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Abstract: On-surface metal-organic polymers have emerged as a class of promising 2D materials.
Here, we propose a new strategy to obtain coordination polymers by transforming supramolecular
networks into coordination polymers by surface-assisted cyclo-dehydrogenation of organic building
blocks. All nanostructures are fully characterized by using scanning tunneling microscopy under
ultra-high vacuum on a gold surface. We demonstrated that the balance between molecule-molecule
interaction and molecule-substrate interaction can be drastically modified by a strong modification
of the geometry of the molecules thanks to a thermal annealing. This new way is an efficient method
to elaborate on-surface coordination polymers.

Keywords: scanning tunnelling microscopy; on-surface synthesis; coordination polymers

1. Introduction

During the past two decades, self-organization of molecular materials on surfaces has
been widely investigated in the case of organic molecules and molecular objects deposited
on different kind of substrates [1–5]. More recently, on-surface synthesis has emerged to
provide the fabrication of covalent nanostructures [6–20]. All these nanostructures have
been obtained by bottom-up approaches and their structure are atomically-precise, as
proven by scanning probe microscopies, that can be used for great potential applications in
molecular electronics, spintronics, energy, catalysis and other fields. Among all types of
nanostructures, coordination polymers have attracted attention because coordination bonds
are reversible, leading to the possibility to self-reparation by bond scission and reformation
in order to achieve the formation of defect-free nanostructures [21–25]. These polymers can
be directly obtained on crystalline substrate by the deposition of polyfunctional organic
linkers that are able to coordinate adatoms of the surface or co-deposited metallic atoms in
ultra-high vacuum. These organic linkers are able to coordinate metallic atoms or cations
without any further action, because their coordination sites are in-the-plane and close to the
underlying surface. The formation of the surface-confined coordination polymers is mainly
governed by the balance between molecule-molecule and molecule-surface interactions,
bond strength, reversibility of bond formation, precursor diffusion and their surface-
concentration [2]. Finally, the nature of the metal atoms plays a key-role in the formation
of the coordination polymers [21]. By tuning all these parameters, many surface-confined
coordination polymers have been successfully achieved [20–23]. However, in most of cases,
the underlying surface does not modify the ability of the organic linkers to coordinate
metal centers. As on-surface chemistry gives the opportunity to create new building blocks
only accessible when they are adsorbed at the surface, we propose to transform an organic
molecule into an organic linker by surface-assisted reaction.

Here, we report a surface-assisted reaction that transforms organic molecules involved
in large extended 2D-supramolecular networks into organic linkers being able to coordinate
adatoms of the surface to give 1D coordination polymers. Experiments were performed
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on an Au(111) surface in ultra-high vacuum (UHV). All adsorbates are fully characterized
by scanning tunneling microscopy that provides images with submolecular resolution. By
using a surface-assisted cyclodehydrogenation reaction, we switch a purely 2D supramolec-
ular network to coordination polymer by a controlled flattening of this organic molecule
that gives it the ability to coordinate metal adatoms.

2. Materials and Methods
2.1. Synthesis

All reagents were purchased from Sigma-Aldrich, except Pd(PPh3)4 which was pur-
chased from Strem chemical and used as received. The silica gel used for column chro-
matography was purchased from Merck. The deuterated NMR solvents were purchased
from Euriso-top. The NMR spectra were recorded using a Bruker AC-300 MHz spec-
trometer. The two molecules, 10,10′-di-(4′′-cyanophenyl)-9,9′-bianthryl (CPBA) and 10,10′-
di-(4′′-pyridyl)-9,9′-bianthryl (PBA) were synthesized by a procedure adapted from the
literature [26,27]. Basically, 10,10′-dibromo-9,9′-bianthryl, 4′-cyanophenyl boronic acid
pinacol ester or 4′-pyridyl boronic acid pinacol ester, cesium carbonate and Pd(PPh3)4 as
a catalyst were dissolved in tetrahydrofuran. The resulting white solid was purified by
column chromatography (silica gel, cyclohexane/dichloromethane 1:1) to give a white
solid [28].

