayer Perceptron (MLP) is an artificial neural network of the feedforward306

type [35]. These algorithms are based on the interconnection of several units307

(neurons) to transmit signals, which are normally structured into three or more308

layers, input, hidden(s), and output. We used the Keras library [36] to implement309

our deep learning models.310

• Least Absolute Shrinkage and Selection Operator (LASSO), a method of contracting311

the coefficients of the regression, whose ability to select a subset of variables is312

due to the nature of the constraint on the coefficients. Originally proposed by313

Tibshirani [37] for models using the standard least squares estimator, it has been314

extended to many statistical models such as generalized linear models, etc. We315

used the LASSO implementation from the Scikit-learn library [38].316

2.7. Experiments317

Because in Table 3 there are low variations (i.e., small std values) considering 10318

different executions on all analyzed features, we ran our experimental validation only319

once. In our experiments, each sample corresponds to one ambulance dispatch, in320

which we included temporal features (e.g., hour, day), weather data (e.g., pressure,321

temperature), traffic data, the emergency’s location (latitude and longitude in radians),322

and computable features (e.g., distance, travel time). The scalar target variable is the ART323

in minutes, which is the time measured from the EMS notification to the ambulance’s324

arrival on-scene. All numerical features (e.g., temperature) were standardized using the325

StandardScaler function from the Scikit-Learn library. Categorical features (e.g., center,326

zone, hour) were encoded using mean encoding, i.e., the mean value of the ART variable327

with respect to each feature. The target variable, namely ART, was kept in its original328

format (minutes) since no remarkable improvement was achieved with scaling.329

We divided our dataset into training (years 2006-2019) and testing (six months of330

2020) sets to evaluate our models. Thus, five models per ML technique (i.e., XGBoost,331

LGBM, MLP, and LASSO) were built to predict ART on each month of 2020 considering332

the sanitized datasets with different levels of ε-GI location data (cf. Table 2). In addition,333

for comparison, we also trained one additional model per ML technique with original334

raw data. All models were trained continuously, i.e., at the end of each month, the new335

known data were added to the training set. Lastly, all models were tested with original336

raw data as it would be if EMS deployed a decision-support system in real life. In this337

paper, the models were evaluated using the following regression metrics:338

• Root mean squared error (RMSE) measures the square root average of the squares339

of the errors and is calculated as: RMSE = 1
n

√
∑n

i=1(yi − ŷi)
2;340

• Mean absolute error (MAE) measures the averaged absolute difference between341

real and predicted values and is calculated as: MAE = 1
n ∑n

i=1 |yi − ŷi|;342

• Mean absolute percentage error (MAPE) measures how far the model’s predictions343

are off from their corresponding outputs on average and is calculated as: MAPE =344

1
n ∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣ · 100%;345

• Coefficient of determination (R2) measures the proportion of the variance in the346

dependent variable that is predictable from the independent variable(s). An R2 = 1347

would indicate a model that fully captures the variation in ARTs;348

in which yi is the real output, ŷi is the predicted output, and n is the total number of349

samples, for i ∈ [1, n]. Results for each metric were calculated considering the 6 months350

period of evaluation. The RMSE metric was also used during the hyperparameters351

tuning process via Bayesian optimization (BO). To this end, we used the HYPEROPT352

library [39] with 100 iterations for each model. Table 4 in Appendix A displays the range353
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of each hyperparameter we considered in the BO, as well as the final configuration used354

to train and evaluate the models.355

3. Results and Discussion356

In this section, we present the results of our experimental validation (Subsection357

3.1) and a general discussion (Subsection 3.2) including related work and limitations.358

3.1. Privacy-preserving ART prediction359

Figure 4 illustrates the impact of the level of GI for each ML model to predict ART360

according to each metric. As one can notice in this figure, for XGBoost, LGBM, and361

LASSO, there were minor differences between training models with original location362

data or sanitized ones. On the other hand, models trained with MLP performed poorly363

with GI-based data. In addition, by analyzing models trained with original data, while364

the smaller RMSE for LASSO is about 5.65, for more complex ML-based models, RMSE365

is less than 5.6, achieving 5.54 with XGBoost and LGBM. In comparison with the results366

of existing literature, lower R2 scores and similar RMSE and MAE results were achieved367

in [40] to predict ART while using original location data only. With more details, Table 5368

in Appendix A numerically exhibits the results from Figure 4.369
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Figure 4. Impact of the level of ε-geo-indistinguishability for each ML model to predict ART
according to each metric.

