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Abstract

In this paper we consider in-domain control of distributed

parameter port-Hamiltonian systems defined on a one di-

mensional spatial domain. Through an early lumping ap-

proach we extend the control by interconnection and energy

shaping approach to the use of distributed control over the

spatial domain. With the established finite dimensional con-

troller, the closed-loop performances can be modified over

a given range of frequencies while guaranteeing the closed-

loop stability of the infinite dimensional system. Two cases

are investigated, the ideal case where the controller acts

on the complete spatial domain (infinite dimensional dis-

tributed control), and the more realistic one where the con-

trol is piecewise homogeneous (finite rank distributed con-

trol). The proposed control strategies are illustrated through

simulations on the stabilization of a vibrating Timoshenko

beam.

1 Introduction

Finite dimensional port-Hamiltonian systems (PHSs)
have firstly been introduced in the 90’s in [11]. This
modeling framework consists in representing the system
dynamics by using the energy variables as state variables
and by expressing the power exchanges within the
system and with its environment through an intrinsic
geometric structure, named Dirac structure. PHSs are
particularly well adapted for the modeling and control
of multiphysical and nonlinear systems [2]. PHSs
have been extended to distributed parameter systems
governed by partial differential equations (PDEs) in [10]
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and extensively studied in the one dimensional (1D)
linear case in [8] with applications to different fields of
research such as fluid dynamics, process control, vibro-
acoustics, etc.

The intrinsic passivity properties of PHSs pave
the way for passivity based control (PBC) techniques.
Many dedicated PBC designs have been proposed for
finite dimensional PHSs (see for instance [16] for a
general introduction). Among these control designs, the
Control by Interconnection (CbI) methodology is based
on the power preserving interconnection of the system
plant and the controller, and consists in shaping the
closed-loop energy function (closed-loop Hamiltonian)
by an appropriate choice of the controller parameters.
The closed-loop stability is guaranteed by Lyapunov
arguments and damping injection [12]. The CbI method
has been generalized to 1D boundary controlled infinite
dimensional PHS in [9, 13]. A first result on the ideal
in-domain control that allows to take advantage of the
distributed nature of the control action with the help of
structural invariants has been proposed in [15]. In this
case the control action allows to modify the shape of
the overall total energy while ensuring the closed-loop
system stability.

In this paper we propose to apply and extend the
in-domain control strategy [15] to the under-actuated
case using an early lumping approach and the passive
interconnection between the infinite dimensional plant
and the finite dimensional controller. The early lump-
ing approach consists firstly in approximating the PDE
plant with a structure-preserving discretization method
[4, 7] and then in designing the finite dimensional con-
troller in order to shape the closed-loop energy function
on the discretized plant. The stability of this infinite
dimensional system using a controller designed for an
approximation is proved with the Lyapunov arguments
and LaSalle’s invariant principle. This control strategy
takes advantage of both the early lumping approach,
leading to a directly implementable controller with guar-
anteed performances on the discretized model, i.e. on
the infinite dimensional system over a given range of
frequencies, and of the passivity of the controller, guar-
anteeing the asymptotic stability.



Two different cases are investigated : the ideal fully-
actuated case where the control input works indepen-
dently at each point of the spatial domain i.e. on each
element of the discretized model, and the more realis-
tic under-actuated case where the input acts identically
on sets of elements, providing less degrees of freedom
(DOFs). This latter case is closer to the real imple-
mentation scenario as the control is usually carried out
through actuator patches that act similarly over spatial
intervals. It is shown how to change the closed-loop en-
ergetic properties of the discretized system in a perfect
way when the system is fully-actuated and in an op-
timal way when the system is under-actuated. In this
latter case a constructive method is proposed to guaran-
tee the closed-loop performances and convergence rate
with the optimization. Results are illustrated through
simulations.

The paper is organized as follows: in Section 2
the port-Hamiltonian formulation of the flexible Timo-
shenko beam with dissipation and in-domain control, as
well as its structure preserving discretization are given
as an illustrative example. The aforementioned CbI
method and energy shaping applied to the discretized
PHS are detailed in Section 3. The closed-loop stabil-
ity is then studied. Section 4 provides some simulation
results with a comparison between the fully- and under-
actuated scenarios. Section 5 ends with conclusions and
perspectives.

