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Abstract— This paper considers the problem of a rotating
flexible beam in collision with an external object. The flexible
beam’s colliding equations exhibit instant changes during im-
pact times, therefore the model is cast in the class of switched
infinite dimensional operator systems. The aim is to study the
stability of the closed loop system with a PD control law, making
use of the semigroup formalism together with the Lyapunov
stability theory. To this end, we present a new stability result
making use of multiple Lyapunov functions obtained as an
adaptation of a theorem from finite dimensional hybrid systems
theory. We show the port-Hamiltonian modelling procedure
for a controlled rotating flexible beam in impact scenario,
using distributed parameter equations to describe the beam’s
dynamic. Then, we compute the equilibrium position of the
closed loop system and using the shifted variables with respect
to the equilibrium position, we cast the system in the class
of switched infinite dimensional operator systems. Finally we
select the Lyapunov functions for the contact and non-contact
phases and we show, through numerical simulations, that they
respect the assumptions of the proposed stability theorem.

I. INTRODUCTION

A lot of critical tasks in robotics involve the contact
between the manipulator and an external object or the envi-
ronment. In some cases, flexible manipulators are preferable
to rigid ones due to their lightweight and because they
can assure smooth contact force in impact scenario. This
is why they can be encountered in many application fields
ranging from spatial [1] to micro-manipulation applications
[2]. The major challenge is to come up with a suitable model
for control purposes that is enough accurate on taking into
account the impact dynamics.
The main difficulty is that the distributed parameter nature
of the flexible beam’s system would require an infinite
dimensional analysis. A finite dimensional analysis provides
a good approximation of the flexible phenomena in case
of unconstrained conditions, but it can bring misleading
results in presence of impact, where a large bandwidth of
frequencies will be excited. While there exist many studies
on the control of flexible manipulators in impact scenario
using finite dimensional models [3], [4], [5], very few
have discussed the collision issue using infinite-dimensional
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models [6]. The dynamical model of a colliding flexible
beam is expected to have instant changes in impact times.
Therefore the model will combine behaviours that are typical
of continuous-time dynamical systems with behaviours that
are typical of discrete-time dynamical systems. This defini-
tion perfectly fits into the class of hybrid dynamical systems.
The stability, as well as the control design theory, have been
extensively studied for finite dimensional hybrid systems [7].
On the other side, some results have been established for
infinite dimensional hybrid systems. In [8] are presented
some general results on Lagrange, asymptotic and expo-
nential stability (in all their variations) for the class of
hybrid infinite dimensional systems, that do not require the
determination of Lyapunov functions, as well as results that
do involve Lyapunov functions. In particular, the result of
Lagrange stability requires that the composition along solu-
tions of all the different Lyapunov functions should be non-
increasing in all the switching times. In [9] some conditions
for obtaining exponential stability are given for a subclass
of hybrid systems, namely switched operator systems. Other
characterizations of exponentially stable switched operator
equations can be founded in [10], [11].
In this preliminary work, we are interested in studying the
Lagrange stability of a flexible beam in impact scenario in
feedback with a simple PD controller. To do so, we recast the
closed-loop system in the class of switched linear operator
systems and we study its stability using an adaptation for
infinite dimensional systems of the Lagrange stability result,
that makes use of multiple Lyapunov functions, proposed in
[12]. We decided to do not use the theorem proposed in [8]
due to the difficulty in finding good Lyapunov functions for
our specific application case.
The remainder of this paper is organized as follows. In the
next section, we give some background on infinite dimen-
sional switching linear systems; in section III we propose
a model for the colliding flexible beam together with the
design of a PD controller, then we show the equilibrium
position computation together with the stability study; in
section IV are given numerical simulations to validate the
theoretical development. We conclude the paper with some
final remarks and comments on future research.

