
Random Sampling Plus Fake Data: Multidimensional Frequency
Estimates With Local Differential Privacy
Héber H. Arcolezi

heber.hwang_arcolezi@univ-fcomte.fr

Femto-ST Institute, Univ. Bourg. Franche-Comté, CNRS

Belfort, France

Jean-François Couchot

jean-francois.couchot@univ-fcomte.fr

Femto-ST Institute, Univ. Bourg. Franche-Comté, CNRS

Belfort, France

Bechara Al Bouna

bechara.albouna@ua.edu.lb

TICKET Lab., Antonine University

Hadat-Baabda, Lebanon

Xiaokui Xiao

xkxiao@nus.edu.sg

School of Computing, National University of Singapore

Singapore, Singapore

ABSTRACT
With local differential privacy (LDP), users can privatize their data

and thus guarantee privacy properties before transmitting it to

the server (a.k.a. the aggregator). One primary objective of LDP

is frequency (or histogram) estimation, in which the aggregator

estimates the number of users for each possible value. In practice,

when a study with rich content on a population is desired, the inter-

est is in the multiple attributes of the population, that is to say, in

multidimensional data (𝑑 ≥ 2). However, contrary to the problem

of frequency estimation of a single attribute (the majority of the

works), the multidimensional aspect imposes to pay particular at-

tention to the privacy budget. This one can indeed grow extremely

quickly due to the composition theorem. To the authors’ knowledge,

two solutions seem to stand out for this task: 1) splitting the privacy

budget for each attribute, i.e., send each value with
𝜖
𝑑
-LDP (Spl),

and 2) random sampling a single attribute and spend all the privacy

budget to send it with 𝜖-LDP (Smp). Although Smp adds additional

sampling error, it has proven to provide higher data utility than

the former Spl solution. However, we argue that aggregators (who
are also seen as attackers) are aware of the sampled attribute and

its LDP value, which is protected by a "less strict" 𝑒𝜖 probability

bound (rather than 𝑒𝜖/𝑑 ). This way, we propose a solution named

Random Sampling plus Fake Data (RS+FD), which allows creating

uncertainty over the sampled attribute by generating fake data for

each non-sampled attribute; RS+FD further benefits from amplifi-

cation by sampling. We theoretically and experimentally validate

our proposed solution on both synthetic and real-world datasets to

show that RS+FD achieves nearly the same or better utility than

the state-of-the-art Smp solution.
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1 INTRODUCTION
1.1 Background
In recent years, differential privacy (DP) [18, 19] has been increas-

ingly accepted as the current standard for data privacy [1, 4, 20, 38].

In the centralized model of DP, a trusted curator has access to com-

pute on the entire raw data of users (e.g., the Census Bureau [2, 26]).

By ‘trusted’, we mean that curators do not misuse or leak private

information from individuals. However, this assumption does not

always hold in real life [33]. To address non-trusted services, with

the local model of DP (LDP) [28], each user applies a DP mechanism

to their own data before sending it to an untrusted curator (a.k.a.

the aggregator). The LDP model allows collecting data in unprece-

dented ways and, therefore, has led to several adoptions by industry.

For instance, big tech companies like Google, Apple, and Microsoft,

reported the implementation of LDPmechanisms to gather statistics

in well-known systems (i.e., Google Chrome browser [23], Apple

iOS and macOS [39], and Windows 10 operation system [15]).

1.2 Problem statement
On collecting data, in practice, one is often interested in multiple at-

tributes of a population, i.e., multidimensional data. For instance, in

cloud services, demographic information (e.g., age, gender) and user

habits could provide several insights to further develop solutions

to specific groups. Similarly, in digital patient records, users might

be linked with both their demographic and clinical information.

In this paper, we focus on the problem of private frequency (or

histogram) estimation on multiple attributes with LDP. This is a

primary objective of LDP, in which the data collector decodes all

the privatized data of the users and can then estimate the number

of users for each possible value. The single attribute frequency
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estimation task has received considerable attention in the litera-

ture [3, 5, 15, 23, 27, 32, 41, 48, 50] as it is a building block for more

complex tasks (e.g., heavy hitter estimation [12, 13, 44], estimating

marginals [24, 35, 37, 49], frequent itemset mining [36, 43]).

In the LDP setting, the aggregator already knows the users’ iden-

tifiers, but not their private data. We assume there are 𝑑 attributes

𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑑 }, where each attribute 𝐴 𝑗 with a discrete do-

main D𝑗 has a specific number of values |𝐴 𝑗 | = 𝑘 𝑗 . Each user 𝑢𝑖

for 𝑖 ∈ {1, 2, ..., 𝑛} has a tuple v(𝑖) = (𝑣 (𝑖)
1

, 𝑣
(𝑖)
2

, ..., 𝑣
(𝑖)
𝑑
), where 𝑣 (𝑖)

𝑗

represents the value of attribute 𝐴 𝑗 in record v(𝑖) . Thus, for each
attribute 𝐴 𝑗 , the analyzer’s goal is to estimate a 𝑘 𝑗 -bins histogram,

including the frequency of all values in D𝑗 .

1.3 Context of the problem
Regarding multiple attributes, as also noticed in the recent survey

work on LDP in [48], most studies for collecting multidimensional

data with LDP mainly focused on numerical data (e.g., [17, 34,

40, 46]). Unlike the single attribute frequency estimation problem

(the majority of the works), the multidimensional setting needs

to consider the allocation of the privacy budget. To the authors’

knowledge, there are mainly two solutions for satisfying LDP by

randomizing v. We will simply omit the index notation v(𝑖) in the

analysis as we focus on one arbitrary user 𝑢𝑖 here. On the one hand,

due to the composition theorem [20], users can split the privacy

budget for each attribute and send all randomized values with
𝜖
𝑑
-

LDP to the aggregator (Spl). The other solution is based on random

sampling a single attribute and spend all the privacy budget to

send it (Smp). More precisely, each user tells the aggregator which

attribute is sampled, and what is the perturbed value for it ensuring

𝜖-LDP; the aggregator would not receive any information about

the remaining 𝑑 − 1 attributes.
Although the later Smp solution adds sampling error, in the

literature [7, 34, 40, 41, 46], it has proven to provide higher data

utility than the former Spl solution. However, aggregators (who are
also seen as attackers) are aware of the sampled attribute and its

LDP value, which is protected by a "less strict" 𝑒𝜖 probability bound

(rather than 𝑒𝜖/𝑑 ). In other words, while both solutions provide 𝜖-

LDP, we argue that using the Smp solution may be unfair with some

users. For instance, on collecting multidimensional health records

(i.e., demographic and clinical data), users that randomly sample

a demographic attribute (e.g., gender) might be less concerned to

report their data than those whose sampled attribute is "disease"

(e.g., if positive for human immunodeficiency viruses - HIV).

This way, there is a privacy-utility trade-off between the Spl
and Smp solutions. With these elements in mind, we formulate the

problematic of this paper as: For the same privacy budget 𝜖 , is there
a solution for multidimensional frequency estimates that provides
better data utility than Spl and more protection than Smp?