2 Port-Hamiltonian formulation of a flexible
Timoshenko beam with in-domain control

In this section, we recall the infinite dimensional PHS
formulation of a flexible Timoshenko beam with dissi-
pation defined on the 1D spatial domain ζ ∈ [0, L]. We
consider here clamped-free boundary conditions and dis-
tributed control over the domain. This leads to the fol-
lowing system of equations

∂

∂t


x1(ζ, t)
x2(ζ, t)
x3(ζ, t)
x4(ζ, t)


︸ ︷︷ ︸

x(ζ,t)

= (J −R)


e1(ζ, t)
e2(ζ, t)
e3(ζ, t)
e4(ζ, t)

+


0
0
0
b


︸ ︷︷ ︸
B

ud(t),

(2.1a)

yd(t) =
(
0 0 0 b∗

)
e1(ζ, t)
e2(ζ, t)
e3(ζ, t)
e4(ζ, t)

 ,(2.1b)

with x1(ζ, t) =
(
∂ω
∂ζ (ζ, t)− θ(ζ, t)

)
, x2(ζ, t) =

ρAr(ζ)∂ω∂t (ζ, t), x3(ζ, t) = ∂θ
∂ζ (ζ, t), x4(ζ, t) =

Iρ(ζ)∂θ∂t (ζ, t). ω(ζ, t) is the longitudinal displacement

over the spatial domain, θ(ζ, t) denotes the bending an-
gle. ρ(ζ), Ar(ζ), I(ζ), represent the mass density, the
cross section area, the moment of inertia respectively.
The interconnection operator J and the dissipation op-
erator R are formulated as follows:

J =


0 ∂

∂ζ 0 −1
∂
∂ζ 0 0 0

0 0 0 ∂
∂ζ

1 0 ∂
∂ζ 0

 , R =


0 0 0 0
0 Rt 0 0
0 0 0 0
0 0 0 Rr

 ,

where Rt > 0 and Rr > 0 are related to the translational
dissipation and the rotational dissipation, respectively.
The constitutive relation between the effort variables
and the energy variables yields:
(2.2)
e1(ζ, t)
e2(ζ, t)
e3(ζ, t)
e4(ζ, t)

 =


GAr(ζ) 0 0 0

0 1
ρAr(ζ) 0 0

0 0 EI(ζ) 0
0 0 0 1

Iρ(ζ)


︸ ︷︷ ︸

Q>0

x(ζ, t),

where G(ζ) and E(ζ) represent the shear modulus and
the Young’s modulus of the beam, respectively. The
bounded input operator B maps the distributed input
ud (the total exterior bending moment density) into the
state space. The power conjugated output yd is the sum
of the angular velocities over the domain. For the sake of
compactness, the time parameter t is omitted hereafter.
The Hamiltonian of the system, i.e. the stored energy,
is defined as follows:

(2.3)

H(x(ζ)) =
1

2

∫ L

0

(
GAr(ζ)x2

1(ζ) + EI(ζ)x2
3(ζ)

+
1

ρAr(ζ)
x2

2(ζ) +
1

Iρ(ζ)
x2

4(ζ)

)
dζ.

The boundary port variables [8] are defined as

f∂ =


e2(0)
e1(L)
e4(0)
e3(L)

 , and e∂ =


−e1(0)
e2(L)
−e3(0)
e4(L)

 .(2.4)

Clamped-free boundary conditions are considered, i.e.

ub = W

(
f∂
e∂

)
=


e2(0)
e1(L)
e4(0)
e3(L)

 =


0
0
0
0

 ,(2.5a)

yb = W̃

(
f∂
e∂

)
=


−e1(0)
e2(L)
−e3(0)
e4(L)

 ,(2.5b)



with W =
(
I2,2 02,2

)
, W̃ =

(
02,2 I2,2

)
,

(
W

W̃

)
being

invertible leading to:

dH

dt
(ζ) = yTb ub + yTd ud −

∫ L

0

e2(ζ)TRte2(ζ)dζ

−
∫ L

0

e4(ζ)TRre4(ζ)dζ

= yTd ud −
∫ L

0

(
e2(ζ)TRte2(ζ) + e4(ζ)TRre4(ζ)

)
dζ.