II. PRELIMINARIES

In this section we provide the necessary background con-
cerning dynamical systems determined by switching operator
equations. Consider the general operator equation

ẋ(t) = f (x(t),m), (1)
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where x ∈ X is the continuous state and belongs to an
appropriate Hilbert space, and m ∈M = {1,2, . . . ,N} is the
discrete state. The couple defined as the composition of the
continuous and discrete state (x,m) is called hybrid state.
The i− th (in order of activation) discrete state mi depends
in general on the continuous state x and on the previous
discrete state mi−1, i.e. mi =η(x,mi−1) where η : X×M→M
is a discrete transition. If for each x ∈ X , only one m ∈ M
is possible, then the system is called a switching system,
otherwise is an hybrid system. Here, we consider switched
systems, then we partition the state space in N disjoint
regions

Ω1 . . .ΩN ⊂ X

where Ωi
⋂

Ω j = /0, i 6= j .
Consider a family of linear operators A = {Am, m ∈ M}
defined on a common domain D(Aα)=D(Aβ ) for α,β ∈M
and a family of functions F= { fm,m ∈M} . The considered
switched operator system is given by

ẋ(t) = Aη x(t)+ fη(x(t)). (2)

The continuous state evolution of (2) can be described as:
starting at (x0,m0) at time t0, the continuous trajectory
evolves according to ẋ = Am0x+ fm0(x). Let us assume that
at time t1, x reaches a value x1 that triggers a discrete
change from m0 to m1; then the process evolves according to
ẋ = Am1x+ fm1(x). Here, we consider hybrid systems with
continuous state that does not change during switching and
therefore the hybrid state (x,mi) becomes (x,m j). We define
a switching sequence anchored to a certain initial state

{Sn(x0)}= (m0, t0), (m1, t1), . . . ,(mn, tn), . . . .

The switching sequence along (2) describes completely the
trajectory of the system according to the following rule:
(mi, ti) means that the system evolves according to ẋ(t) =
Amix+ fmi(x) for ti ≤ t ≤ ti+1. We denote by S(x0)|m the
endpoints of times for which the system m is active. Finally,
let E (T ) : t0, t2, t4, . . . denote the even sequence of T :
t0, t1, t2, . . ..
The solution of a dynamical system sometimes converges
to an equilibrium point, of witch we propose the definition
given in [8, page 1278].

Definition 2.1: An hybrid state (xeq,meq) is said to be an
hybrid equilibrium of (1) if the trajectory generated by the
initial conditions (xeq,meq) is such that xS(xeq)(t) = xeq for all
t ≥ 0. �
The hybrid equilibrium points may be obtained by finding
the states satisfying

Amx+ fm(x) = 0 ∀m ∈M. (3)

All the continuous states satisfying (3) are not hybrid equi-
libria because they may be not possible hybrid states. For
example one solution of (3) (xeq,mi) may not be possible in
the sense that xeq is not contained in the region of the state
space that is associated with the discrete state mi.
Without loss of generality the origin is assumed to be a con-
tinuous equilibrium of (1) for which stability is investigated.

Now, we can define a single candidate Lyapunov function
Vm for a certain system’s dynamic Amx+ fm(x).

Definition 2.2: A continuous functional Vm : X → [0,∞)
such that ∀x ∈ Ωm α(||x||) ≤ Vm(x) ≤ β (||x||), where
α,β : R+ → R+ are such that α(0) = β (0) = 0 and
lim||x||→∞ α(||x||) = lim||x||→∞ β (||x||) = ∞, is a Lyapunov
functional for Amx+ fmx and the trajectory x(t) if:
• Vm(x(t)) is Dini differentiable [13];
• V̇m,+(x0) := limsupt→0

Vm(x(t))−Vm(x0)
t ≤ 0 ∀x(0) = x0 ∈

Ωm. �
Since the Dini derivative is usually difficult to compute, we
introduce in the next lemma an easy way to compute it.
Note that for a functional Vm to be considered a Lyapunov
functional for Amx+ fm(x), it is necessary that V̇m,+(x) is
non positive only in the region Ωm, but in principle V̇m,+(x0)
can be computed in the whole state space X .

Lemma 2.1: If the functional Vm is Frchet differentiable,
then for x ∈ Ωκ

⋂
D(Aκ) κ ∈ M, Vm(x(t)) is differentiable

for t = 0 and

V̇m,t(x) =
dVm(x(t))

dt
|t=0 = dVm(x)Aκ x+ fκ(x) ∀x ∈Ωκ

where dVm denotes the Frchet derivative of Vm.
Proof. Divide the state space in the different subspaces

Ωκ . Then, the time derivative equality in each Ωκ is shown
to hold as in Lemma 11.2.5 of [13]. �

In the previous lemma, we gave the formula for computing
the time derivative of the Lyapunov function Vm in any
subspace Ωκ . At this point we are in position to state
the bounded trajectory theorem for switched linear operator
systems, that is an adaptation of theorem 2.3 in [12] for
infinite dimensional systems.

