Inertial sensing with point-source atom interferometry for interferograms with less than one fringe

Yun-Jhih Chen ${ }^{1,2}$, Azure Hansen ${ }^{1}$, Moshe Shuker ${ }^{1,3}$, Rodolphe Boudot ${ }^{1,4}$, John Kitching ${ }^{1}$, and Elizabeth A. Donley ${ }^{1}$

1. National Institute of Standards and Technology, Boulder, CO 80305 USA
2. University of Colorado, Boulder, CO 80309 USA
3. Rafael Ltd. (Israel)
4. FEMTO-ST, CNRS, 26 Rue de l'Epitaphe, 25030, Besançon, France

Rotation measurement with interferometry

"The Feynman path integral approach to atomic interferometry. A tutorial," Pippa Storey and Claude Cohen-Tannoudji, Journal de Physique II, EDP Sciences, 1994, 4 (11), pp.1999-2027.

Sagnac phase shift

$$
\begin{array}{rlr}
\delta \varphi_{\text {photon }} & =\frac{2 \omega_{0}}{c^{2}} A \Omega & \text { Light wave } \\
\delta \varphi_{\text {atom }} & =\frac{2 M}{\hbar} A \Omega & \text { Matter wave }
\end{array}
$$

A: Sagnac area
Ω : rotation rate
M : mass of atom
ω_{0} : angular frequency of light
c: speed of light
\hbar : reduced Plank constant

Point source atom interferometry (PSI)

1. PSI is a parallel operation of many different Sagnac interferometers.
2. PSI enables direct rotation measurement without ambiguity.
3. PSI resolves a rotation vector in a plane with high dynamic range.

$\varphi_{\Omega}=\frac{2 m}{\hbar} \vec{\Omega} \cdot \vec{A}$ rotation phase
A: Sagnac area (depends on atom velocity)

Acknowledgement

Rodolphe Boudot
Liz Donley
Azure Hansen
Greg Hoth
Eugene Ivanov
John Kitching
William McGehee
Bruno Pelle
Stefan Riedl
Moshe Shuker

Expanding point-like atomic source

Rotation phase gradient

```
Interferometer phase shift of the
Raman \(\pi / 2-\pi-\pi / 2\) pulse sequence:
\(\varphi=\varphi_{a}+\varphi_{0}+\varphi_{\Omega}\)
\(\varphi_{a}=\vec{k}_{\text {eff }} \cdot \vec{a} T_{R}^{2}\) acceleration
\(\varphi_{\Omega}=2 \vec{k}_{\text {eff }} \cdot(\vec{\Omega} \times \vec{v}) T_{R}^{2} \quad\) velocity
\(\varphi_{0}=\) laser phase dependent!
\(T_{R}\) : time between Raman laser pulses
```

Position-velocity correlation of an ideal expanding point source: $\vec{v}=\frac{\vec{r}}{T_{\mathrm{ex}}}$ $T_{\text {ex }}$: cloud expansion time

$$
\begin{aligned}
& \varphi_{\Omega}(\vec{r})=\vec{k}_{\Omega} \cdot \vec{r} \quad \text { rotation } \\
& \vec{k}_{\Omega}=\frac{2 T_{R}^{2}}{T_{\mathrm{ex}}} k_{\mathrm{eff}} \Omega \hat{n} \quad \text { phase gradier } \\
& \hat{n}=\hat{k}_{\mathrm{eff}} \times \widehat{\Omega} \\
& \varphi_{a} \text { and } \varphi_{0}: \text { constant across cloud }
\end{aligned}
$$

Fringe period $:$ rotation rate
Fringe direction $:$ direction of the rotation vector
Fringe phase $:$ acceleration

Unambiguous rotation measurement

Conventional:
Population ratio \rightarrow phase \rightarrow rotation

PSI:

Fringe period \rightarrow phase gradient \rightarrow rotation

many possible answers

PSI references

Multiaxis inertial sensing with long-time point source atom interferometry
Enhanced Atom Interferometer Readout through the Application of Phase Shear

Point source atom interferometry with a cloud of finite size
Single-source multiaxis cold-atom interferometer in a centimeter-scale cell

Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry

Rotation sensing with improved stability using pointsource atom interferometry
A Multi-Axis Atom Interferometer Gyroscope Based on a Grating Chip

High sensitivity multi-axes rotation sensing using large momentum transfer point source atom interferometry
Robust inertial sensing with point-source atom interferometry for interferograms spanning a partial

Authors

Link

Year
Susannah M. Dickerson, Jason M. Hogan, Alex Sugarbaker, David M. S. Johnson, and Mark A. Kasevich
https://doi.org/10.1103/
2013

Alex Sugarbaker, Susannah M. Dickerson, Jason M. Hogan, David M. S. Johnson, and Mark A. Kasevich
(
https://doi.org/10.1103/
2013
PhysRevLett.111.113002
https://doi.org/10.1063/ 2016 Elizabeth A. Donley
Yun-Jhih Chen, Azure Hansen, Gregory W. Hoth, Eugene Ivanov, Bruno Pelle, John Kitching, and Elizabeth A. Donley
A. Trimeche, B. Battelier, D. Becker, A. Bertoldi, P. Bouyer, C. Braxmaier, E. Charron, R. Corgier, M. Cornelius, K. Douch, N. Gaaloul, S. Herrmann, J. Müller, E. Rasel, C. Schubert, H. Wu and F. Pereira dos Santos
Chen Avinadav, Dimitry Yankelev, Moshe Shuker, Ofer Firstenberg, and Nir Davidson
https://doi.org/10.1103/
2020
PhysRevA.102.013326
https://doi.org/10.1109/l
NERTIAL48129.2020.909 0092
Jinyang Li, Gregório R. M. da Silva, Wayne C. Huang, Mohamed Fouda, Timothy L. Kovachy, and Selim M. Shahriar
https://arxiv.org/abs/200 6.13442