In this paper, we consider an early lumping ap-
proach. Hence, the first step in the design procedure
is to spatially discretize (2.1). For a sake of simplicity
we consider here the homogeneous case, i.e. the physical
parameters ρ, Ar, I, G and E do not depend on ζ. Since
the PBC is considered, the discretization has to preserve
the structure and the passivity of the system. To this
aim we use the mixed finite element method proposed
in [4]. The discretization of the Timoshenko beam with
dissipation (2.1) in n elements with boundary conditions
(2.5) leads to the finite dimensional system:

d

dt


x1d

x2d

x3d

x4d


︸ ︷︷ ︸

xd

= (Jn −Rn)


Q1x1d

Q2x2d

Q3x3d

Q4x4d

+


0
0
0
bd

ud,(2.6a)

yd = bTdQ4x4d,(2.6b)

where xid =
(
x1
i · · · xni

)T
for i ∈ {1, 2, 3, 4},

Jn =


0 Ji 0 −ST
−JTi 0 0 0

0 0 0 Ji
S 0 −JTi 0

 , S = diag (Lab)n×n ,

Ji =


1
β

− 1
β2

1
β

...
. . .

. . .

(−1)n−1 (β′)
n−2

βn · · · − 1
β2

1
β


n×n

,

Rn =


0 0 0 0
0 Rtd 0 0
0 0 0 0
0 0 0 Rrd

 , Lab =
L

n
,

Q1 = diag
(
GAr
Lab

)
∈ Rn×n, Q2 = diag

(
1

ρArLab

)
∈

Rn×n,Q3 = diag
(
EI
Lab

)
∈ Rn×n, Q4 = diag

(
1

IρLab

)
∈

Rn×n, Rtd = diag (RtLab) ∈ Rn×n, and Rrd =
diag (RrLab) ∈ Rn×n. β denotes the effort mapping

parameter and β′ = 1 − β [4]. They are chosen in this
case equal to 1

2 in order to get a centered scheme.
The Hamiltonian of the discretized model (2.6) is

given as follows:

(2.7)
Hd(xd) =

1

2

(
xT1dQ1x1d + xT2dQ2x2d + xT3dQ3x3d

+xT4dQ4x4d

)
.

It is important to notice that the input matrix bd
depends on the considered case, whether the system is
fully- or under-actuated. These two cases are presented
in Subsection 3.1 and 3.2, respectively.

3 Control by interconnection and energy
shaping

In this section, we extend the CbI method to the spa-
tially distributed input and output case. As for finite
dimensional systems [12, 16], the CbI consists in in-
terconnecting the port-Hamiltonian plant with a port-
Hamiltonian controller in a power persevering way. The
main difference here is that the control and controller
action are distributed in space. This allows to shape the
distributed energy function all over the system by choos-
ing an appropriate parametrization of the controller and
the use of structural invariants i.e. Casimir functions
[2]. Therefore, this control allows not only to change
the desired equilibrium but also to modify the closed-
loop dynamic performances of the distributed parame-
ter system. The controller is formulated as a PHS in
the form of:

ẋc = (Jc −Rc)Qcxc +Bcuc,(3.8a)

yc = BTc Qcxc +Dcuc,(3.8b)

where xc ∈ Rm×1 is the state of controller, Jc =
−JTc ∈ Rm×m, Rm×m 3 Rc = RTc ≥ 0, Rm×m 3
Qc ≥ 0, Bc ∈ Rm×m, uc ∈ Rm×1 and yc ∈ Rm×1.
Rm×m 3 Dc > 0 works as the damping injection. m
denotes the dimension of input (m ≤ n). Without
considering external signals, the passive interconnection
[12] between the plant (2.6) and the controller (3.8) is:

(3.9) ud = −yc, uc = yd,

leading to a new PHS in closed-loop:
(3.10)

ẋcl =


0 Ji 0 −ST 0
−JTi −Rtd 0 0 0

0 0 0 Ji 0

S 0 −JTi −R̃rd −bdBTc
0 0 0 Bcb

T
d Jc −Rc

 ecl,

where xcl =
(
xT1d xT2d xT3d xT4d xTc

)T
, ecl = Qclxcl,

Qcl = diag
(
Q1, Q2, Q3, Q4, Qc

)
, and R̃rd =

Rrd + bdDcb
T
d .



Due to the power preserving interconnection rela-
tion (3.9) the passivity is preserved in closed-loop. The
following Proposition 1 characterizes how the closed-
loop energy can be shaped by using structural invari-
ants.