Theorem 2.2: Let assume that there exists a unique local
mild solution of (2). If there exist Lyapunov functions Vm
for every Amx+ fm(x) that are non increasing in E (S(x0)|m)
∀m ∈ M, then (2) has a global bounded mild solution for
every initial condition x0 ∈ X .

Proof: [Proof (for N=2)] Since we know that there exists
a local mild solution, we know that for any x0 there exists
a tmax such that (2) possess a mild solution on [0, tmax) and
tmax < ∞ only if ||x(t,x0)|| diverges when t→ tmax.
Let R> 0 be arbitrary. Let dm(α) =min{Vm(x0) | ||x0||=α}.
Pick rm < R such that ∀x0 ∈ B(rm) = {x0 ∈ X | ||x0|| ≤
rm}, Vm(x0) < dm(R) for all m ∈M. Let r = min(rm). With
this choice, if we select ||x0|| ≤ r, the evolution of the
trajectory with either vector field Amx+ fm(x) will be such
that ||x(t)|| ≤ R ∀t ∈ [0, t0].
Now pick ρm < r such that ∀x0 ∈ B(ρm) = {x0 ∈ X | ||x0|| ≤
ρm}, Vm(x0)< dm(r) for all m ∈M. Set ρ = min(ρm). Thus,
if we choose ||x0||X ≤ ρ the trajectory’s evolution with either
vector field Amx+ fm(x) will be such that ||x(t)|| ≤ r ∀t ∈
[0, t0].
Therefore, select ||x0||X ≤ ρ such that at the first transition
at time t1 we have that ||x(t1)|| ≤ r and at the second
transition at time t2 we have ||x(t2)|| ≤ R. Then, because
of the “switching-in” condition

Vm(x(t2))≤Vm(x(t0))≤ r.
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Fig. 1. Rotating flexible Timoshenko’s beam in impact with the external
environment.

This procedure can be repeated to the infinite to conclude

||x|| ≤ R ∀t ∈ R+.

Since the trajectory remains bounded the solution does not
diverge and then tmax = ∞.

The non-increasing condition of Vm in E (S(x0)|m) con-
cerns the value of each function Vm each time is “switched
in”. It means that the value of Vm at switching points should
be smaller than that of the previous time it has become
active or “switched in”. We remark that to conclude about
the existence of a globally bounded mild solution it is not
necessary that the solution has a finite number of switching in
a finite time interval (See Zeno Behaviour in Hybrid systems
[7]).

III. CONTROLLED FLEXIBLE ROTATING BEAM
IN IMPACT SCENARIO

A. Modelling and Control design

Consider a rotating flexible beam in absence of gravity as
depicted in Figure 1. The rotor angle θ(t) is a real function
of time, while ξ ∈ [0,L] identifies the spatial coordinate
of the beam. The deflection of the beam in the rotating
frame is defined by w(t,ξ ), while φ(t,ξ ) represents the
relative rotation of the beam cross section. All the physical
parameters are positive definite. J1 and J2 represent the rotary
inertia of the hub to which the beam is connected and the end
effector’s rotary inertia, respectively. m is the end effector’s
mass. E(ξ ), I(ξ ) are the Young’s modulus and the moment
of inertia of the beam’s cross section, respectively. ρ(ξ ) and
Iρ(ξ ) are the density and the mass moment of inertia of
the beam’s cross section, respectively, and G(ξ ) is the Shear
modulus.
According to [14], the compliant surface is considered as a
mass-less system composed by a spring and a damper. In
this paper we consider a constant spring coefficient ki and
a damper coefficient depending on the environment’s defor-
mation fi(θ ,w) = ci(Lθ + w(t,L)), with ci constant. Note
that the quantity Lθ + w(t,L) corresponds to the distance
of the end-effector from the external environment when is
negative, and to the environment’s deformation when it is
positive. From now on we will not explicit the dependency
from time and space of the variables when it is clear from

the context. The kinetic energy Hk and the potential energy
Hp, using Timoshenko’s assumptions, write as