1.4 Purpose and contributions
In this paper, we intend to solve the aforementioned problematic

by answering the following question:What if the sampling result
(i.e., the selected attribute) was not disclosed with the aggregator?
Since the sampling step randomly selects an attribute 𝑗 ∈ [1, 𝑑] (we
slightly abuse the notation and use 𝑗 for 𝐴 𝑗 ), we propose that users
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Figure 1: Overview of our random sampling plus fake data
(RS+FD) solution in comparison with two known solutions,
namely, Spl and Smp, where𝑈𝑛𝑖 (𝑑) = 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚({1, 2, ..., 𝑑}).

add uncertainty about the sampled attribute through generating

𝑑 − 1 fake data, i.e., one for each non-sampled attribute.

We call our solution Random Sampling plus Fake Data (RS+FD).
Fig. 1 illustrates the overview of RS+FD in comparison with the

aforementioned known solutions, namely, Spl and Smp. More pre-

cisely, with RS+FD, the client-side has two steps: local randomiza-

tion and fake data generation. First, an LDP mechanism preserves

privacy for the data of the sampled attribute. Second, the fake data

generator provides fake data for each 𝑑 − 1 non-sampled attribute.

This way, the privatized data is "hidden" among fake data and,

hence, the sampling result is not disclosed along with the users’

report (and statistics).

What is more, we notice that RS+FD can enjoy privacy ampli-

fication by sampling [9, 10, 14, 28, 31]. That is, if one randomly

sample a dataset without replacement using a sampling rate 𝛽 < 1,

it suffices to use a privacy budget 𝜖 ′ > 𝜖 to satisfy 𝜖-DP, where

𝑒𝜖
′−1

𝑒𝜖−1 = 1

𝛽
[31]. This way, given that the sampled dataset for each

attribute has non-overlapping users, i.e., each user selects an at-

tribute with sampling probability 𝛽 = 1

𝑑
, to satisfy 𝜖-LDP, each user

can apply an LDP mechanism with 𝜖 ′ = ln (𝑑 · (𝑒𝜖 − 1) + 1) ≥ 𝜖 .

To summarize, this paper makes the following contributions:

• We propose a novel solution, namely, RS+FD for multidi-

mensional frequency estimates under LDP, which is generic

to be used with any existing LDP mechanism developed for

single-frequency estimation.

• Using state-of-the-art LDP mechanisms, we develop four

protocols within RS+FD and analyze them analytically and

experimentally.

• We conducted a comprehensive and extensive set of exper-

iments on both synthetic and real-world datasets. Under

the same privacy guarantee, results show that our proposed

protocols with RS+FD achieve similar or better utility than

using the state-of-the-art Smp solution.



Paper’s outline: The remainder of this paper is organized as fol-

lows. In Section 2, we revise the privacy notions that we are con-

sidering, i.e., LDP, the LDP mechanisms we further analyze in this

paper, and amplification by sampling. In Section 3, we introduce

our RS+FD solution, the integration of state-of-the-art LDP mecha-

nisms within RS+FD, and their analysis. In Section 4, we present

experimental results. In Section 5, we discuss our results and re-

view related work. Lastly, in Section 6, we present the concluding

remarks and future directions.

2 PRELIMINARIES
In this section, we briefly recall LDP (Subsection 2.1), the LDP

mechanisms we will apply in this paper (Subsection 2.2), and am-

plification by sampling (Subsection 2.3).

2.1 Local differential privacy
Local differential privacy, initially formalized in [28], protects an

individual’s privacy during the data collection process. A formal

definition of LDP is given in the following:

Definition 1 (𝜖-Local Differential Privacy). A randomized
algorithm A satisfies 𝜖-LDP if, for any pair of input values 𝑣1, 𝑣2 ∈
𝐷𝑜𝑚𝑎𝑖𝑛(A) and any possible output 𝑦 of A:

Pr[A(𝑣1) = 𝑦] ≤ 𝑒𝜖 · Pr[A(𝑣2) = 𝑦].

Similar to the centralized model of DP, LDP also enjoys several

important properties, e.g., immunity to post-processing (𝐹 (A) is 𝜖-
LDP for any function 𝐹 ) and composability [20]. That is, combining

the results from𝑚 differentially private mechanisms also satisfies

DP. If these mechanisms are applied separately in disjointed subsets

of the dataset, 𝜖 = 𝑚𝑎𝑥 (𝜖1-, . . . , 𝜖𝑚)-LDP (parallel composition).

On the other hand, if these mechanisms are sequentially applied to

the same dataset, 𝜖 =
∑𝑚
𝑖=1 𝜖𝑖 -LDP (sequential composition).

2.2 LDP mechanisms
Randomized response (RR), a surveying technique proposed by

Warner [47], has been the building block for many LDPmechanisms.

Let 𝐴 𝑗 = {𝑣1, 𝑣2, ..., 𝑣𝑘 𝑗
} be a set of 𝑘 𝑗 = |𝐴 𝑗 | values of a given

attribute and let 𝜖 be the privacy budget, we review two state-

of-the-art LDP mechanisms for single-frequency estimation (a.k.a.

frequency oracles) that will be used in this paper.

2.2.1 Generalized randomized response (GRR). The k-Ary RR [27]

mechanism extends RR to the case of 𝑘 𝑗 ≥ 2 and is also referred

to as direct encoding [41] or generalized RR (GRR) [43, 45, 49].

Throughout this paper, we use the term GRR for this LDP mech-

anism. Given a value 𝐵 = 𝑣𝑖 , GRR(𝑣𝑖 ) outputs the true value 𝑣𝑖

with probability 𝑝 = 𝑒𝜖

𝑒𝜖+𝑘 𝑗−1 , and any other value 𝑣𝑙 for 𝑙 ≠ 𝑖 with

probability 𝑞 =
1−𝑝
𝑘 𝑗−1 = 1

𝑒𝜖+𝑘 𝑗−1 . GRR satisfies 𝜖-LDP since
𝑝
𝑞 = 𝑒𝜖 .

The estimated frequency
ˆ𝑓 (𝑣𝑖 ) that a value 𝑣𝑖 occurs, for 𝑖 ∈

[1, 𝑘 𝑗 ], is calculated as [41, 43]:

ˆ𝑓 (𝑣𝑖 ) =
𝑁𝑖 − 𝑛𝑞
𝑛(𝑝 − 𝑞) , (1)

in which 𝑁𝑖 is the number of times the value 𝑣𝑖 has been reported

and 𝑛 is the total number of users. In [41], it is shown that this is an

unbiased estimation of the true frequency, and the variance of this

estimation is 𝑉𝑎𝑟 [ ˆ𝑓 (𝑣𝑖 )] = 𝑞 (1−𝑞)
𝑛 (𝑝−𝑞)2 +

𝑓 (𝑣𝑖 ) (1−𝑝−𝑞)
𝑛 (𝑝−𝑞) . In the case of

small 𝑓 (𝑣𝑖 ) ∼ 0, this variance is dominated by the first term. Thus,

the approximate variance of this estimation for GRR is [41]:

𝑉𝑎𝑟 [ ˆ𝑓𝐺𝑅𝑅 (𝑣𝑖 )] =
𝑒𝜖 + 𝑘 𝑗 − 2
𝑛(𝑒𝜖 − 1)2

. (2)