Proposition 1. Choosing Jc = 0, Rc = 0 the
closed-loop system (3.10) admits the Casimir function
C(x3d, xc) defined by:

(3.11) C(x3d, xc) = Bcb
T
d J
−1
i x3d − xc,

as structural invariant, i.e. Ċ(x3d, xc) = 0 along
the closed-loop trajectories. If the initial conditions
of x3d(0) and xc(0) satisfy C(x3d(0), xc(0)) = 0, the
control law (3.9) is equivalent to the state feedback:

ud = −BTc QcBcbTd J−1
i x3d −Dcyd,(3.12a)

yd = bTdQ4x4d.(3.12b)

Therefore, the closed-loop system (3.10) becomes:
(3.13)

ẋ1d

ẋ2d

ẋ3d

ẋ4d

 =


0 Ji 0 −ST
−JTi −Rtd 0 0

0 0 0 Ji
S 0 −JTi −R̃rd



Q1x1d

Q2x2d

Q̃3x3d

Q4x4d

 ,

where Q̃3 = Q3 + J−Ti bdB
T
c QcBcb

T
d J
−1
i is the new

closed-loop energy matrix associated to x3d.

Proof. Given the Casimir function in its general form:

(3.14) C(xd, xc) = F (xd)− xc,

from Ċ(xd, xc) = 0 and (3.10), one gets:
(3.15)
dC

dt
=
∂TC

∂xcl

∂xcl
∂t

=
(
∂TF
∂xd

, −I
)

(Jcl −Rcl) ecl = 0.

As Casimir functions should not depend on the trajec-
tories of the closed-loop system i.e. on the Hamiltonian,
(3.15) gives rise to the following matching equations:

∂TF

∂x2d

(
−JTi

)
+
∂TF

∂x4d
S = 0,(3.16)

∂TF

∂x1d
Ji +

∂TF

∂x2d
(−Rtd) = 0,(3.17)

∂TF

∂x4d

(
−JTi

)
= 0,(3.18)

∂TF

∂x1d

(
−ST

)
+
∂TF

∂x3d
Ji −

∂TF

∂x4d
R̃rd −BcbTd = 0,(3.19)

∂F

∂x4d

T (
−bdBTc

)
− (Jc −Rc) = 0.(3.20)

Solving (3.18), since the matrix Ji is full rank, one
gets ∂F/∂x4d = 0. Substituting (3.18) into (3.16),
one obtains ∂F/∂x2d = 0. Solving (3.17), one has
∂F/∂x1d = 0. Hence, it indicates that xc does not hinge
on x1d, x2d, nor on x4d, and that the controller allows to
modify the angular potential energy only. Substituting
again (3.18) to (3.20), because Jc is skew-symmetric
and Rc is symmetric and positive semi-definite, one gets
Jc = 0 and Rc = 0. Solving (3.19), one gets (3.11) as
structural invariant as soon as the initial condition xc
has been chosen properly. Taking the initial conditions
x3d(0) and xc(0) such that C(x3d(0), xc(0)) = 0, (3.11)
becomes Bcb

T
d J
−1
i x3d − xc = 0, linking the state of

the controller with the state of the plant. Replacing
the state variable of the controller xc in (3.10) by
Bcb

T
d J
−1
i x3d, the control law (3.9) becomes a state

feedback formulated in (3.12). Thus the closed-loop
system (3.10) becomes (3.13) which concludes the proof.

From Proposition 1, the closed-loop Hamiltonian func-
tion reads:

(3.21)
Hcl(xd) =

1

2

(
xT1dQ1x1d + xT2dQ2x2d

+xT3dQ̃3x3d + xT4dQ4x4d

)
,

and satisfies
(3.22)

dHcl

dt
= −xT2dQ2RtdQ2x2d − xT4dQ4R̃rdQ4x4d ≤ 0.

From a physical point of view, (3.21) implies that
with the dynamic controller (3.8) equivalent to the
state feedback (3.12), it is possible to change, at least
partially, the distributed Young’s modulus of the beam,
thereby achieving desired performances in closed-loop.
The available DOFs for this energy shaping depend
on the range of Bc i.e. the number of distributed
independent actuators. For a given problem i.e. for
a given number of independent control variables, the
objective is to find the matrices Bc and Qc such that
the distance (considered here in the Frobenius norm1)
between the closed-loop angular potential energy matrix
Q̃3 and the desired one Q̃3d is minimal, i.e.