Hk =
1
2 J1θ̇ 2 + 1

2 J2(θ̇ + φ̇(t,L))2 + 1
2 m(Lθ̇ + ẇ)2

+ 1
2

∫ L

0

[
ρ

(
∂w
∂ t

+ξ θ̇

)2

+ Iρ

(
∂φ

∂ t
+ θ̇

)2
]

dξ

Hp =
1
2

∫ L

0

[
K
(

∂w
∂ξ
−φ

)2

+EI
(

∂φ

∂ξ

)2
]

dξ

+ 1
2 kiγ(θ , θ̇ ,w(t,L), ẇ(t,L))(Lθ +w(t,L))2

where K(ξ ) = kA(ξ )G(ξ ), with k a positive parameter
depending on the beam’s cross section and A(ξ ) the cross
sectional area. γ denotes the function γ : R4→{0,1} defined
as

γ =


i f (Lθ +w(t,L)< 0)

0 or
[(Lθ +w(t,L) = 0) and (θ̇ + φ̇(t,L)< 0)]

i f (Lθ +w(t,L)> 0)
1 or

[(Lθ +w(t,L) = 0) and (θ̇ + φ̇(t,L)≥ 0)].

The Hamilton’s principle is used to obtain the sys-
tem’s dynamical equations, considering δWnc = u(t)δθ −
fi(θ ,w)γ(θ , θ̇ ,w(t,L), ẇ(t,L))(Lθ̇ + ẇ(t,L))δ (Lθ +w(t,L))
the virtual work of non-conservative forces, where u(t)
identifies the external torque, and the other term corresponds
to the dissipation of the soft-impact model. The dissipation
force results nonlinear because we considered a damping
coefficient depending on the environment’s deformation. The
derived set of mixed partial and ordinal differential equations
writes

∂

∂ t

(
ρ

(
∂w
∂ t +ξ θ̇

))
= ∂

∂ξ

(
K
(

∂w
∂ξ
−φ

))
∂

∂ t

(
Iρ

(
∂φ

∂ t + θ̇

))
= ∂

∂ξ

(
EI ∂φ

∂ξ

)
+K

(
∂w
∂ξ
−φ

)
J1

d
dt θ̇ =+EI(0) ∂φ(t,0)

∂ξ
+u(t)

m d
dt (Lθ̇ + ẇ(t,L)) =−K(L)

[
∂w
∂ξ

(L, t)−φ(L, t)
]

−kiγ(θ , θ̇ ,w(t,L), ẇ(t,L))(Lθ +w(t,L))
− fi(θ ,w)γ(θ , θ̇ ,w(t,L), ẇ(t,L))(Lθ̇ + ẇ(t,L))

J2
d
dt (θ̇ + φ̇(t,L)) =−EI(L) ∂φ

∂ξ
(t,L)

(4)
with boundary conditions

w(t,0) = 0 φ(t,0) = 0. (5)

The energy states of the infinite dimensional system are
defined by

εt =
∂w
∂ξ
−φ pt = ρ

(
∂w
∂ t +ξ θ̇

)
εr =

∂φ

∂ξ
pr = Iρ

(
∂φ

∂ t + θ̇

)
.

(6)

The equations describing the infinite dimensional system can
be written as a port-Hamiltonian (pH) system

ẋb = J xb = P1
∂

∂ξ
(Hbxb)+P0(Hbxb) (7)

with xb = [pt pr εt εr]
T ∈ Xb ⊂ L2([0,L],R4) representing the

system’s state. The matrices in equation (7) are defined as

P1 =

[0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

]
P0 =

[0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]
,

2802

Authorized licensed use limited to: Yongxin Wu. Downloaded on September 17,2021 at 08:24:56 UTC from IEEE Xplore.  Restrictions apply. 



Hb(ξ ) =

ρ−1(ξ ) 0 0 0
0 I−1

ρ (ξ ) 0 0
0 0 K(ξ ) 0
0 0 0 EI(ξ )

.
The state space Xb is equipped with the L2 inner product
〈xb,xb〉Xb = 〈xb,Hbxb〉L2 , such to express the energy related
to the flexible part of the system as Hb = 1

2 〈xb,xb〉Xb . The
boundary variables are defined as [15][

f∂

e∂

]
=

1√
2

[
P1 −P1
I I

][
(Hbxb)(t,0)
(Hbxb)(t,L)

]
.