2.2. STM Experiments

The first step consists of the preparation of the Au(111) surface by argon ions sput-
tering cycles at 1.2 kV followed by thermal annealing at 673 K. This takes place inside a
preparation chamber maintained under UHV conditions with a base pressure lower than
2 × 10−10 mbar and coupled to an Omicron variable temperature Scanning Tunneling
Microscope (Omicron VT-STM XA). Once the cleanness of Au(111) surface is confirmed by
analysis of STM images, we proceed to the deposition of molecules by thermal sublimation
from a quartz crucible with corresponding temperature of 458 K for PBA and 468 K for
CPBA. During deposition the substrate was held at room temperature then transferred and
cooled to 110 K on the STM stage for acquiring images. Each image process was carried
out using SPIP 6.7.7 (Digital Surf, France) software.

3. Results

We synthesized two molecules, 10,10′-di(4′′-pyridyl)-9,9′-bianthryl (PBA) and 10,10′-
di(4′′-cyanophenyl)-9,9′-bianthryl (CPBA) respectively, that contain two aryl groups co-
valently bound to the 10 and 10′ positions (Figure 1) of a bianthryl core, respectively.
We chose cyanophenyl and pyridyl groups as lateral groups because they are involved
in the formation of supramolecular networks on various kinds of surface even at room
temperature [5,29]. The distance between the extremities of anthracenly rings of these two
molecules is 0.79 nm and their length is 1.67 and 2.08 nm for PBA and CPBA, respectively
(Figure 1).

3.1. Supramolecular Self-Assembly on an Au(111) Surface

PBA and CPBA molecules were deposited by thermal sublimation under UHV on an
Au(111) substrate maintained at room temperature. Molecules were deposited in different
coverage ratios but never exceeding the one monolayer threshold. As revealed in STM
images recorded at 110 K, no isolated molecule was observed but only large extended
2D islands. Indeed, despite the amounts of molecules deposited on the surface, only 2D-
extended islands were observed, each building-up of highly organized periodic protrusions,
as shown in Figure 2.
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Figure 2. STM images of self-assembled molecules on Au(111) surface. (a) PBA supramolecular
network (Vs = −1.5 V, It = 10 pA, 30 nm × 30 nm, inset 4 nm × 4 nm) (b) CPBA supramolecular
network (Vs = 1.5 V, It = 10 pA, 20 nm × 20 nm, inset 3 nm × 3 nm).

In the case of PBA/Au(111) interface, repetitive unit consists of three pairs of disjoined
protrusions (Figure 2a) rotated by 120◦. In each domain, all repetitive units are rotated only
clockwise or only anti-clockwise, leading to homochiral domains. The distance measured
between the disjoined protrusions, is 0.8 ± 0.02 nm. For the CPBA molecules deposited on
Au(111), a compact periodic network constituted by bright lines, which were separated by
darker strips can be observed. The periodicity between the bright lines is 1.28 ± 0.02 nm.
Each line is made up of paired bright protrusions separated by 0.8 ± 0.02 nm.

Based on our STM observations and measurements, we propose the models of
PBA/Au(111) and CPAB/Au(111), respectively. Consistent with the features of PBA
and CPBA molecules (Figure 1), each bright-paired protrusion is attributed to a single PBA
or CPBA molecule respectively.

In the case of PBA/Au(111) interface, the unit cell of the supramolecular network is
constituted by three paired-bright protrusions included in a rhomb, as shown by the two
vectors UPBA and VPBA (Figure 3a). The length of these two vectors are UPBA = 2.25 ± 0.22 nm
and VPBA = 2.25 ± 0.22 nm. The unit cell covering 4.38 nm2 for three PBA molecules, the
molecular density of the PBA/Au(111) network is 0.68 molecule per nm2. The supramolec-
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ular arrangement of PBA/Au(111) is obtained thanks to molecule-molecule interactions.
The main molecule-molecule contribution is due to the interaction of nitrogen atoms of
pyridyl groups pointing towards the centre of an anthracenyl ring of the adjacent PBA
molecule (Figure 3b), corresponding to T-Shape π-π interaction [30].
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Figure 3. (a) STM image (Vs = −1.5 V, It = 10 pA, 8 nm × 8 nm) of PBA supramolecular network
with corresponding superimposed model and unit cell vectors: UPBA = 2.25 nm, VPBA = 2.25 nm,
θPBA = 60◦. (b) Supramolecular model of PBA molecules on Au(111) surface with the inset of
magnified image representing three adjacent PBA molecules, where two adjacent pyridyl rings are
separated by a distance of 0.42 nm (blue arrow) and two nitrogen atoms point towards the centre of
the anthracenyl ring of a third PBA molecule (highlighted by two red arrow, length: 0.41 nm).