(3.23) min
BTc QcBc

∥∥∥J−Ti bdB
T
c QcBcb

T
d J
−1
i +Q3 − Q̃3d

∥∥∥
F
.

This problem can be formalized by the optimization
Problem 1.

1For a matrix Rm×n 3 A = [aij ], the Frobenius norm is

defined as ‖A‖F =
(∑m

i=1

∑n
j=1 |aij |2

)1/2
, see Definition 6.4

of [14].



Problem 1. The angular potential energy of the
closed-loop system (3.13) is shaped in an optimal way
if and only if X = BTc QcBc ∈ SRm×m0 minimizes the
criterion

(3.24) f(X) =
∥∥AXAT −Qm∥∥F ,

where A = J−Ti bd ∈ Rn×m, and Qm = Q̃3d − Q3 ∈
Dn×n

0 . SRm×m0 represents the set of symmetric positive
semi-definite matrices, and Dn×n

0 stands for the set of
diagonal positive semi-definite matrices.

To solve Problem 1, we consider two different cases:
the ideal fully-actuated case (m = n) and the under-
actuated case (m < n).

3.1 Fully-actuated case. We first consider the ideal
case where each discretized beam element is actuated
by an independent input (bending moment), i.e. ud ∈
Rn, as illustrated in Fig.1. In this case, the input

Figure 1: Clamped-free Timoshenko beam with fully-
actuated case.

matrix bd ∈ Rn×n is the identity, and the power
conjugated output yd contains all the angular velocities
of the discretized system. Therefore, the optimization
Problem 1 admits an exact solution that is given in
Proposition 2.

Proposition 2. In the fully-actuated case, i.e. m =
n the optimization Problem 1 has an exact analytic
solution X̂ = JTi QmJi leading to f(X) = 0, where the
controller matrices Bc and Qc can be chosen as:

Bc = Ji, Qc = Qm.(3.25)

Proof. The matrix A is full rank, therefore, (3.24)
admits a minimum f(X) = 0 when:

(3.26) X̂ = A−1QmA
−T = b−1

d JTi QmJib
−T
d .

As bd being identity, and X̂ = BTc QcBc, one can choose
Bc and Qc as in (3.25) to satisfy (3.26).

Remark 1. The choice Bc = Ji can be regarded as the
finite dimensional approximation of the spatial deriva-
tion ∂

∂ζ
. This choice has also been used in the late lump-

ing control design approach [15].

Figure 2: Under-actuated case with k = 2.

3.2 Under-actuated case. We consider now the
more realistic case depicted in Fig.2 where the control
is delivered by the use of patches, i.e. the same
control is applied to a set of elements. Let k be the
number of elements under the same actuator. m = n

k
is then the number of independent inputs distributed
all over the spatial domain. This is the case when
the beam is discretized in n elements and actuated
by m uniform piezoelectric patches, each patch acting
homogeneously over k elements. The plant system can
still be formulated in the form of (2.6) with:

(3.27) bd = Im ⊗

1
...
1

 ∈ Rn×m,

where ⊗ denotes the Kronecker product. The input vec-
tor ud ∈ Rm contains m independent (and distributed)
bending moments that can be used for control design.

Unlike the fully-actuated case, the under-actuated
case contains less DOFs. As suggested in [17], f(X) is
convex and the minimization of f(X) is equivalent to
the minimization of f2(X). This kind of optimization
problem has been studied in [3] and [6] under the sym-
metric/Hermitian or positive semi-definite constraint.
The solution of the optimization Problem 1 is given in
Proposition 3.

Proposition 3. f2(X) has a unique minimum given
for X̂ = V Σ−1

0 UT1 QmU1Σ−1
0 V T , with V , Σ0 and U1 the

matrices of the singular value decomposition (SVD) of
the matrix A, i.e.

A = UΣV T =
(
U1 U2

)(Σ0

0

)
V T ,(3.28)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices,
U1 ∈ Rn×m, U2 ∈ Rn×(n−m) and Σ0 ∈ Dm×m

0 is the
diagonal matrix of singular values of A.

Proof. Calculating f2(X), one obtains:
(3.29)

f2(X) =
∥∥AXAT −Qm∥∥2

F

= tr
(
QmQm +AXATAXAT − 2AXATQm

)
,

where tr(·) denotes the trace of a matrix.