2.2.2 Optimized unary encoding (OUE). For a given value 𝑣 , 𝐵 =

𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣), where 𝐵 = [0, 0, ..., 1, 0, ...0], a 𝑘 𝑗 -bit array in which

only the 𝑣-th position is set to one. Subsequently, the bits from 𝐵

are flipped, depending on two parameters 𝑝 and 𝑞, to generate a

privatized vector 𝐵′. More precisely, 𝑃𝑟 [𝐵′[𝑖] = 1] = p if 𝐵 [𝑖] = 1

and 𝑃𝑟 [𝐵′[𝑖] = 1] = q if 𝐵 [𝑖] = 0. This unary-encoding (UE)

mechanism satisfies 𝜖-LDP for 𝜖 = 𝑙𝑛

(
𝑝 (1−𝑞)
(1−𝑝)𝑞

)
[23].Wang et al. [41]

propose optimized UE (OUE), which selects "optimized" parameters

(𝑝 = 1

2
and 𝑞 = 1

𝑒𝜖+1 ) to minimize the approximate variance of
UE-based mechanisms while still satisfying 𝜖-LDP. The estimation

method used in (1) equally applies to OUE. As shown in [41], the

OUE approximate variance is calculated as:

𝑉𝑎𝑟 [ ˆ𝑓𝑂𝑈𝐸 (𝑣𝑖 )] =
4𝑒𝜖

𝑛(𝑒𝜖 − 1)2
. (3)

2.2.3 Adaptive LDP mechanism. Comparing (2) with (3), elements

𝑘 𝑗 − 2 + 𝑒𝜖 is replaced by 4𝑒𝜖 . Thus, as highlighted in [41], when

𝑘 𝑗 < 3𝑒𝜖 + 2, the utility loss with GRR is lower than the one of

OUE. Throughout this paper, we will use the term adaptive (ADP)

to denote this best-effort and dynamic selection of LDP mechanism.

2.3 Privacy amplification by sampling
One well-known approach for increasing the privacy of a DP mech-

anism is to apply the mechanism to a random subsample of the

dataset [9, 10, 14, 28, 31]. The intuition is that an attacker is unable

to distinguish which data samples were used in the analysis. Li et

al. [31, Theorem 1] theoretically prove this effect.

Theorem 1. Amplification by Sampling [31]. Let A be an 𝜖 ′-
DP mechanism and S to be a sampling algorithm with sampling rate
𝛽 . Then, if S is first applied to a dataset D, which is later privatized

with A, the derived result satisfies DP with 𝜖 = ln

(
1 + 𝛽 (𝑒𝜖′ + 1)

)
.

3 RANDOM SAMPLING PLUS FAKE DATA
In this section, we present the overview of our RS+FD solution (Sub-

section 3.1), and the integration of the local randomizers presented

in Subsection 2.2 within RS+FD (Subsections 3.2, 3.3, and 3.4).

3.1 Overview of RS+FD
We consider the local DP model, in which there are two entities,

namely, users and the aggregator (an untrusted curator). Let 𝑛

be the total number of users, 𝑑 be the total number of attributes,

k = [𝑘1, 𝑘2, ..., 𝑘𝑑 ] be the domain size of each attribute,A be a local

randomizer, and 𝜖 be the privacy budget. Each user holds a tuple

v = (𝑣1, 𝑣2, ..., 𝑣𝑑 ), i.e., a private value per attribute.
Client-Side. The client-side is split into two steps, namely, local

randomization and fake data generation (cf. Fig. 1). Initially, each

user samples a unique attribute 𝑗 uniformly at random and applies



an LDP mechanism to its value 𝑣 𝑗 . Indeed, RS+FD is generic to

be applied with any existing LDP mechanisms (e.g., GRR [27], UE-

based protocols [23, 41], Hadamard Response [3]). Next, for each𝑑−
1 non-sampled attribute 𝑖 , the user generates one random fake data.

Finally, each user sends the (LDP or fake) value of each attribute

to the aggregator, i.e., a tuple y = (𝑦1, 𝑦2, ..., 𝑦𝑑 ). This way, the
sampling result is not disclosed with the aggregator. In summary,

Alg. 1 exhibits the pseudocode of our RS+FD solution.

Aggregator. For each attribute 𝑗 ∈ [1, 𝑑], the aggregator performs

frequency (or histogram) estimation on the collected data by re-

moving bias introduced by the local randomizer and fake data.

Algorithm 1 Random Sampling plus Fake Data (RS+FD)

Input : tuple v = (𝑣1, 𝑣2, ..., 𝑣𝑑 ) , domain size of attributes k = [𝑘1, 𝑘2, ..., 𝑘𝑑 ], privacy
parameter 𝜖 , local randomizer A.

Output : privatized tuple y = (𝑦1, 𝑦2, ..., 𝑦𝑑 ) .
1: 𝜖′ = ln (𝑑 · (𝑒𝜖 − 1) + 1) ⊲ amplification by sampling [31]

2: 𝑗 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 }) ⊲ Selection of attribute to privatize

3: 𝐵 𝑗 ← 𝑣𝑗
4: 𝑦 𝑗 ← A(𝐵 𝑗 , 𝑘 𝑗 , 𝜖

′) ⊲ privatize data of the sampled attribute

5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do ⊲ non-sampled attributes

6: 𝑦𝑖 ← Uniform( {1, ..., 𝑘𝑖 }) ⊲ generate fake data
7: end for

return : y = (𝑦1, 𝑦2, ..., 𝑦𝑑 ) ⊲ sampling result is not disclosed

Privacy analysis. Let A be any existing LDP mechanism, Algo-

rithm 1 satisfies 𝜖-LDP, in a way that 𝜖 ′ = ln (𝑑 · (𝑒𝜖 − 1) + 1).
Indeed, we observe that our scenario is equivalent to sampling a

dataset D without replacement with sampling rate 𝛽 = 1

𝑑
in the

centralized setting of DP, which enjoys privacy amplification (cf.

Subsection 2.3). With the local model, users privatize their data

locally with a DP model. This way, to satisfy 𝜖-LDP, an amplified

privacy parameter 𝜖 ′ > 𝜖 can be used.

Limitations. Similar to other sampling-based methods for collect-

ing multidimensional data under LDP [17, 34, 40, 46], our RS+FD

solution also entails sampling error, which is due to observing a

sample instead of the entire population. In addition, in comparison

with the Smp solution, RS+FD requires more computation on the

user side because of the fake data generation part. Yet, communica-

tion cost is still equal to the Spl solution, i.e., each user sends one

message per attribute. Lastly, while RS+FD utilizes an amplified

𝜖 ′ ≥ 𝜖 , there is also bias generated from uniform fake data that

may require a sufficient number of users 𝑛 to eliminate the noise.

3.2 RS+FD with GRR
Client side. Integrating GRR as the local randomizerA into Alg. 1

(RS+FD[GRR]) requires no modification. Initially, on the client-

side, each user randomly samples an attribute 𝑗 . Next, the value

𝑣 𝑗 is privatized with GRR (cf. Subsection 2.2.1) using the size of

the domain 𝑘 𝑗 and the privacy parameter 𝜖 ′. In addition, for each

non-sampled 𝑑 − 1 attribute 𝑖 , the user also generates fake data

uniformly at random according to the domain size 𝑘𝑖 . Lastly, the

user transmits the privatize tuple y, which includes the LDP value

of the true data "hidden" among fake data.