CPBA/Au(111) interface is described by an unit cell including two paired-bright
protrusions. The unit cell is quite rectangular as shown by the vectors UCPBA and VCPBA
(Figure 4a). The length of UCPBA vector is 2.58 ± 0.26 nm while the length of VCPBA vector
is = 1.45 ± 0.15 nm. The UCPBA,VCPBA angle is 94◦. As the unit cell contains two PBA
molecules for an area of 3.73 nm2, the molecular density of the CPBA/Au(111) network
is 0.54 molecule per nm2, which is lower than those of PBA/Au(111) interface. This
supramolecular network is supported by π-π interaction called T-shaped interaction [31]
because the two nitrogen atoms of each CPBA molecule are pointed towards the centre of
the anthracenyl ring of the adjacent CPBA molecule included in two surrounding lines of
CPBA molecules (Figure 4b). In each unit cell, the two CPBA molecules are diastereo-isomer
because of the relative orientation of their bianthryl core (Figure 4a).

3.2. Annealing of the Supramolecular Self-Assemblies on an Au(111) Surface

Then, we investigated the chemical transformation of the two supramolecular self-
assemblies induced by thermal annealing. Hence, a set of experiments consisting of the
subsequent annealing of each observed supramolecular network were conducted. From
room temperature to 623 K, we did not observe any modification of the networks. However,
at 623 K, a critical transformation was observed. Then, until 773 K, we did not observe
other transformations but only noticeable desorption of formed nanostructures at 773 K.
In addition, the duration of each step of annealing varied from 1 h to 4 h, but no effect of
duration was observed.
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Figure 4. (a) STM image (Vs = 1.5 V, It = 10 pA, 8 nm × 8 nm) of CPBA supramolecular network
with corresponded superimposed supramolecular model and unit cell vectors: UCPBA = 2.58 nm,
VCPBA = 1.45 nm, θCPBA = 94◦. (b) 3D model of CPBA/Au(111). Inset highlights the interaction
between one nitrogen atom pointing out the center of anthracenyl ring of the adjacent molecule,
which are separated by 0.45 nm (red arrow).

The thermal annealing of the two periodic supramolecular networks described pre-
viously led to disordered annealing nanostructures (Figure 5). In addition, instead of
bright-paired protrusions, nanostructures are constituted by cross-shaped bright protru-
sions. The length of these protrusions is 1.73 ± 0.05 nm and 2.23 ± 0.05 nm for PBA and
CPBA respectively while their width is 1.05 ± 0.05 nm. The bright protrusions led to the
formation of straight or reticulated nanolines including three- of four connecting nodes.
The distance separating bright protrusions is longer in the case of CPBA than in the case of
PBA (Figure 5).
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Figure 5. STM images of formed nanostructures observed on Au(111) surface after thermal annealing
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3 nm × 3 nm, (b) CPBA (Vs = −2.0 V, It = 7 pA, 60 nm × 60 nm, inset 3.5 nm × 3.5 nm).

4. Discussion

The on-surface behavior of bianthryl derivatives has been intensively investigated
since it has been shown that most of this type of compound can be polymerized into
graphene nanoribbons [7,11,28,32–38]. This polymerization occurs in two steps, the first



Nanomaterials 2021, 11, 2102 6 of 9

being formation of a protopolymer and the second step of this process is based on surface-
assisted intramolecular cyclodehydrogenation providing completely planar building blocks.
This cyclodehydrogenation reaction occurs at around 550 K and 700 K on a Cu(111) and
Au(111), respectively [33]. This difference of temperature outlines the role of the surface
in this intramolecular cyclodehydrogenation. The driven force of cyclodehydrogenation
is the formation of more conjugated compounds. One consequence of this increasing of
conjugation is the flattening of involved molecules. However, on Cu(111), if the positions
10 and 10′ of the starting bianthryl are substituted by an aryl ring, the formation of
protopolymers is not possible and only disordered polymeric structures were obtained
due to the strong reactivity of the Cu(111) surface which lead to the formation of reactive
radicals [18].

