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We demonstrate experimentally the manipulation of Lamb waves guided along reconfigurable phononic circuits
created by defects composed of threaded rods held with nuts in a perforated solid phononic crystal slab.
Adjusting the free length of the rod, the resonant frequency of the defect can be tuned, without any change
in the supporting phononic crystal slab. Both straight and bent waveguides are fabricated and measured in
an aluminum sample with a lattice constant of 20 mm and a complete band gap extending from 50 to 70 kHz.
Guidance of Lamb waves is clearly observed by Doppler vibrometer, even after 90◦ bends. The eigenmodes
of guided waves are obtained using finite element analysis and to explain the tuning of resonances through a
bending cantilever model. Numerical and experimental results are generally found to be in fair agreement.
They also suggest that the guiding frequency is rather independent of the details of the waveguides. They
are of significance for the design of reconfigurable phononic devices.

I. INTRODUCTION

Phononic crystals (PCs) are functional composites
with spatial periodicity1. Their unique property is to ex-
hibit band gaps in certain frequency range, within which
propagation of elastic waves is prohibited. Thus, they
have direct applications in noise isolation and vibration
reduction2. When periodicity is broken, confined defect
modes appear. PCs are a basis on which to design novel
elastic wave devices such as waveguides3, splitters4, or
acoustic channel drop filters5. Moreover, their disper-
sive properties in passing bands also result in promising
phenomena, such as collimation or negative refraction6.

Although PCs provide a promising pathway to the ma-
nipulation of elastic waves, there have had few real-life
applications so far. Actually, most of them are character-
ized by a passive response and operate in fixed frequency
ranges. The topology or the material parameters are
hardly tunable or reconfigurable after fabrication. Tun-
able manipulation of acoustic or elastic waves has thus
become a fast developing topic7. Since elastic wave prop-
agation is controlled mainly by material properties and
geometry parameters8, wave manipulation can generally
be classified as based on either tunability or reconfigura-
bility.

For tunable PCs, physical or material properties are
tuned using an external control field. Such PCs may be
composed of multiphysical coupled components, such as
piezoelectric9–11, ferroelectric12, or magnetoelastic13 ma-
terials. Dynamic control can be realized by applying an
external biased electric field14,15, a magnetic field16,17,
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and so on. Piezoelectric materials are commonly used18

and can be implemented either on the surface of or inside
PC units. The resonance or Bragg scattering characteris-
tics of the periodic structure can be tuned by an external
circuit, so as to dynamically regulate wave propagation.
When a feedback electronic control circuit is added19,
active or even smart control of wave propagation can
be expected. Moreover, the response can self adapt to
changes in the surrounding environment, such as an in-
cident aerodynamic flow20.

For reconfigurable PCs, the geometry or the layout
is changed in a mechanical way. For instance, tunable
manipulation can be realized continuously based on the
reconfigurability of fluid/solid systems: rotating or re-
moving the solid scatterers in a fluid matrix3,21, or filling
a fluid in a solid matrix containing cavities22–24. Appli-
cation of prestress can change the phononic properties
of solid systems25–27. Soft materials can exhibit large
deformations28,29, so that their geometry or even topol-
ogy can be changed owing to the bulking instability30,31,
leading to a significant change of wave dispersion. Ther-
mal expansion of a solid material can also be used to
control wave propagation to a certain extent32. Bistable
or multi steady states of shape memory materials, includ-
ing shape memory alloys33 and polymers, can be used for
the conversion of different wave characteristics.