Aggregator RS+FD[GRR]. On the server-side, for each attribute

𝑗 ∈ [1, 𝑑], the aggregator estimates
ˆ𝑓 (𝑣𝑖 ) for the frequency of each

value 𝑖 ∈ [1, 𝑘 𝑗 ] as:

ˆ𝑓 (𝑣𝑖 ) =
𝑁𝑖𝑑𝑘 𝑗 − 𝑛(𝑑 − 1 + 𝑞𝑘 𝑗 )

𝑛𝑘 𝑗 (𝑝 − 𝑞)
, (4)

in which 𝑁𝑖 is the number of times the value 𝑣𝑖 has been reported,

𝑝 = 𝑒𝜖
′

𝑒𝜖
′+𝑘 𝑗−1

, and 𝑞 =
1−𝑝
𝑘 𝑗−1 .

Theorem 2. For 𝑗 ∈ [1, 𝑑], the estimation result ˆ𝑓 (𝑣𝑖 ) in (4) is an
unbiased estimation of 𝑓 (𝑣𝑖 ) for any value 𝑣𝑖 ∈ D𝑗 .

Proof 2

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝐸

[
𝑁𝑖𝑑𝑘 𝑗 − 𝑛(𝑑 − 1 + 𝑞𝑘 𝑗 )

𝑛𝑘 𝑗 (𝑝 − 𝑞)

]
=

𝑑

𝑛(𝑝 − 𝑞) 𝐸 [𝑁𝑖] −
𝑑 − 1 + 𝑞𝑘 𝑗
𝑘 𝑗 (𝑝 − 𝑞)

.

Let us focus on

𝐸 [𝑁𝑖 ] =
1

𝑑
(𝑝𝑛𝑓 (𝑣𝑖 ) + 𝑞(𝑛 − 𝑛𝑓 (𝑣𝑖 ))) +

𝑑 − 1
𝑑𝑘 𝑗

𝑛

=
𝑛

𝑑

(
𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) + 𝑞 +

𝑑 − 1
𝑘 𝑗

)
.

Thus,

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝑓 (𝑣𝑖 ).

Theorem 3. The variance of the estimation in (4) is:

VAR( ˆ𝑓 (𝑣𝑖 )) =
𝑑2𝛿 (1 − 𝛿)
𝑛(𝑝 − 𝑞)2

, where

𝛿 =
1

𝑑

(
𝑞 + 𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) +

(𝑑 − 1)
𝑘 𝑗

)
.

(5)

Proof 3
Thanks to (4) we have

VAR( ˆ𝑓 (𝑣𝑖 )) =
VAR(𝑁𝑖 )𝑑2
𝑛2 (𝑝 − 𝑞)2

. (6)

Since 𝑁𝑖 is the number of times value 𝑣𝑖 is observed, it can

be defined as 𝑁𝑖 =
∑𝑛
𝑧=1 𝑋𝑧 where 𝑋𝑧 is equal to 1 if the user

𝑧, 1 ≤ 𝑧 ≤ 𝑛 reports value 𝑣𝑖 , and 0 otherwise. We thus have

VAR(𝑁𝑖 ) =
∑𝑛
𝑧=1 VAR(𝑋𝑧) = 𝑛 VAR(𝑋 ), since all the users are

independent. According to the probability tree in Fig. 2,

𝑃 (𝑋 = 1) = 𝑃 (𝑋 2 = 1) = 𝛿 =
1

𝑑

(
𝑞 + 𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) +

(𝑑 − 1)
𝑘 𝑗

)
.

We thus have VAR(𝑋 ) = 𝛿 − 𝛿2 = 𝛿 (1 − 𝛿) and, finally,

VAR( ˆ𝑓 (𝑣𝑖 )) =
𝑑2𝛿 (1 − 𝛿)
𝑛(𝑝 − 𝑞)2

. (7)

3.3 RS+FD with OUE
Client side. To use UE-based protocols (OUE in our work) as local

randomizerA in Alg. 1, there is, first, a need to define the fake data

generation procedure. We propose two solutions: (i) RS+FD[OUE-

z] in Alg. 2, which applies OUE to 𝑑 − 1 zero-vectors, and (ii)

RS+FD[OUE-r] in Alg. 3, which applies OUE to 𝑑 − 1 one-hot-

encoded fake data (uniform at random). We note that, on the one

hand, introducing fake data through privatizing zero-vectors intro-

duces less noise as there is only one parameter to perturb each bit,

i.e., 𝑃𝑟 [0→ 1] = 𝑞. On the other hand, starting with zero-vectors



RS+FD

Fake data

𝐵′ = 𝑣𝑙≠𝑖
1 − 1/𝑘𝑗

𝐵′ = 𝑣𝑖1/𝑘 𝑗
1 −

1/𝑑

True data

𝐵 = 𝑣𝑙≠𝑖

𝐵′ = 𝑣𝑖
𝑞

𝐵′ = 𝑣𝑖

𝑝

𝐵 = 𝑣𝑖

𝐵′ = 𝑣𝑙≠𝑖
𝑞

𝐵′ = 𝑣𝑖𝑝

1/𝑑

Figure 2: Probability tree for Eq. (4) (RS+FD[GRR]).

Algorithm 2 RS+FD[OUE-z]

Input : tuple v = (𝑣1, 𝑣2, ..., 𝑣𝑑 ) , domain size of attributes k = [𝑘1, 𝑘2, ..., 𝑘𝑑 ], privacy
parameter 𝜖 , local randomizer OUE.

Output : privatized tuple B′ = (𝐵′
1
, 𝐵′

2
, ..., 𝐵′

𝑑
) .

1: 𝜖′ = ln (𝑑 · (𝑒𝜖 − 1) + 1) ⊲ amplification by sampling [31]

2: 𝑗 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 }) ⊲ Selection of attribute to privatize

3: 𝐵 𝑗 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣𝑗 ) = [0, 0, ..., 1, 0, ...0] ⊲ one-hot-encoding

4: 𝐵′
𝑗
← 𝑂𝑈𝐸 (𝐵 𝑗 , 𝜖

′) ⊲ privatize real data with OUE

5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do ⊲ non-sampled attributes

6: 𝐵𝑖 ← [0, 0, ..., 0] ⊲ initialize zero-vectors

7: 𝐵′
𝑖
← 𝑂𝑈𝐸 (𝐵𝑖 , 𝜖′) ⊲ randomize zero-vector with OUE

8: end for
return : B′ = (𝐵′

1
, 𝐵′

2
, ..., 𝐵′

𝑑
) ⊲ sampling result is not disclosed

Algorithm 3 RS+FD[OUE-r]

Input : tuple v = (𝑣1, 𝑣2, ..., 𝑣𝑑 ) , domain size of attributes k = [𝑘1, 𝑘2, ..., 𝑘𝑑 ], privacy
parameter 𝜖 , local randomizer OUE.

Output : privatized tuple B′ = (𝐵′
1
, 𝐵′

2
, ..., 𝐵′

𝑑
) .