On the basis of the features observed in STM images, we can attribute the bright pro-
trusions (Figure 5) to the 7,14-(4′-pyridyl)-bisanthene (flat-PBA) and 7,14-(4′-cyanophenyl)-
bisanthene (flat-CPBA) molecules obtained by surface-assisted cyclodehydrogenation of
PBA and CPBA respectively (Figure 6).
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Figure 6. Thermal-induced cyclodehydrogenation of PBA and CPBA molecules. The starting PBA
and CPBA molecules have a 3D cross-shaped core (i.e., bianthryl core), the corresponding bisanthene
cores (Flat-PBA and flat-CPAB) are flattened.

As Au(111) surface is less reactive than Cu(111) surface and as the 10 and 10′-positions
are substituted in PBA and CPBA molecules, no polymerisation occurs by thermal anneal-
ing [39]. Only intramolecular cyclodehydrogenations are possible, leading to flattened
molecules, flat-PBA and flat-CPBA, respectively.

The average distance between Au(111) surface and flat-PBA or flat-CPBA molecules
is shorter than those between surface and respectively, PBA and CPBA (Figure 7). There-
fore, the interaction of nitrogen atoms of pyridyl or cyanophenyl moieties with the gold
atoms of the surface is reinforced, that promotes the formation of coordination poly-
mers [2,22–24,40–42].
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by 0.24 nm due to the flattening of PBA induced by thermal annealing.

The pyridyl or cyano moiety are ligand for several kind of metal atoms, due to the
presence of the lone pair of electrons on the nitrogen atom. Due to the strength and the
directionality of these metal-ligand bond, the corresponding coordination polymers exhibit
a high degree of reticulation on metal substrates like on an Au(111) surface, even if it is
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still rare compared to other coinage surfaces [22,25,41,42]. These coordination properties
support the observation of straight and reticulated nanolines in STM images.

The straight lines observed in Figure 5 correspond to the coordination of two flat-PBA
(Figure 8a,d) or flat-CPBA (Figure 9a,d) molecules surrounding a gold adatom, which is
visible as bright protrusion for coordination polymers including flat-PBA. The three- and
four reticulating nodes observed in STM images are attributed to three- or four flat-PBA
(Figure 8b–d) or flat-CPBA molecules (Figure 9b–d) coordinating one gold adatom. Neither
of these modes can form a long-range ordered lattice on Au(111) surface. The lack of
long-range polymer can be explained by the softness of gold adatom compared to Co
or Fe cations which lead to well-organized 1D/2D networks with hard nitrogen-based
ligands [42].
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Figure 8. (a–c) STM images (Vs = −1.8 V, It = 10 pA) of PBA supramolecular nanostructures with
three different configurations obtained after thermal annealing: (a) Chain-like nanostructures of
protrusions (7 nm × 3 nm), (b) Y-shaped trimer nanostructures (4 nm × 4 nm) and (c) Cross-shaped
of nanostructures (4 nm × 4 nm). (d) Molecular models of the three different type of coordination
(red dot: Au ad-atom surrounded by organic moieties).
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5. Conclusions

We have demonstrated that the balance between molecule-molecule interaction and
molecule-surface interaction can be strongly alter by using on-surface chemistry. We have



Nanomaterials 2021, 11, 2102 8 of 9

shown that 2D-extended periodic supramolecular networks are converted into coordina-
tion polymers by a thermal annealing. By flattening molecule, thanks to intramolecular
cyclodehydrogenations, pyridyl or cyanophenyl rings can be transformed from pi-pi stack-
ing precursors to coordinating agents of gold adatoms. This strategy paves the way to new
possibilities for multi-functional nanostructures by using on-surface assisted synthesis.
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