Recently, PC slabs have received increasing interest for
the manipulation of Lamb waves23,34–36. Investigations
are focused on flat slabs decorated with holes37 or solid
inclusions38, or grafted with pillars39 or resonators40.
Various devices, such as waveguides41, splitters42 and
filters43, have been designed and verified experimentally.
However, manipulation of Lamb waves remains a difficult
task23,44,45. In the present work, we demonstrate exper-
imentally a simple way to reconfigure easily waveguides
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Figure 1. (a) Photograph of the PC slab sample. A linear
waveguide is formed by a sequence of threaded rods clamped
with nuts to the perforated square lumps. The inset is a close-
up view of the rods and nuts used. (b) Unit cell of the PC
slab and definition of geometrical dimensions.

in perforated PC slabs. Threaded rods, held in dry me-
chanical contact with the slab using nuts, are added at
chosen holes. Adjusting the free length of the rods, the
resonance frequency of bending modes of the rods can
be adjusted continuously within the complete phononic
band gap. Straight waveguides and 90◦ bent coupled-
resonator waveguides are formed experimentally in an
aluminum PC slab. To explore the physical mechanism
behind waveguiding, numerical simulations by using fi-
nite element analysis are performed. Numerical and ex-
perimental results generally agree fairly well, with slight
frequency shifts of resonances. This work is of signif-
icance for the design of reconfigurable elastic wave de-
vices.

II. EXPERIMENTAL AND NUMERICAL
METHODS

The manufactured square-lattice PC slab sample is
shown in Figure 1(a). It is machined in an aluminum
plate. It consists of perforated square lumps connected
by thin bars. In finite element computations, aluminum
is considered isotropic (mass density ρs = 2700 kg/m3,
Poisson’s ratio υ = 0.33, and Young’s modulus E = 6.89
GPa). The lattice constant is a = 20 mm and the thick-
ness of the slab is h1 = a/4. The width of the perforated
square lumps is c = 0.8a and the width of the connecting
bar is b = 0.1a. The radius of the central hole is r = 0.1a.
With those values, the PC slab possesses a wide complete
phononic band gap, as Figure 2 shows (see Section III for
a discussion).

Reconfigurability is implemented by the addition of
threaded steel rods inside selected holes of the PC slab.
The rods are clamped to the lumps by steel nuts placed
symmetrically on both sides of the plate. The consider-
ation of nuts is not required in principle. We observed
experimentally, however, that the unfastened rods had
almost no influence on the transmission properties, be-
cause the rods are not clamped enough to the PC slab
in this case and they can vibrate rather freely. Further-

more, the fastening force applied on each nut was kept
sufficiently small to avoid deformations of the supporting
PC slab. In numerical computations, steel is considered
isotropic (mass density ρs = 6750 kg/m3, Poisson’s ra-
tio υ = 0.3, and Young’s modulus E = 206 GPa). The
thickness of the nuts is h2 = 0.15a. The total length of
the rods is L = 1.5a and their radius is r = 0.1a. As dis-
cussed in Section III, the effective length of the rod (le),
including both the length from nut to free end (l) and the
contribution of the nut, defines its resonance frequencies.
By symmetry, we need only consider the length l of the
rod above the plate (see Fig. 1b). The length of the rod
below the plate is L− h1 − 2h2 − l.

Lamb waves are excited via a piezoelectric patch.
Propagating Lamb waves are detected and imaged using
a Polytec PSV-500 scanning vibrometer. Harmonic sig-
nals with either stepped or fixed frequencies are chosen
for the measurement of transmission and displacement
distribution, respectively. The excitation signal is ampli-
fied before it is applied to the piezoelectric patch bonded
to one side of the slab. The patch is polarized vertically.

Numerical simulations are performed with a 3D fi-
nite element method, for a better understanding of ex-
perimental results and the related physical mechanisms.
Band structures are calculated by applying Bloch bound-
ary conditions on the lateral sides of a single unit cell or
of a super-cell, depending on the distribution of rods and
nuts. Transmission properties are evaluated by consider-
ing a finite PC slab as shown in Fig. 1(a). Note that the
prestress resulting from the fastening of the nuts is not
taken into account in numerical simulations. An out-of-
plane wave source with unit amplitude (U0 = 1) is ap-
plied on one side (S1) of the waveguide. By sweeping the
frequency, we evaluate the frequency response function
(FRF) in decibel units by