1: 𝜖′ = ln (𝑑 · (𝑒𝜖 − 1) + 1) ⊲ amplification by sampling [31]

2: 𝑗 ← 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 ( {1, 2, ..., 𝑑 }) ⊲ Selection of attribute to privatize

3: 𝐵 𝑗 = 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑣𝑗 ) = [0, 0, ..., 1, 0, ...0] ⊲ one-hot-encoding

4: 𝐵′
𝑗
← 𝑂𝑈𝐸 (𝐵 𝑗 , 𝜖

′) ⊲ privatize real data with OUE

5: for 𝑖 ∈ {1, 2, ..., 𝑑 }/𝑗 do ⊲ non-sampled attributes

6: 𝑦𝑖 ← Uniform( {1, ..., 𝑘𝑖 }) ⊲ generate fake data
7: 𝐵𝑖 ← 𝐸𝑛𝑐𝑜𝑑𝑒 (𝑦𝑖 ) ⊲ one-hot-encoding

8: 𝐵′
𝑖
← 𝑂𝑈𝐸 (𝐵𝑖 , 𝜖′) ⊲ randomize fake data with OUE

9: end for
return : B′ = (𝐵′

1
, 𝐵′

2
, ..., 𝐵′

𝑑
) ⊲ sampling result is not disclosed

may not suffice to "hide" the sampled attribute if the perturbation

probability 𝑞 is too small. Studying this effect is out of the scope of

this paper and is left as future work.

Aggregator RS+FD[OUE-z]. On the server-side, if fake data are

generated with OUE applied to zero-vectors, as in Alg. 2, for each

attribute 𝑗 ∈ [1, 𝑑], the aggregator estimates
ˆ𝑓 (𝑣𝑖 ) for the frequency

of each value 𝑖 ∈ [1, 𝑘 𝑗 ] as:

ˆ𝑓 (𝑣𝑖 ) =
𝑑 (𝑁𝑖 − 𝑛𝑞)
𝑛(𝑝 − 𝑞) , (8)

in which 𝑁𝑖 is the number of times the value 𝑣𝑖 has been reported,

𝑛 is the total number of users, 𝑝 = 1

2
, and 𝑞 = 1

𝑒𝜖
′+1 .

Theorem 4. For 𝑗 ∈ [1, 𝑑], the estimation result ˆ𝑓 (𝑣𝑖 ) in (8) is an
unbiased estimation of 𝑓 (𝑣𝑖 ) for any value 𝑣𝑖 ∈ D𝑗 .

Proof 4

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝐸

[
𝑑 (𝑁𝑖 − 𝑛𝑞)
𝑛(𝑝 − 𝑞)

]
=
𝑑 (𝐸 [𝑁𝑖 ] − 𝑛𝑞)

𝑛(𝑝 − 𝑞)

=
𝑑

𝑛(𝑝 − 𝑞) 𝐸 [𝑁𝑖 ] −
𝑑𝑞

𝑝 − 𝑞 .

We have successively

𝐸 [𝑁𝑖 ] =
𝑛

𝑑
(𝑝𝑓 (𝑣𝑖 ) + 𝑞(1 − 𝑓 (𝑣𝑖 ))) +

(𝑑 − 1)𝑛𝑞
𝑑

=
𝑛

𝑑
(𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) + 𝑑𝑞) .

Thus,

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝑓 (𝑣𝑖 ).

Theorem 5. The variance of the estimation in (8) is:

VAR( ˆ𝑓 (𝑣𝑖 )) =
𝑑2𝛿 (1 − 𝛿)
𝑛(𝑝 − 𝑞)2

, where

𝛿 =
1

𝑑
(𝑑𝑞 + 𝑓 (𝑣𝑖 ) (𝑝 − 𝑞)) .

(9)

The proof for Theorem 5 follows Proof 3 and is omitted here. In

this case, 𝛿 follows the probability tree in Fig. 3.

RS+FD

Fake data 𝐵𝑖 = 0

𝐵′𝑖 = 01 − 𝑞

𝐵′𝑖 = 1
𝑞1 −

1/𝑑

True data

𝐵𝑖 = 0

𝐵′𝑖 = 01 − 𝑞

𝐵′𝑖 = 1
𝑞

𝐵𝑖 = 1

𝐵′𝑖 = 01 − 𝑝

𝐵′𝑖 = 1
𝑝

1/𝑑

Figure 3: Probability tree for Eq. (8) (RS+FD[OUE-z]).

Aggregator RS+FD[OUE-r]. Otherwise, if fake data are generated
with OUE applied to one-hot-encoded random data, as in Alg. 3,

for each attribute 𝑗 ∈ [1, 𝑑], the aggregator estimates
ˆ𝑓 (𝑣𝑖 ) for the

frequency of each value 𝑖 ∈ [1, 𝑘 𝑗 ] as:

ˆ𝑓 (𝑣𝑖 ) =
𝑁𝑖𝑑𝑘 𝑗 − 𝑛

[
𝑞𝑘 𝑗 + (𝑝 − 𝑞) (𝑑 − 1) + 𝑞𝑘 𝑗 (𝑑 − 1))

]
𝑛𝑘 𝑗 (𝑝 − 𝑞)

, (10)

in which 𝑁𝑖 is the number of times the value 𝑣𝑖 has been reported,

𝑝 = 1

2
, and 𝑞 = 1

𝑒𝜖
′+1 .

Theorem 6. For 𝑗 ∈ [1, 𝑑], the estimation result ˆ𝑓 (𝑣𝑖 ) in (10) is
an unbiased estimation of 𝑓 (𝑣𝑖 ) for any value 𝑣𝑖 ∈ D𝑗 .

Proof 6

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝐸

[
𝑁𝑖𝑑𝑘 𝑗 − 𝑛

[
𝑞𝑘 𝑗 + (𝑝 − 𝑞) (𝑑 − 1) + 𝑞𝑘 𝑗 (𝑑 − 1))

]
𝑛𝑘 𝑗 (𝑝 − 𝑞)

]
=

𝑑𝐸 [𝑁𝑖 ]
𝑛(𝑝 − 𝑞) −

(𝑝 − 𝑞) (𝑑 − 1) + 𝑞𝑑𝑘 𝑗
𝑘 𝑗 (𝑝 − 𝑞)

.

We have successively



𝐸 [𝑁𝑖 ] =
𝑛

𝑑
(𝑝 𝑓 (𝑣𝑖 ) + 𝑞(1 − 𝑓 (𝑣𝑖 ))) +

𝑛(𝑑 − 1)
𝑑

( 𝑝
𝑘 𝑗
+
𝑘 𝑗 − 1
𝑘 𝑗

𝑞)

=
𝑛

𝑑
(𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) + 𝑞)) +

𝑛(𝑑 − 1)
𝑑𝑘 𝑗

(𝑝 − 𝑞 + 𝑘 𝑗𝑞).

Thus,

𝐸 [ ˆ𝑓 (𝑣𝑖 )] = 𝑓 (𝑣𝑖 ).

Theorem 7. The variance of the estimation in (10) is:

VAR( ˆ𝑓 (𝑣𝑖 )) =
𝑑2𝛿 (1 − 𝛿)
𝑛(𝑝 − 𝑞)2

, where

𝛿 =
1

𝑑

(
𝑞 + 𝑓 (𝑣𝑖 ) (𝑝 − 𝑞) +

(𝑑 − 1)
𝑘 𝑗

(
𝑝 + (𝑘 𝑗 − 1)𝑞

) )
.