Then, define the boundary input and output operators as

B1(Hbxb) =W2

[
f∂

e∂

]
=

[
I−1
ρ pr(t,0)

ρ−1 pt (t,L)
I−1
ρ pr(t,L)

]
= ub,1

B2(Hbxb) =W1

[
f∂

e∂

]
= ρ−1 pt(t,0) = ub,2

C1(Hbxb) = W̃2

[
f∂

e∂

]
=

[
−EIεr(t,0)

Kεt (t,L)
EIεr(t,L)

]
= yb,1

C2(Hbxb) = W̃1

[
f∂

e∂

]
=−Kεt(t,0) = yb,2

(8)

where W =
[

W1
W2

]
and W̃ =

[
W̃1
W̃2

]
are appropriate matrices,

and are such that
[W

W̃

]
is non-singular. The total boundary

input-output operators are defined as

B(Hbxb) =

[
B1(Hbxb)
B2(Hbxb)

]
=

[
W1
W2

][
f∂

e∂

]
= ub

C (Hbxb) =

[
C1(Hbxb)
C2(Hbxb)

]
=

[
W̃1
W̃2

][
f∂

e∂

]
= yb.

(9)

Denote the restoring torques and forces with ur and the hub’s
and end-effector’s velocities with yr

ur =


EI ∂φ

∂ξ
(t,0)

−K
[

∂w
∂ξ

(t,L)−φ(t,L)
]

−EI ∂φ

∂ξ
(t,L)

 yr =

 θ̇

Lθ̇ + ẇ(t,L)
θ̇ + φ̇(t,L)

 .
The states related to the finite dimensional part are defined
as

p1 = J1θ̇ q1 = θ

p2 = m(Lθ̇ + ẇ(t,L)) q2 = Lθ +w(t,L)
p3 = J2(θ̇ + φ̇(t,L))

(10)

and the related equations write as
ṗ =−ur + f (p,q)+gu

q̇ =
[

1
J1

p1
1
m p2

]T

yr(t) =
[

1
J1

p1
1
m p2

1
J2

p3

]T
(11)

where p = [p1 p2 p3]
T , q = [q1 q2]

T and the matrices and the
nonlinear vector are defined as

g =

1
0
0

 f (p2,q2) =

 0
−kiγ(q2, p2)q2− ci

m γ(q2, p2)q2 p2
0

 .
with γ function in the new variable defined as

γ =

{
0 i f (q2 < 0) or [(q2 = 0) and (p2 < 0)]
1 i f (q2 > 0) or [(q2 = 0) and (p2 ≥ 0)].

Use the original boundary conditions (5) together with
the state variables definition (6) to derive the interconnec-
tion relation between the infinite dimensional and the finite
dimensional parts of the system

ub,1 = yr ur =−yb,1,

while the remaining boundary condition of (7) is equal to
zero, i.e. ub,2 = 0. We can now define the input control torque
as a simple PD controller

u(t) =−k(θ(t)−θ
o)− cθ̇(t) (12)

and defining the new error state q̃1 = θ−θ o, we can write the
closed loop equations in the following semi-linear operator
form

ẋ =



P1
∂

∂ξ
(H xb)+P0(H xb)

+EIεr(t,0)− kq̃1− c
J1

p1

+Kεt(t,L)− kiq2
+EIεr(t,L)

1
J1

p1
1
m p2


+



0
0

kiγ(−x)q2
− ci

m γ(x)q2 p2
0
0
0


= A x+ f (x)

(13)
where x = [xb p1 p2 p3 q̃1 q2]

T ∈ X = L2([0,L],R4)×R5 is
the state of the system and the domain of the linear operator
A is defined as

D(A ) =
{

x ∈ X |xb ∈ H1([0,L],R4), B2x = 0,
B1x = [p1/J1 p2/m p3/J2]

T
}
.

The inner product in the state space is defined for x1,x2 ∈ X
as

〈x1,x2〉X = 〈x1,H x2〉L2 +
1
J1

p1,1 p1,2 +
1
m p2,1 p2,2

+ 1
J2

p3,1 p3,2 + kq̃1,1q̃1,2 + kiq2,1q2,2

with associated norm ||x||X =
√
〈x,x〉X .