F (f) = 20 log10


∫
S2

Uds∫
S1

U0ds

 (1)

where U is the total displacement collected over a receiver
segment (S2) placed at the exit side of the waveguide. It
should be noted that both the source and the receiver are
located inside the phononic crystal. With this setting, for
all frequencies within the complete phononic band gap,
we avoid the interference of guided waves with waves re-
flecting on the external boundary of the finite structure.
To differentiate the polarization of different modes, we
further compute the proportion of the out-of-plane dis-
placement in the squared total displacement via

pz =

∫
|w|2dV∫

(|u|2 + |v|2 + |w|2)dV

, (2)

with (u, v, w) the three components of displacement in
the reference frame of Figure 1(b). Experimental and
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Figure 2. (a) Band structure of the perfect PC slab and (b)
transmission properties of the perfect PC obtained from sim-
ulation (dashed line) and experiment (solid line). The light-
gray parts mark the passing band for out-of-plane modes. The
color bar represents the polarization from 0(blue) to 1(red).

numerical results are compared in detail in the following
sections.

III. RESULTS AND DISCUSSION

In this section, we discuss the band structures and the
frequency response of different phononic circuits.

A. Bare phononic crystal slab

For comparison, we first consider the phononic prop-
erties of the perfect PC slab summarized in Fig. 2. With
the color scale in the phononic band structure varying
from in-plane (blue color) to out-of-plane polarized (red
color), it is seen that both polarizations are effectively
separated, as results for the mid-plane symmetry of the
PC slab. Two bandgaps for out-of-plane Lamb waves are
observed in the band structure, covering the frequency
ranges between 43.15 and 46.37 kHz, and 49.15 kHz and
70.08 kHz. The second, larger, bandgap is mostly consid-
ered in the following. The measured frequency response
is generally in agreement with the computed band struc-
ture and frequency response, though a slight upward fre-
quency shift is observed at the entrance of the bandgap.
This difference may be due to the neglection of the pres-
ence of threaded holes in the slab, effectively leading to an
overestimation of the mass of the perforated lumps. Sig-
nificantly, the measured bandgap is wide enough for the
preparation of different waveguides operating between 50
and 70 kHz, typically.

B. Defect modes with rods and nuts

The addition of threaded rods and a pair of nuts allows
one for the design of reconfigurable waveguides formed
from coupled defects. We consider three different values
of length l: A) l = 0, B) l = 0.15a, and C) l = 0.3a.
The respective supercells are shown in the first column
of Fig. 3. Phononic band structures are shown in the
second column of the figure. As a remark, when defects
are added, the structure looses the mid-plane symmetry
and the separation between in-plane and out-of-plane po-
larized elastic waves is lost. It can be seen, however, that
bands of the bare PC slab are still apparent with un-
changed polarization type. Additionally, defect bands
appear. Those have a color in between blue and red,
meaning that their polarization is mixed and all three
displacements in space coexist. Guiding bands induced
by the presence of defect states are identified in dark-gray
in Fig. 3. Their frequency ranges are reported in Table
I.

Vibration modes around 50 kHz for defect A (l = 0)
are shown in Fig. 3. The bottom free end of the rod
vibrates in a bending motion typical of a clamped-free
beam. The two modes of vibration depicted are orthog-
onal and couple with flexural waves of the supporting
slab. Since those flexural waves are evanescent in the
surrounding PC slab, the defect modes are strongly con-
fined spatially. Globally, one of the pair of modes vibrates
in the direction of the waveguide, x, whereas the other
vibrates in the lateral direction, y. Given the symmetry
of the excitation source with respect to the x axis in the
experiment, we expect the latter mode to be deaf and
hence not to be excited. In addition, another resonance
appears around 65 kHz. This mode is mostly polarized
out-of-plane but there is almost no coupled vibration in
the rod. The displacement distribution is asymmetric
with respect to the x axis, so this mode is also expected
to be deaf.

When length l is increased to 0.15a with defect B, the
vibration motion remains of the exact same type but the
resonance frequency shifts upward to around 60 kHz. As
argued below, the frequency shift results from the de-
crease in the length of the bottom free end of the rod.
When length l is further increased to 0.3a with defect C,
the resonance frequency remains almost the same, around
59 kHz. The top free end of the rod, however, is now vi-

Table I. Guiding bands predicted from finite element compu-
tations and measured for straight and bent waveguides. The
frequency unit is kHz.