(11)

The proof for Theorem 7 follows Proof 3 and is omitted here. In

this case, 𝛿 follows the probability tree in Fig. 4.

RS+FD

Fake data

𝐵𝑖 = 0

𝐵′𝑖 = 01 − 𝑞

𝐵′𝑖 = 1
𝑞

1 − 1/𝑘𝑗

𝐵𝑖 = 1

𝐵′𝑖 = 01 − 𝑝

𝐵′𝑖 = 1
𝑝

1/𝑘 𝑗1 −
1/𝑑

True data

𝐵𝑖 = 0

𝐵′𝑖 = 01 − 𝑞

𝐵′𝑖 = 1
𝑞

𝐵𝑖 = 1

𝐵′𝑖 = 01 − 𝑝

𝐵′𝑖 = 1
𝑝

1/𝑑

Figure 4: Probability tree for Eq. (10) (RS+FD[OUE-r]).

3.4 Analytical analysis: RS+FD with ADP
In a multidimensional setting with different domain sizes for each

attribute, a dynamic selection of LDP mechanisms is preferred (as

in Subsection 2.2.3). Because our estimators in (4), (8), and (10) are

unbiased, their variance is equal to the mean squared error (MSE)

that is commonly used in practice as an accuracy metric [42, 45,

46]. In this work, we analyze the approximate variances VAR1 for
RS+FD[GRR] in (5) and VAR2 for RS+FD[OUE-z] in (9), in which

𝑓 (𝑣𝑖 ) = 0. This is, first, because under the local model of DP, the

real frequency 𝑓 (𝑣𝑖 ) is unknown and, second, because in real life

the vast majority of values appear very infrequently. Notice that

this is common practice in the literature (e.g., cf. [41, 46]), which

provides an approximation for the variance of the protocols.

Assume there are 𝑑 ≥ 2 attributes with domain size k =

[𝑘1, 𝑘2, ..., 𝑘𝑑 ] and a privacy budget 𝜖 ′. For each attribute 𝑗 with

domain size 𝑘 𝑗 , to select RS+FD[GRR], we are then left to evaluate

if VAR1 ≤ VAR2. This is equivalent to check whether,

𝑑2𝛿1 (1 − 𝛿1)
𝑛(𝑝1 − 𝑞1)2

− 𝑑2𝛿2 (1 − 𝛿2)
𝑛(𝑝2 − 𝑞2)2

≤ 0, (12)

in which 𝑝1 = 𝑒𝜖
′

𝑒𝜖
′+𝑘 𝑗−1

, 𝑞1 =
1−𝑝1
𝑘 𝑗−1 , 𝑝2 = 1

2
, 𝑞2 = 1

𝑒𝜖
′+1 , 𝛿1 =

1

𝑑

(
𝑞1 + 𝑑−1

𝑘 𝑗

)
, and 𝛿2 = 𝑞2. In other words, if (12) is less than

or equal to zero, the utility loss is lower with RS+FD[GRR];
otherwise, if (12) is positive, RS+FD[OUE-z] should be se-
lected. Throughout this paper, we will refer to this dynamic
selection of our protocols as RS+FD[ADP].

For the sake of illustration, Fig. 5 illustrates a 3D visualization

of (12) by fixing 𝜖 ′ = ln(3) and 𝑛 = 20000, and by varying 𝑑 ∈
[2, 10] and 𝑘 𝑗 ∈ [2, 20], which are common values for real-world

datasets (cf. Subsection 4.1). In this case, one can notice in Fig. 5 that

neither RS+FD[GRR] nor RS+FD[OUE-z] will always provide the

lowest variance value, which reinforces the need for an adaptive

mechanism. For instance, with the selected parameters, for lower

values of 𝑘 𝑗 , RS+FD[GRR] can provide lower estimation errors even

if 𝑑 is large. On the other hand, as soon as the domain size starts to

grow, e.g., 𝑘 𝑗 ≥ 10, one is better off with RS+FD[OUE-z] even for

small values of 𝑑 ≥ 3, as its variance in (9) does not depend on 𝑘 𝑗 .
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Figure 5: Analytical evaluation of (12) that allows a dynamic
selection between RS+FD[GRR] with variance VAR1 and
RS+FD[OUE-z] with variance VAR2. Parameters were set as
𝜖 ′ = ln(3), 𝑛 = 20000, 𝑑 ∈ [2, 10], and 𝑘 𝑗 ∈ [2, 20].

4 EXPERIMENTAL VALIDATION
In this section, we present the setup of our experiments in Subsec-

tion 4.1, the results with synthetic data in Subsection 4.2, and the

results with real-world data in Subsection 4.3.

4.1 Setup of experiments
Environment. All algorithms were implemented in Python 3.8.5

with NumPy 1.19.5 and Numba 0.53.1 libraries. The codes we de-

veloped and used for all experiments are available in a Github

repository
1
. In all experiments, we report average results over 100

runs as LDP algorithms are randomized.

Synthetic datasets. Our first set of experiments are conducted on

six synthetic datasets. The distribution of values in each attribute

follows an uniform distribution, for all synthetic datasets.

1
https://github.com/hharcolezi/ldp-protocols-mobility-cdrs

https://github.com/hharcolezi/ldp-protocols-mobility-cdrs


• For the first two synthetic datasets, we fix the number of

attributes 𝑑 = 5 and the domain size of each attribute as

k = [10, 10, ..., 10] (uniform), and vary the number of users

as 𝑛 = 50000 and 𝑛 = 500000.

• Similarly, for the third and fourth synthetic datasets, we

fix the number of attributes 𝑑 = 10 and the domain size of

each attribute as k = [10, 10, ..., 10] (uniform), and vary the

number of users as 𝑛 = 50000 and 𝑛 = 500000.

• Lastly, for the fifth and sixth synthetic datasets, we fix the

number of users as 𝑛 = 500000. Next, we set the number

of attributes 𝑑 = 10 with domain size of each attribute as

k = [10, 20, ..., 90, 100] for one dataset, andwe set the number

of attributes 𝑑 = 20 with domain size of each attribute as

k = [10, 10, 20, 20, ..., 100, 100] for the other.
Real-world datasets. In addition, we also conduct experiments

on four real-world datasets with non-uniform distributions.