Indeed, among the four tested models, LGBM and XGBoost achieve similar metric370

results while favoring the LGBM model. Thus, Figure 5 illustrates the BO iterative371

process for LGBM models trained with original and sanitized data according to the372

RMSE metric (left-hand plot); and ART prediction results for 50 dispatched ambulances373

in 2020 out of 8,709 ones (right-hand plot) with an LGBM model trained with original374

data (Pred: original) and with two LGBM models trained sanitized data, i.e., with375

ε = 0.005493 (low privacy level) and with ε = 0.000693 (high privacy level).376

As one can notice in the left-hand plot of Figure 5, once data are sanitized with377

different levels of ε-GI, the hyperparameters optimization via BO is also perturbed. This378

way, local minimums were achieved in different steps of the BO (i.e., the last marker per379

curve indicates the local minimum). For instance, even though ε = 0.002747 is more380

strict than ε = 0.005493, results were still better for the former since, in the last steps381

of BO, three better local minimums were found. Besides, prospective predictions were382

achieved with either original or sanitized data. For instance, in the right-hand plot of383
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Figure 5. The left-hand plot illustrates the hyperparameters tuning process via Bayesian opti-
mization with 100 iterations for LGBM models trained with original data and sanitized ones. The
right-hand plot illustrates the prediction of ARTs with LGBM models trained with original data
and with sanitized ones.

Figure 5, even for the high peak-value of ART around 40 minutes, LGBM’s prediction384

achieved some reasonable estimation. Although several features were perturbed due385

to the sanitization of the emergency scene (e.g., city, zone, etc), the models could still386

achieve similar predictions as the model trained with original location data.387

Lastly, in general, the most important features considering LASSO coefficients and388

decision trees’ importance scores were: OSRM API-based features (i.e., estimated driving389

distance and estimated travel time); the great-circle distance between the center and390

the emergency scene; averaged ART per categorical features (e.g., center, city, hour);391

the number of interventions in the previous hour, and the number of interventions still392

active.393

3.2. Discussion394

The medical literature has mainly focused attention on the analysis of ART [3,32,395

41] and its association with trauma [2,28] and cardiac arrest [1,4,6], for example. To396

reduce ART, some works propose reallocation of ambulances [5,42], operation demand397

forecasting [5,7,8,19,43], travel time prediction [11], simulation models [27,44], and EMS398

response time predictions [11,40]. The work in [40] propose a real-time system for399

predicting ARTs for the San Francisco fire department, which closely relates to this paper.400

The authors processed about 4.5 million EMS calls considering original raw location401

data to predict ART using four ML models, namely linear regression, linear regression402

with elastic net regularization, decision tree regression, and random forest. However, no403

privacy-preserving experiment was performed because the main objective of their paper404

was proposing a scalable, ML-based, and real-time system for predicting ART. Besides,405

we also included weather data that the authors in [40] did not consider in their system,406

which could help to recognize high ARTs due to bad weather conditions, for example.407

Currently, many private and public organizations collect and analyze data about408

their associates, customers, and patients. Because most of these data are personal409

and confidential (e.g., location), there is a need for privacy-preserving techniques for410

processing and using these data. Location privacy is an emergency research topic [12,13]411

due to the ubiquity of LBSs. Within our context, sharing and/or publishing the exact412

location of an emergency raises many privacy issues. For instance, the Seattle Fire413

Department [45] displays live EMS response information with the precise location and414

reason for the incident. While the intention of some fire departments [40,45] is laudable,415

there are many ways for (mis)using this information, which can jeopardize users’ privacy.416

In our case, because the intervention’s reason does not impose limits on SDIS 25 ARTs,417

we did not consider this sensitive attribute in our data analysis and privacy-preserving418

prediction models. Additionally, although during the EMS call processing, the SDIS 25419
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operator may acquire some personal data about the victim, this is not an operational420

requirement and, hence, we did not use this information too. This way, we focused our421

attention on the location privacy of each intervention.422

To address location privacy, the authors in [14] proposed the concept of GI, which423

is based on a generalization [26] of the state-of-the-art DP [15] model. As highlighted424

in [14], attackers in LSBs may have side information about the user’s reported location,425

e.g., knowing that the user is probably visiting the Eiffel Tower instead of swimming in426

the Seine river. However, this does not apply in our context because someone may have427

drowned and EMS had to intervene. Similarly, even for the dataset with intermediate428

privacy (and higher) in which locations are spread out in the Doubs region (cf. map429

with 0.005493-GI location in Figure 3), someone may have been lost in the forest and430