Type A B C

Numerical 49.3-51.4 60.7-61.7 59.5-61.0

Straight waveguide 52.6-56.0 54.6-63.2 57.6-61.2

Bent waveguide 52.7-55.5 59.0-61.3 60.3-62.0
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Figure 3. Phononic properties of defects composed of threaded rods held with nuts in the perforated solid PC slab of Figure
2. Three different defects are introduced, with varying value of the free length of rod l: A) l = 0, B) l = 0.15a, and C)
l = 0.3a. In each case, the band structure for the corresponding supercell is shown. The color scale represents the contribution
of out-of-plane displacements to the total polarization of elastic waves, from 0 (blue) to 1 (red). The light-gray areas indicate
the passing band for the out-of-plane polarized waves in the perfect PC slab. The dark-gray areas indicate the considered
waveguiding bands. Vibration modes at marked points are shown on the right. The color scale represents the normalized
amplitude of out-of-plane displacements, from negative (blue) to positive (red).

brating instead of the bottom end.
As a observed above, the resonance frequency can be

tuned experimentally by adjusting length l. The dynamic
equation for an homogeneous rod according to Euler-
Bernoulli beam theory is46

∂2

∂y2

[
EI

∂2v

∂y2

]
− ρAω2v = 0 (3)

where E is Young’s modulus, I is the second moment of
area of the beam, and A is the cross-section area. The
natural frequency for a clamped-free beam with an effec-
tive length le can be evaluated by

ωn = (βnle)
2(EI/ml4e)1/2 (4)

where n = 1, 2... is the order of the vibration mode and
m = ρA is the mass density per unit length. Numeri-
cal value for the mode constants of the first two normal
modes are (β1le)

2 = 3.5160 and (β2le)
2 = 22.0345. For

defect C, the resonance can be identified with the first or
fundamental normal mode, whereas for defects A and B
the resonance can be identified with the second normal

mode. The normal mode frequencies ωn vary with the
inverse of the square of the effective length of the rod.
It should be stressed, however, that the correspondence
is mostly qualitative, since the precise geometry of the
nuts is not taken into account in the homogeneous beam
model and the clamping boundary condition is only ap-
proximately met because of the moderate tightening force
that is applied to the nuts. Anyway, this simple model
explains the continuous tunability of the resonance fre-
quency by adjustement of the free length of the rod.

C. Straight waveguides

In this subsection, we focus on the operation of straight
waveguides made from defects A, B, and C. The total
length of the straight waveguides is 6a in the experiments,
i.e. they are composed of a line of 6 defects. Numerical
and experimental FRF are shown in Fig. 4. They are in
fair agreement but show some differences. For all three
defects, the numerical FRF predicts some transmission
in a frequency band extending around 65 kHz that is not
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Figure 4. Frequency response function (FRF) of straight
waveguides. Numerical and experimental FRFs are shown
in panels (a) and (b). The light-gray areas indicate the pass-
ing bands for out-of-plane polarized waves in the perfect PC
slab. The dark-gray areas indicate the waveguiding bands
induced by each defect. The FRF for the bare PC slab is
plotted with a dashed line in (a) for comparison. Experimen-
tally measured displacement fields at selected frequencies are
displayed in panel (c). The color-scale indicates the ampli-
tude of out-of-plane displacement from 0 (blue) to maximum
(red).

observed experimentally. From the phononic band struc-
ture, this response corresponds to mode P3 in Figure 3
that should be deaf. The numerical FRF is however quite
small and may remain below the experimental detection
baseline. More significant are the transmission bands
highlighted in dark grey in Fig. 4. The numerical FRFs
clearly correspond to the resonant frequency ranges iden-
tified in Fig. 3 and listed in Table I. The experimental
FRFs appear to be shifted in frequency compared to their
numerical counterparts and to have a wider frequency ex-
tension. Since it is known that the frequency bandwidth
of coupled-resonator waveguides is directly related to the
coupling strength between resonant defects47, the obser-
vation indicates that coupling may be underestimated
in the finite element analysis. Furthermore, clear chan-
nelled spectra are observed, with the number of maxima

within transmission bands of the order of the number of
defects in the coupled chain41,48. The frequency shifts
of the resonances may be attributed to the difficulty of
controlling precisely the pre-stress applied to the nuts
in the experimental sample. The pre-stress is assumed
to be zero in the numerical simulations. In the experi-
ment, a varying pre-stress is probably applied to each in-
dividual defect. The consideration of pre-stress suggests
an alternative way of controling wave propagation in the
proposed system and is left for future investigations.