B. Model definition as a switched system
The aim of this paper is to study the asymptotic behaviour

of a flexible beam in collision with the external environment,
therefore we assume θ o > 0 in (12). We first notice that the
equilibrium position for the non-contact equation (i.e.(13)
with γ(x) = 0) corresponds to a state in the contact region,
hence it is not a possible hybrid state. Assuming γ(x) = 1
in (13), the equilibrium point is such that all the momenta
are null (p∗t = p∗r = p∗1 = p∗2 = p∗3 = 0), the shear and angular
deformations are

ε
∗
t (ξ ) =−

kiA
K

Bqo
1 ε

∗
r (ξ ) =

kiA
EI

B(ξ −L)qo
1. (14)

with A(ξ ) = L(1+ ki(
L

K(ξ ))−1+L3(3EI(ξ ) )
−1, B(ξ ) = k

kiLA(ξ )+k
and the finite dimensional states equilibria write as

q∗1 = Bqo
1, q∗2 = ABqo

1.

Next, we define a new set of shifted variables with respect
to the founded equilibrium states:

ε ′t (t,ξ ) = εt(t,ξ )− ε∗t (ξ ) ε ′r(t,ξ ) = εr(t,ξ )− ε∗r (ξ )
p′t(t,ξ ) = pt(t,ξ ) p′r(t,ξ ) = pr(t,ξ )
q′1(t) = q1(t)−q∗1 q′2(t) = q2(t)−q∗2

(15)
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and p′1(t) = p1(t), p′2(t) = p2(t), p′3(t) = p3(t). Then, defin-
ing x′ = [ε ′t ε ′r p′t p′r p′1 p′2 p′3 q′1 q′2]

T , equation (13) can be
rewritten as (2), with discrete transition function η = γ(x),
M = {0,1}, non-contact operator

A0x′ =



P1
∂

∂ξ
(H x′b)+P0(H x′b)

EIε ′r(t,0)− kq′1−
c
J1

p′1
−Kε ′t (t,L)+AkiBqo

1
−EIε ′r(t,L)

1
J1

p′1
1
m p′2


(16)

contact semi-linear operator,

A1x′+ f1(x′) =

P1
∂

∂ξ
(H x′b)+P0(H x′b)

EIε ′r(t,0)− kq′1−
c
J1

p′1
−Kε ′t (t,L)− kiq′2
−EIε ′r(t,L)

1
J1

p′1
1
m p′2


+


0
0

− ci
m (q

′
2 +q∗2)p′2
0
0
0


(17)

domains defined as

D(A0) = D(A1) =
{

x′ ∈ X |x′b ∈ H1([0,L],R4),
B2x′ = 0, B1x′ = [p′1/J1 p′2/m p′3/J2]

T
}
,

(18)

and non-contact and contact regions defined, respectively, as

Ω0 = {x′ ∈ X |q′2 <−q∗2}
Ω1 = {x′ ∈ X |q′2 ≥−q∗2}.

(19)

C. Stability Analysis

We now use Theorem 2.2 to study the stability of the
switched system defined by operators (16)-(17) and state
space partition (19), in case the control law sets the equi-
librium position in the contact region, i.e. qo

1 > 0.
Proposition 3.1: Assume that there exists a mild solution

of the switched system (2) with operators (16)-(17) and
domains (18). Then, the solution x′(t) is bounded for every
initial condition x′0 ∈ X .

Sketch of the proof. Let’s consider the following Lyapunov
functions for the non-contact and contact operators

V0 =
1
2

∫ L

0

(
K(ε ′t + ε

∗
t )

2 +EI(ε ′r + ε
∗
r )

2 +
1
ρ

p′2t +
1
Iρ

p′2r

)
dξ

+ 1
2J1

p′21 + 1
2J2

p′22 + 1
2m p′23 + 1

2 k(q′1− (1−B)qo
1)

2,
(20)

V1 =
1
2 〈x
′
b,H x′b〉L2 +

1
2J1

p′21 + 1
2J2

p′22 + 1
2m p′23

+ 1
2 kq′21 + 1

2 kiq′22 .
(21)

We can see that both functions are positive definite in X , and
in particular V0 > 0 in Ω0 and V1 ≥ 0 in Ω1. It is possible
to show that both Lyapunov functions are non-increasing in
the respective region of the state space

V̇0(x′) = dVnc(x′)Ancx′ =− c
J2

1
p′21 ∀x′ ∈Ω0

V̇1(x′) = dVc(x′)Acx′ =− c
J2

1
p′21 −

ci
m2 (q′2 +q∗2)p′22 ∀x′ ∈Ω1

and that they are non increasing in E (S(x0)|0) and
E (S(x0)|1), respectively. By means of Theorem 2.2, we can

conclude that the solutions are bounded for every initial
condition x′0 ∈ X . �

In the next section we will show, through the use of
numerical simulations, the behaviour along solutions of the
selected Lyapunov functions.