• Nursery. A dataset from the UCI machine learning repos-

itory [16] with 𝑑 = 9 categorical attributes and 𝑛 =

12960 samples. The domain size of each attribute is k =

[3, 5, 4, 4, 3, 2, 3, 3, 5], respectively.
• Adult. A dataset from the UCI machine learning reposi-

tory [16] with 𝑑 = 9 categorical attributes and 𝑛 = 45222

samples after cleaning the data. The domain size of each

attribute is k = [7, 16, 7, 14, 6, 5, 2, 41, 2], respectively.
• MS-FIMU. An open dataset from [6] with 𝑑 = 6 categorical

attributes and 𝑛 = 88935 samples. The domain size of each

attribute is k = [3, 3, 8, 12, 37, 11], respectively.
• Census-Income. A dataset from the UCI machine learning

repository [16] with 𝑑 = 33 categorical attributes and 𝑛 =

299285 samples. The domain size of each attribute is k =

[9, 52, 47, 17, 3, ..., 43, 43, 43, 5, 3, 3, 3, 2], respectively.
Evaluation and metrics. We vary the privacy parameter in a

logarithmic range as 𝜖 = [ln(2), ln(3), ..., ln(7)], which is within

range of values experimented in the literature for multidimensional

data (e.g., in [40] the range is 𝜖 = [0.5, ..., 4] and in [46] the range

is 𝜖 = [0.1, ..., 10]).
We use the MSE metric averaged per the number of attributes 𝑑

to evaluate our results. Thus, for each attribute 𝑗 , we compute for

each value 𝑣 (𝑖) ∈ D𝑗 the estimated frequency
ˆ𝑓 (𝑣𝑖 ) and the real

one 𝑓 (𝑣𝑖 ) and calculate their differences. More precisely,

𝑀𝑆𝐸𝑎𝑣𝑔 =
1

𝑑

∑︁
𝑗 ∈[1,𝑑 ]

1

|D𝑗 |
∑︁
𝑣∈D𝑗

(𝑓 (𝑣𝑖 ) − ˆ𝑓 (𝑣𝑖 ))2. (13)

Methods evaluated. We consider for evaluation the following

solutions (cf. Fig. 1) and protocols:

• Solution Spl, which splits the privacy budget per attribute 𝜖/𝑑
with a best-effort approach using the adaptive mechanism

presented in Subsection 2.2.3, i.e., Spl[ADP].

• Solution Smp, which randomly samples a single attribute

and use all the privacy budget 𝜖 also with the adaptive mech-

anism, i.e., Smp[ADP].

• Our solution RS+FD, which randomly samples a single at-

tribute and uses an amplified privacy budget 𝜖 ′ ≥ 𝜖 while

generating fake data for each 𝑑 − 1 non-sampled attribute:

– RS+FD[GRR] (Alg. 1 with GRR as local randomizer A);

– RS+FD[OUE-z] (Alg. 2);

– RS+FD[OUE-r] (Alg. 3);

– RS+FD[ADP] presented in Subsection 3.4 (i.e., adaptive

choice between RS+FD[GRR] and RS+FD[OUE-z]).

4.2 Results on synthetic data
Our first set of experiments were conducted on six synthetic

datasets. Fig. 6 (first two synthetic datsets), Fig. 7 (third and fourth

synthetic datsets), and Fig. 8 (last two synthetic datasets) illustrate

for all methods, the averaged 𝑀𝑆𝐸𝑎𝑣𝑔 (y-axis) according to the

privacy parameter 𝜖 (x-axis).

Impact of the number of users. In both Fig. 6 and Fig. 7, one can

notice that the𝑀𝑆𝐸𝑎𝑣𝑔 is inversely proportional to the number of

users 𝑛. With the datasets we experimented, the𝑀𝑆𝐸𝑎𝑣𝑔 decreases

one order of magnitude by increasing 𝑛 in one order of magnitude

too. In comparison with Smp, the noise in our RS+FD solution

comes mainly from fake data as it uses an amplified 𝜖 ′ ≥ 𝜖 . This
suggests that, in some cases, with appropriately high number of user
𝑛, our solutions may always provide higher data utility than the
state-of-the-art Smp solution (e.g., cf. Fig. 8).
Impact of the number of attributes. One can notice the effect on

increasing𝑑 comparing the results of Fig. 6 (𝑑 = 5) and Fig. 7 (𝑑 = 10)

while fixing 𝑛 and k (uniform number of values). For instance,

even though there are twice the number of attributes, the accuracy

(measuredwith the averagedMSEmetric) does not suffermuch. This

is because the amplification by sampling (𝑒
𝜖′−1
𝑒𝜖−1 = 1

𝛽
[31]) depends on

the sampling rate 𝛽 = 1

𝑑
, which means that the more attributes one

collects, the more the 𝜖 ′ is amplified, i.e., 𝜖 ′ = ln (𝑑 · (𝑒𝜖 − 1) + 1);
thus balancing data utility.

Besides, in Fig. 8, one can notice a similar pattern, i.e., increasing

the number of attributes from 𝑑 = 10 (left-side plot) to 𝑑 = 20 (right-

hand plot), with varied domain size k, resulted in only a slightly

loss of performance. This, however, is not true for the Spl solution,
for example, in which the𝑀𝑆𝐸𝑎𝑣𝑔 increased much more in order

of magnitude than our RS+FD solution.

Comparisonwith existing solutions. From our experiments, one

can notice that the Spl solution always resulted in more estimation

error than our RS+FD solution and than the Smp solution, which

is in accordance with other works [7, 34, 40, 41, 46]. Besides, our

RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] protocols achieve

better or nearly the same performance than the Smp solution with

a best-effort adaptive mechanism Smp[ADP], which uses GRR for

small domain sizes 𝑘 and OUE for large ones. Although this is not

true with RS+FD[OUE-r], it still provides more accurate results than

Spl[ADP] while "hiding" the sampled attribute from the aggregator.

Globally, on high privacy regimes (i.e., low values of 𝜖), our
RS+FD solution consistently outperforms the other two solu-
tions Spl and Smp. By increasing 𝜖, Smp[ADP] starts to out-
performRS+FD[OUE-r] while achieving similar performance
than our RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] so-
lutions. In addition, one can notice in Fig. 7, for example, the

advantage of RS+FD[ADP] over our protocols RS+FD[GRR] and

RS+FD[OUE-z] applied individually, as it adaptively selects the

protocol with the smallest approximate variance value.
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Figure 6: Averaged MSE varying 𝜖 on the synthetic datasets
with 𝑑 = 5, uniform domain size k = [10, 10, ..., 10], and 𝑛 =

50000 (left-side plot) and 𝑛 = 500000 (right-side plot).
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Figure 7: Averaged MSE varying 𝜖 on the synthetic datasets
with 𝑑 = 10, uniform domain size k = [10, 10, ..., 10], and 𝑛 =

50000 (left-side plot) and 𝑛 = 500000 (right-side plot).
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Figure 8: Averaged MSE varying 𝜖 on the synthetic datasets
with 𝑛 = 500000: the first with 𝑑 = 10 and domain size k =

[10, 20, ..., 90, 100] (left-side plot), and the other with 𝑑 = 20

and domain size k = [10, 10, 20, ..., 100, 100] (right-side plot).

4.3 Results on real world data
Our second set of experiments were conducted on four real-world

datasets with varied parameters for 𝑛, 𝑑 , and k. Fig. 9 (Nursery),
Fig. 10 (Adult), Fig. 11 (MS-FIMU ), and Fig. 12 (Census-Income)
illustrate for all methods, averaged 𝑀𝑆𝐸𝑎𝑣𝑔 (y-axis) according to

the privacy parameter 𝜖 (x-axis).

The results with real-world datasets follow similar behavior than

with synthetic ones. For all tested datasets, one can observe that the

𝑀𝑆𝐸𝑎𝑣𝑔 of our proposed protocols with RS+FD is still smaller than

the Spl solution with a best-effort adaptive mechanism Spl[ADP].

As also highlighted in the literature [7, 34, 40, 41, 46], privacy budget

splitting is sub-optimal, which leads to higher estimation error.