Substituting the SVD of A (3.28) into (3.29) and
after some computations, one gets the equivalent opti-
mization of Problem 1 as:
(3.30)

min
X∈SRm×m0

f2(X) = min
X∈SRm×m0

(∥∥Σ0V
TXV ΣT0 − T1

∥∥2

F

+2
∥∥UT1 QmU2

∥∥2

F
+
∥∥UT2 QmU2

∥∥2

F

)
,

where T1 = UT1 QmU1. Since the last two terms are
given, the minimization problem (3.30) becomes:

(3.31) min
X̄∈SRm×m0

∥∥X̄ − T1

∥∥2

F
, with X̄ = Σ0V

TXV ΣT0 .

It has been proven in [5] that, using the Frobenius
norm, the nearest positive semi-definite matrix to an
arbitrary matrix A is unique and is given by (B +H) /2
with B =

(
A+AT

)
/2 and H the symmetric polar

factor of B. In our case, T1 ∈ SRm×m0 hence (3.31)

admits a unique solution ˆ̄X = T1. Finally we get the
solution of (3.30) as:

(3.32) X̂ = V Σ−1
0

ˆ̄XΣ−1
0 V T = V Σ−1

0 T1Σ−1
0 V T

Remark 2. The choice of controller matrices Bc and
Qc is not unique, as long as their product BTc QcBc
satisfies the condition (3.32).

3.3 Closed-loop stability. In this subsection we
consider the closed-loop stability of the infinite dimen-
sional system (2.1) controlled by the finite dimensional
controller (3.8) derived from the early lumping ap-
proach. The closed-loop is formulated as:

(3.33) Ẋ =

(
(J −R)Q −BBTc Qc
BcB

∗Q 0

)
︸ ︷︷ ︸

Jcl

X ,

with X =

(
x
xc

)
∈ L2

(
[0, L],R4

)
× Rm. We make the

following assumptions:

Assumption 1. The operator Acl defined by
AclX = JclX generates a contraction semigroup
on L2

(
[0, L],R4

)
× Rm.

Assumption 2. The closed-loop resolvent set is com-
pact.

From these assumptions and the fact that the open loop
system is exponentially stable and the controller passive,
one can derive the following theorem using Lyapunov
argument and evoking LaSalle’s invariant principle.

Theorem 3.1. For any X (0) ∈ L2

(
[0, L],R4

)
× Rm

the unique solution of (3.33) converges asymptotically
to zero, and the closed-loop system is globally asymptot-
ically stable.

The proof of this Theorem 3.1 is omitted for the sake of
brevity.

4 Numerical simulations

We consider here the Timoshenko beam example with
length L = 2 m, width b = 0.5m, thickness h = 0.2m,
Young’s modulus E = 90MPa, density ρ = 1.633 ×
103kg/m3, Poisson ratio v = 0.3, translational dissipa-
tion Rt = 10−3 and rotational dissipation Rr = 10−6 in
a clamped-free scenario. The initial conditions are set
to a spatial distribution x3(ζ, 0) ∼ 0.1N (1.5, 0.113) for
the angular strain and to zero for other state variables.
The beam is discretized into 50 elements.

We consider a time step of 5× 10−4s and mid-point
time discretization method2 for simulations. The open
loop evolution of the angular strain x3d is given in Fig.3.

Figure 3: Open loop evolution of the angular strain.

Next we investigate the numerical simulations of the
closed-loop system considering both fully-actuated and
under-actuated cases.

4.1 Fully-actuated case. Following Proposition 1
and 2 we choose Bc = Ji in order to guarantee
the existence of structural invariants, and the initial
conditions of the controller such that C = 0. In this
case (3.11) becomes: xc = x3d. The control law is given
by:

(4.34) ud = −yc = −BTc Qcxc −Dcyd.

2Implicit midpoint rule is known to be a structure-preserving
time integrator for PHSs [1]. It is a particular case in the family

of symplectic collocation methods for time integration which is
investigated in [7].