EMS would have to interfere. For these reasons, sharing datasets with approximate431

emergency locations (i.e., sanitized with GI, for example) has prospective directions as432

many locations are possible emergency scenes. Indeed, we are not interested in hiding433

the emergency’s location completely since some approximate information is required in434

order to retrieve other features (e.g., city, zone, estimated distance) to use for predicting435

ART.436

Moreover, learning and extracting meaningful patterns from data, e.g., through ML,437

play a key role in advancing and understanding several behaviors. However, on the438

one hand, storing and/or sharing raw personal data with trusted curators may still lead439

to data breaches [46] and/or misuse of data, which compromises users’ privacy. On440

the other hand, training ML models with raw data can also leak private information.441

For instance, in [47] the authors evaluate how some models can memorize sensitive442

information from the training data, and in [48], the authors investigate how ML models443

are susceptible to membership inference attacks. To address these problems, some444

works [7,17–22,49] propose to train ML models with sanitized data, which is also known445

as input perturbation [23].446

Input perturbation-based ML and GI are linked directly with local DP [23] in which447

each sample is sanitized independently, either by the user during the data collection448

process or by the trusted curator, which aims to preserve privacy of each data sample.449

This way, data are protected from data leakage and are more difficult to reconstruct, for450

example. In [20,49], the authors investigate how input perturbation through applying451

controlled Gaussian noise on data samples can guarantee (ε, δ)-DP on the final ML model.452

This means, since ML models are trained with perturbed data, there is a perturbation on453

the gradient and on the final parameters of the model too.454

In this paper, rather than Gaussian noise, the emergency scenes were sanitized with455

Alg. 1, i.e., adding two-dimensional Laplacian noise centered at the exact user location456

x ∈ R2. In addition, this sanitization also perturb other associated and calculated457

features such as: city, district, zone (e.g., urban or not), great-circle distance, estimated458

driving distance, and estimated travel time (cf. Table 3). As well as the optimization of459

hyperparameters, i.e., once data are differentially private, one can apply any function on460

it and, therefore, we also noticed perturbation on the BO procedure. Yet, as shown in461

the results, prospective ART predictions were achieved with either original or sanitized462

data. What is more, even with a high level of sanitization (ε = 0.000693) there was a463

good privacy-utility trade-off. According to [50], if the mean absolute percentage error464

(i.e., MAPE) is greater than 20% and less than 50%, the forecast is reasonable, which is465

the results we have in this paper with MAPE around 30%.466

Lastly, some limitations of this work are described in the following. We analyzed467

ARTs using the data and operation procedures of only one EMS in France, namely SDIS468

25. Although it may represent a sufficient amount of samples, other public and private469

organizations are also responsible for EMS calls, e.g., the SAMU (Urgent Medical Aid470

Service in English) analyzed in [44]. Besides, there is the possibility of human error when471

using the mechanical system to report (i.e., record) the arrival on-scene time “ADate".472

For instance, the crew may have forgotten to record status on arrival and may have473
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registered later, or conversely, where the crew may have accidentally recorded before474

arriving at the location. Also, it is noteworthy to mention that the arrival on-scene does475

not mean arriving at the victim’s side, e.g., in some cases the real location of a victim is476

at the n-th stage of a building as investigated in [41].477

4. Conclusion478

In the event of an acute medical event such as a respiratory crisis or cardio-479

respiratory arrest, the time an ambulance takes to arrive on-scene has a direct impact on480

the quality of service provided [1,2,4–6,28]. Ambulance response time is a fundamental481

indicator of the effectiveness of EMS systems. For this reason, an intelligent decision-482

support system is necessary to help minimize overall EMS response times. The present483

work first analyzes historical records of ARTs to find correlations between their extracted484

features and explain the trends through the 15 years of collected data. Then, we sought485

to predict the response time that each center equipped with ambulances had to an event,486

but not only that, because we also consider that sharing or making public the location487

of the emergency would be subject to privacy issues. Therefore, the joint work aimed488

to evaluate the effectiveness of predicting ARTs considering ML models trained over489

sanitized location data with different levels of ε-geo-indistinguishability. As shown in490

the results, the sanitization of location data and the perturbation of its associated features491

(e.g., city, distance) had no considerable impact on predicting ART. With these findings,492

EMS may prefer using and/or sharing sanitized datasets to avoid possible data leakages,493

membership inference attacks, or data reconstructions, for example.494

For future work, we aim to extend the analysis and predictions to different operation495

times such as the pre-travel delay (i.e., gathering personnel and ambulances) and travel496

time (e.g., from the emergency scene to hospitals), while respecting users’ privacy. In497

addition, new variables will be considered such as the number of dispatched ambulances498

registered in a previous or current time, and the number of ambulances and firefighters499

available in each center at a given time, given that while there are few resources available,500