Displacement fields at selected frequencies are mea-
sured over the surface and displayed in the rightmost
column of Fig. 4. Vibration modes appear to be a com-
bination of the x and y polarized modes in Fig. 3. Specif-
ically, modes P1 and P2 degenerate for defect A, modes
P4 and P5 degenerate for defect B, and modes P6 and P7
degenerate for defect C. Overall, Lamb waves are clearly
guided along the waveguides at different frequencies, thus
verifying the reconfigurability of the proposed system.
As a note, no attempt was made at adjusting the free
length of the rods to match experimental and numerical
frequencies.

D. Bent waveguides

Beyond straight waveguides, the principle of coupled-
resonators also allows one to design more arbitrary
chains41, whereas for linear or topological waveguides the
angle of bends is restricted by the symmetry of the lat-
tice. The reconfigurability principle for instance also ap-
plies to 90◦ bent waveguides for the square lattice, as we
consider in this subsection. The total length of the bent
waveguides is 7a, or a chain of 7 coupled defects. Nu-
merical and experimental FRF are shown in Fig. 5. The
numerical FRFs around the resonant bands have limited
changes compared to straight waveguides, although bent
waveguides have an additional defect and a sharp band
after the fourth defect. Similar observations were made
for acoustic waves propagating along linear waveguides48.
This observation suggests that waveguiding is very effi-
cient in theory, and independent of the number of defects
as well as of the existence of bends. The experimental
FRFs show more changes, especially regarding the width
of resonant bands but also the amplitude of the response
at the end of the chain of defects.

Displacement fields at selected frequencies are mea-
sured over the surface and displayed in the rightmost
column of Fig. 5. As in the case of straight waveguides,
the mixture of x and y polarized modes identified in Fig.
3 explains how Lamb waves are guided along the chain
of defects and especially across the 90◦ bend.

IV. CONCLUSION

In this paper, Lamb wave propagation in phononic
circuits formed by reconfigurable chains of defects has
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Figure 5. Frequency response function (FRF) of bent waveg-
uides. Numerical and experimental FRFs are shown in panels
(a) and (b). The light-gray areas indicate the passing bands
for out-of-plane polarized waves in the perfect PC slab. The
dark-gray areas indicate the waveguiding bands induced by
each defect. The FRFs for the corrsponding straight waveg-
uides are plotted with dashed lines in (a) for comparison.
Experimentally measured displacement fields at selected fre-
quencies are displayed in panel (c). The colorscale indicates
the amplitude of out-of-plane displacement from 0 (blue) to
maximum (red).

been investigated. Defects are introduced by attach-
ing threaded rods with nuts to a two-dimensional per-
forated square-lattice PC slab. The consideration of
threaded rods naturally provides reconfigurability by ad-
justing continuously their free length and hence their nat-
ural resonance frequencies. Besides, the solid PC slab
is completely reusable and unaltered when reconfiguring
the phononic circuits. Both straight and 90◦ bent waveg-
uides were designed and fabricated. As illustrated by a
simple bending cantilever model, the central frequency
can span the available complete phononic band gap. In
numerical simulations, the frequency response function is
almost independent of the length of the chain of defects
and of the presence of bends. Experimental results are
generally in fair agreement with numerical ones, though
the mechanical reconfigurablility provided by a human

experimenter remains somehow imprecise, including the
pre-stress applied when fastening the nuts. Mechanical
robots with force sensors may be considered to conduct
precise control of wave propagation. Other phononic cir-
cuits could also be designed as a direct extension of the
present work.
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