IV. NUMERICAL SIMULATIONS

To perform numerical simulations, we derived a finite
dimensional approximation of equation (13) using the dis-
cretization procedure described in [16]. In particular, the
approximated model has been obtained splitting the spatial
domain in 150 elements. Simulations were made in the
Simulink R© environment using the “ode23t” time integration
algorithm, and the set of parameters used for simulation are
listed in Table I. The controller parameters are set as k = 10,
c = 3 and θ o = 1, while the impact’s model parameters are
set equal to ki = 1000 and ci = 30. In accordance with section
III-B, it is possible to compute the equilibrium configuration
of the system: q∗1 = 0.0424 rad, q∗2 = 0.0096 m, ε∗t (ξ ) =
−1.3981×10−8 and εr(ξ ) = 0.0985(ξ −L).
To perform numerical simulations, the beam’s states as well
as the finite dimensional momentum states are initialized to
zero initial conditions xb(0,ξ ) = 0, p1(0) = p2(0) = p3(0).
The initial hub’s angle has been initialized to θ(0) = q1(0) =
−1 rad, accordingly with the load’s initial position q2(0) =
Lθ(0)+w(0,L) =−1 m.
Fig. 2 shows the evolution in time of the hub’s angle and of

the load position. It is important to note that the contact
occurs when q2(t) ≥ 0, and in fact when it dynamically
reaches this value, the q2 variable is rejected back because
of the spring force of the impact model. It is possible to
appreciate that both angles asymptotically stabilize to the
computed equilibrium positions. Fig. 3 shows firstly the Lya-
punov functions (20)-(21) behaviour along solutions in the
entire simulation time interval without distinguish between
the active or non active time intervals, and secondly their
behaviour during the respective activation time intervals. It
is possible to appreciate that both the selected Lyapunov
functions are non-increasing in their activation phases, and
that the “Switching in” conditions are met. The time scale
difference between the first and second image in Fig. 3 comes

TABLE I
SIMULATION PARAMETERS

Name Variable Value
Beam’s Length L 1 m
Beam’s Width Lw 0.1 m

Beam’s Thickness Lt 0.02 m
Density ρ 8000 kg

m3

Young’s modulus E 2×109 N
m2

Bulk’s modulus K 6.85×108 N
m2

Hub’s inertia J1 1 kg ·m2

Load’s mass m 1 kg
Load’s inertia J2 1 kg ·m2
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Fig. 2. Hub’s angle evolution along time q1(t) and Load’s position
evolution along time q2(t).
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Fig. 3. Contact V1 and non-contact V0 Lyapunov functions behaviour along
time.

from the big values of ||q′2|| and thus of the term 1
2 kiq′22 in

the contact Lyapunov function (21) during the non-contact
time periods.

V. CONCLUSIONS

In this preliminary work a general framework for switched
infinite dimensional linear systems, together with a theorem
concerning Lagrange stability have been presented. The pro-
posed result makes use of multiple Lyapunov functions, each
one associated to one of the operators defining the system.
The theorem assures Lagrange stability if the Lyapunov
functions have non-increasing time derivative in the subspace
on which they are active and they respect the so called

“switching-in” condition. Then, the modelling procedure
together with the equilibrium computation of a controlled
rotating flexible beam in impact scenario has been detailed
using the port-Hamiltonian framework. The obtained free
motion and contact scenario operators have been written
such to be cast in the defined framework for switched
infinite dimensional systems. Next, Lyapunov functions for
the free and the contact case fulfilling the Lagrange stability
theorem’s assumptions have been proposed. Finally, with the
help of numerical simulations, their non increasing behaviour
in the respective active region together with the “switching-
in” condition fulfilment have been shown. The future work
will focus on the design of control laws capable of increasing
performances in term of vibration suppression in case of
impact scenario.
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