ART may be longer. Indeed, the aim is to build an intelligent system capable of predicting501

ARTs while respecting victims’ privacy. This way, this system would allow us to reinforce502

SDIS 25 centers with the necessary firefighters to attend incidents faster; to create a new503

center according to the concurrence and high average ARTs for a given area; as well504

as to convert a static resource deployment plan into a dynamic one, which would be505

based on the selection of the center with shorter response times taking into account the506

community the emergency took place, traffic and weather conditions, and so on.507
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Abbreviations526

The following abbreviations are used in this manuscript:527

528

Ambulance response time ART
Bayesian optimization BO
Differential privacy DP
Emergency medical services EMS
Geo-Indistinguishability GI
Least Absolute Shrinkage and Selection Operator LASSO
Location-based services LBSs
Local differential privacy LDP
Light Gradient Boosted Machine LGBM
Multilayer Perceptron MLP
Mean absolute error MAE
Mean absolute percentage error MAPE
Root mean squared error RMSE
Departmental Fire and Rescue Service of Doubs SDIS 25
Extreme Gradient Boosting XGBoost
Zone urban Z1
Zone semi-urban Z2
Zone rural Z3

529

Appendix A. Complementary Results530

Model Search space Best configuration per dataset
Original ε = 0.005493 ε = 0.002747 ε = 0.001155 ε = 0.000866 ε = 0.000693

XGBoost

max_depth: [1, 10] 9 9 6 6 9 9
n_estimators: [50, 500] 465 465 130 235 465 465

learning_rate: [0.001, 0.5] 0.0265 0.0265 0.0858 0.0486 0.0265 0.0265
min_child_weight: [1, 10] 5 5 7 7 5 5

max_delta_step: [1, 11] 4 4 3 4 4 4
gamma: [0.5, 5] 3 3 0 2 3 3

subsample: [0.5, 1] 0.8 0.8 1 1 0.8 0.8
colsample_bytree: [0.5, 1] 0.5 0.5 0.5 0.5 0.5 0.5

alpha: [0, 5] 2 2 1 2 2 2

LGBM

max_depth: [1, 10] 7 8 10 8 8 6
n_estimators: [50, 500] 355 326 477 250 80 441

learning_rate: [1e-4, 0.5] 0.0188 0.0098 0.0164 0.0285 0.0586 0.0300
subsample: [0.5, 1] 0.54066 0.5228 0.6138 0.6699 0.6732 0.5812

colsample_bytree: [0.5, 1] 0.5160 0.5575 0.5204 0.6870 0.5507 0.5451
num_leaves: [31, 400] 400 192 245 398 132 95

reg_alpha: [0, 5] 4 0 5 0 1 4

MLP

Dense layers: [1, 7] 7 3 4 6 6 6
Number of neurons: [28, 213] 210 212 212 29 212 29

Batch size: [32, 168] 140 80 48 82 70 44
Learning rate: [1e-5, 0.01] 0.00265 0.00124 0.0099 0.0099 0.0094 0.0077

Optimizer: Adam Adam Adam Adam Adam Adam Adam
Epochs: 100 100 100 100 100 100 100

Early stopping: 10 10 10 10 10 10 10
LASSO alpha: [0.01, 2] 0.0205 0.0307 0.0105 0.0100 0.0112 0.0107

Table 4: Search space for hyperparameters by ML model and the best configuration
obtained for predicting ARTs per dataset.
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Data Metric XGBoost LGBM MLP LASSO

Original

RMSE 5.5398 5.5427 5.5916 5.6511
MAE 3.4286 3.3880 3.5623 3.4760

MAPE 30.114 29.476 31.867 30.260
R2 0.3412 0.3405 0.3289 0.3145

ε = 0.005493

RMSE 5.5547 5.5544 5.6401 5.6596
MAE 3.4515 3.3915 3.5773 3.4960

MAPE 30.432 29.628 32.307 30.571
R2 0.3377 0.3378 0.3172 0.3124

ε = 0.002747

RMSE 5.5617 5.5536 5.6959 5.6636
MAE 3.4430 3.4628 3.6357 3.4991

MAPE 30.364 30.688 32.687 30.606
R2 0.3360 0.3379 0.3036 0.3115

ε = 0.001155

RMSE 5.5788 5.5867 5.8184 5.6671
MAE 3.4803 3.4991 3.8550 3.5094

MAPE 31.097 31.327 35.704 30.835
R2 0.3319 0.3300 0.2733 0.3106

ε = 0.000866

RMSE 5.5892 5.5885 5.8575 5.6716
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