On the other hand, for both Adult and MS-FIMU datasets, our

solutions RS+FD[GRR], RS+FD[OUE-z], and RS+FD[ADP] achieve

nearly the same performance (sometimes better on high privacy

regimes, i.e., low 𝜖) than the Smp solution with the best-effort

adaptive mechanism Smp[ADP]. For the Nursery dataset, with

small number of users 𝑛, only RS+FD[OUE-z] and RS+FD[ADP] are

competitive with Smp[ADP]. Lastly, for the Census dataset, with
a large number of attributes 𝑑 = 33, increasing the privacy pa-

rameter 𝜖 resulted in a small gain on data utility for our solutions

RS+FD[GRR] and RS+FD[OUE-r]. On the other hand, both of our

solutions RS+FD[OUE-z] and RS+FD[ADP] achieve nearly the same

or better performance than Smp[ADP].

Moreover, one can notice that using the approximate variance
in (12) led RS+FD[ADP] to achieve similar or improved performance

over our RS+FD[GRR] and RS+FD[OUE-z] protocols applied individ-

ually. For instance, for the Adult dataset, with RS+FD[ADP] it was

possible to outperform Smp[ADP] 3x more than with RS+FD[GRR]

or RS+FD[OUE-z] (similarly, 1x more for the MS-FIMU dataset).

Besides, for the Census-Income dataset, RS+FD[ADP] improves the

performance of the other protocols applied individually on high

privacy regimes while accompanying the RS+FD[OUE-z] curve on

the lower privacy regime cases.

In general, these results help us answering the problematic
of this paper (cf. Subsection 1.3) that for the same privacy
parameter 𝜖, one can achieve nearly the same or better data
utility with our RS+FD solution than when using the state-of-
the-art Smp solution. Besides, RS+FD enhances users’ privacy
by "hiding" the sampled attribute and its 𝜖-LDP value among
fake data.On the other hand, there is a price to pay on computation,

in the generation of fake data, and on communication cost, which

is similar to the Spl solution, i.e., send a value per attribute.

5 LITERATURE REVIEW AND DISCUSSION
In recent times, there have been several works on the local DP

setting in both academia [3, 5, 13, 27, 28, 34, 40, 41, 46, 48] and

practical deployment [15, 23, 29, 39]. Among many other complex

tasks (e.g., heavy hitter estimation [12, 13, 44], marginal estima-

tion [24, 35, 37, 49], frequent itemset mining [36, 43]), frequency

estimation is a fundamental primitive in LDP and has received

considerable attention for a single attribute [3, 5, 8, 15, 23, 27, 30,

32, 41, 46, 48, 50]. However, concerning multiple attributes, as also

noticed in the survey work on LDP in [48], most studies for collect-

ing multidimensional data with LDP mainly focused on numerical

data [17, 34, 40, 46]. For instance, in [34, 40], the authors propose

sampling-based LDP mechanisms for real-valued data (named Har-

mony and Piecewise Mechanism) and applied these protocols in a

multidimensional setting using state-of-the-art LDP mechanisms

from [13, 41] for categorical data. On the other hand, regarding

categorical attributes, in [41], the authors prove for OUE (as well

as to optimal local hashing - OLH) that sending 1 attribute with
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Figure 9: AveragedMSE varying 𝜖 on theNursery dataset with
𝑛 = 12960, 𝑑 = 9, and domain size k = [3, 5, 4, 4, 3, 2, 3, 3, 5].
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Figure 10: Averaged MSE varying 𝜖 on the Adult dataset with
𝑛 = 45222, 𝑑 = 9, and domain size k = [7, 16, 7, 14, 6, 5, 2, 41, 2].
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Figure 11: Averaged MSE varying 𝜖 on theMS-FIMU dataset
with 𝑛 = 88935, 𝑑 = 6, and domain size k = [3, 3, 8, 12, 37, 11].
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Figure 12: Averaged MSE varying 𝜖 on the Census-Income
dataset with 𝑛 = 299285, 𝑑 = 33, and domain size k =

[9, 52, 47, 17, 3, ..., 43, 43, 43, 5, 3, 3, 3, 2].

the whole privacy budget 𝜖 results in less variance than splitting

the privacy budget 𝜖/𝑑 for all attributes. The authors in [7] prove

and validate experimentally that reporting a single attribute with

𝜖-LDP resulted in less estimation error than splitting the privacy

budget when using GRR.

However, in the aforementioned works [7, 34, 40, 41, 46], the

sampling result is known by the aggregator. That is, each user

samples a single attribute 𝑗 , applies a local randomizer to 𝑣 𝑗 , and

sends to the aggregator the tuple𝑦 = ⟨ 𝑗, 𝐿𝐷𝑃 (𝑣 𝑗 )⟩ (i.e., Smp). While

one can achieve higher data utility (cf. Figs. 6- 12) with Smp than

splitting the privacy budget among 𝑑 attributes (Spl), we argue

that Smp might be "unfair" with some users. More precisely, users

whose sampled attribute is socially "more" sensitive (e.g., disease or

location), might hesitate to share their data as the probability bound

𝑒𝜖 is "less" restrictive than 𝑒𝜖/𝑑 . For instance, assume that GRR is

used with k=2 (HIV positive or negative) and the privacy budget is

𝜖 = 𝑙𝑛(7) ∼ 2, the user will report the true value with probability

as high as 𝑝 ∼ 87% (even with 𝜖 = 1, this probability is still high

𝑝 ∼ 73%). On the other hand, if there are 𝑑 = 10 attributes (e.g.,

nine demographic and HIV test), with Spl, the probability bound is

now 𝑒𝜖/10 and 𝑝 ∼ 55%.

Motivated by this privacy-utility trade-off between the solutions

Spl and Smp, we proposed a solution named random sampling plus

fake data (RS+FD), which generates uncertainty over the sampled

attribute in the view of the aggregator. In this context, since the

sampling step randomly selects an attribute with sampling prob-

ability 𝛽 = 1

𝑑
, there is an amplification effect in terms of privacy,

a.k.a. amplification by sampling [9, 10, 14, 28, 31]. A similar pri-

vacy amplification for sampling a random item of a single attribute

has been noticed in [43] for frequent itemset mining in the LDP

model too. Indeed, amplification is an active research field on DP

literature, which aims at finding ways to measure the privacy in-

troduced by non-compositional sources of randomness, e.g., sam-

pling [9, 10, 14, 28, 31], iteration [25], and shuffling [11, 21, 22, 42].

6 CONCLUSION AND PERSPECTIVES
This paper investigates the problem of collecting multidimensional

data under 𝜖-LDP for the fundamental task of frequency estimation.

As shown in the results, our proposed RS+FD solution achieves

nearly the same or better performance than the state-of-the-art

Smp solution. In addition, RS+FD generates uncertainty over the

sampled attribute in the view of the aggregator, which enhances

users’ privacy. For future work, we suggest and intend to investigate

if given a reported tuple y one can state which attribute value is

"fake" or not by seeing the estimated frequencies. Indeed, we intend

to investigate this phenomenon in both single-time collection and

longitudinal studies (i.e., throughout time) by extending RS+FD

with two rounds of privatization, i.e., using memoization [15, 23].
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