In a first instance we consider the pure damping injec-
tion case, i.e. varying Dc with Qc = 0. In Fig.4(a)
we can see that this degree of freedom allows to damp
the vibrations of the beam to the detriment of the
time response. Next we fix Dc = diag

(
104Lab

)
cor-

responding to the slightly over-damped case in order
to illustrate the effect of the energy shaping on the
achievable performances. We can see in Fig.4(b) that
we can speed up significantly the closed-loop system
via energy shaping, without introducing any overshoot.
A good dynamic performance is achieved when Qc =

diag
(

2×105

Lab

)
, which relates to an equivalent Young’s

modulus of Ẽ = 690MPa.
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Figure 4: Closed-loop Hamiltonian function and end-
point position in the fully-actuated case with (a) pure
damping injection and with (b) energy shaping plus
damping injection, with α denoting the damping injec-
tion coefficient and γ representing the energy shaping
coefficient.

The evolution of the distributed input and of the
angular strain along time are given in Fig.5(a) and (b),
respectively. We can see in Fig.5(a) that the control
remains smooth. Fig.5(b) shows that the closed-loop
stabilization time is about 0.2s which is much faster
than 0.8s resulting from the pure damping injection
case.

4.2 Under-actuated case. We now consider that
the control is achieved using m patches as depicted in
Fig.2. The aim of the control design is to modify as far
as possible the closed-loop Young’s modulus Ẽ of the
beam. Jm ∈ Rm×m stems from the discretization of
∂/∂ζ, Bc is chosen to be Bc = Jm. According to (3.32),
Qc = J−Tm V Σ−1

0 UT1 QmU1Σ−1
0 V TJ−1

m . Dc is chosen
such that the time derivative of the Hamiltonian (3.22)
behaves similarly than in the fully-actuated case, i.e.
in order to satisfy min

Dc∈Rm×m

∥∥bdDcb
T
d − diag (αLab)

∥∥
F

,

where bd is given in (3.27). This optimization problem
is similar to Problem 1, and the optimal Dc is given by
D̂c = diag

(
αLab
k

)
.

(a) (b)

Figure 5: Evolution of the closed-loop input signal
and angular strain in the energy shaping and damping
injection case with full actuation, Dc = diag

(
104Lab

)
,

Qc = diag
(

2×105

Lab

)
.

We first consider the case with 10 patches, i.e.
m = 10, n = 50 and k = 5. In this case the angular
strain evolution is quite similar to that obtained in
the fully-actuated case as depicted in Fig.6(a). This
indicates that if the controller matrices Bc, Qc and Dc

are adequately selected, the achievable performances in
the under-actuated case can be optimized in order to
be close to the ones obtained in the fully-actuated case.
When the number of patches is reduced to 5 and to 2,
i.e. n = 50, k = 10 and n = 50, k = 25 respectively,
these performances are slightly deteriorated in the high
frequencies as shown in Fig. 6(b).

(a) (b)

Figure 6: Closed-loop evolution of the angular strain for
m = 10 (a), Hamiltonian function and endpoint position
(b) in the under-actuated case for m = 10, m = 5 and
m = 2.

In order to illustrate the effect of the neglected
dynamics on the achievable performances we implement
the controller designed considering 10 patches on the
discretized system where n = 50 to a more precise model
of the beam derived using n = 200. In Fig. 7 we can see
that, due to the damping injection and the associated
closed-loop bandwidth, the neglected dynamics do not
impact significantly the closed-loop response of the
system to the considered initial condition.



(a) (b)

Figure 7: Closed-loop evolution of the angular strain
of the high order system (a), and comparison of the
endpoint position of the low order and high order
systems using the same controller (b).

5 Conclusion and future work

In this paper, we consider the in-domain control of in-
finite dimensional port-Hamiltonian systems using an
early lumping approach. We extend the CbI method
to the use of controllers distributed in space. The dis-
tributed structural invariants are used to modify the
closed-loop angular potential energy of the system, e.g.
the Young’s modulus, in the considered Timoshenko
beam example. Two different cases are investigated:
the ideal case where the system is fully-actuated and the
under-actuated case where the control action is achieved
using piecewise homogeneous inputs. In this latter the
controller is derived by optimization. Simulations of
both fully-actuated and under-actuated cases show that
the damping injection renders the system asymptoti-
cally stable, while the energy shaping improves the dy-
namic performances of the closed-loop system. Com-
parisons of the two cases also indicate that with an ap-
propriate choice of the controller parameters, one can
achieve similar performances for the under- and fully-
actuated cases in a given frequency range. Future works
aim at extending the approach to the use of observers
and at generalizing the proposed control design proce-
dure to classes of nonlinear infinite dimensional PHS.
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