Yun-Jhih Chen, Azure Hansen, Moshe Shuker, Rodolphe Boudot, John Kitching, and Elizabeth A. Donley
https://doi.org/10.1364/
2020 OE. 399988

NIST ADI group's PSI gyro

Experimental scheme:

1. MOT, compressed MOT, and molasses
2. State preparation
3. Raman interrogations
4. State-selective absorption imaging

Repetition rate: 5 to 10 Hz

Multi-axis sensitivity

The effective wave vector $k_{\text {eff }}$ is in $+z$ direction. Cloud is imaged in xy-plane. PSI measures:

1. Acceleration in the z-axis
2. Rotation projected onto the xy-plane

Image plane is transverse to $\hat{k}_{\text {eff }}$

Experimental demonstration of the two-dimensional rotation measurement with point source atom interferometry

Direction of the rotation vector in a plane, 0.27° at $\mathbf{\tau}=1 \mathrm{~s}$
doi.org/10.1103/PhysRevApplied.12.014019

Application ideas:

1. navigation, gyrocompassing
2. Fundamental physics, relativistic precession measurement

Measurement of small rotation rates

Partial fringe

3

How to measure rotation in case 3 ?

Method in literature: phase shear

"Enhanced Atom Interferometer Readout through the Application of Phase Shear," A. Sugarbaker, S. M. Dickerson, J. M. Hogan, D. M. S. Johnson, and M. A. Kasevich, PRL 111, 113002 (2013).

Method in literature: ellipse fitting

Ellipse equation:

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Phase difference:

$$
\Delta \Phi_{L R}=\cos ^{-1}(-B / 2 \sqrt{A C})
$$

"Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry," S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, M. A. Kasevich, PRL 111, 083001 (2013).

Our approach

SHEEP—Simple, High dynamic range, and Efficient Extraction of Phase map

https://doi.org/10.1364/OE. 399988

Phase shifting interferometry

four population ratio images

α_{0}

$(\Delta \alpha) \times 2 \pi T^{2}=\pi / 2$

$(\Delta \alpha) \times 2 \pi T^{2}=\pi$

INPUT

Population ratio maps:

$$
\begin{aligned}
& A\left(x_{i}, y_{j}\right)=\frac{1}{2}\left\{1-c \cos \left[\varphi_{0}+\varphi_{\Omega}\left(x_{i}, y_{j}\right)\right]\right\} \\
& B\left(x_{i}, y_{j}\right)=\frac{1}{2}\left\{1+c \sin \left[\varphi_{0}+\varphi_{\Omega}\left(x_{i}, y_{j}\right)\right]\right\} \\
& c\left(x_{i}, y_{j}\right)=\frac{1}{2}\left\{1+c \cos \left[\varphi_{0}+\varphi_{\Omega}\left(x_{i}, y_{j}\right)\right]\right\} \\
& D\left(x_{i}, y_{j}\right)=\frac{1}{2}\left\{1-c \sin \left[\varphi_{0}+\varphi_{\Omega}\left(x_{i}, y_{j}\right)\right]\right\}
\end{aligned}
$$

OUTPUT

$$
\begin{aligned}
& \text { Phase map } \\
& \begin{aligned}
E\left(x_{i}, y_{j}\right) & =\tan ^{-1} \frac{B\left(x_{i}, y_{j}\right)-D\left(x_{i}, y_{j}\right)}{C\left(x_{i}, y_{j}\right)-A\left(x_{i}, y_{j}\right)}+\underset{\uparrow}{m} \pi \\
& =\varphi_{0}+\varphi_{\Omega}\left(x_{i}, y_{j}\right) \quad \text { Stitching the }
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Rotation phase gradient } & : \text { average of the differences in pixel values of adjacent pixels } \\
\text { iAcceleration phase } & : \text { average of the entire phase map }
\end{array}
$$

Case 3 revisited with SHEEP method

1. The direction of the rotation traces a 360° range in 2° steps.
2. X-and y-components of the rotation vector vary sinusoidally.

Dynamic range

number of fringes in image
0.1 1

- Robust and accurate
- Performs well over a wide range of rotation rates
- Lowest rotation rate $0.045^{\circ} / s$ at T $=7.8 \mathrm{~ms}$, corresponding to 0.025 fringes in the image.

Discussion

1. Vibrations

- Spurious phase between images
- Sensitivities:

$$
\begin{array}{ll}
\text { Acceleration } & \propto T^{2} \\
\text { Rotation } & \propto T
\end{array}
$$

- Closed-loop operation

2. Bandwidth

- Three-image sequence
- Queue operation

Conclusions:

1. PSI is simple compared to other atom interferometer techniques.
2. PSI measures two rotation components and one acceleration component at the same time.

3. PSI enables rotation measurement without ambiguity.
4. PSI has a high dynamic range.
5. The SHEEP method returns a phase map with rotation and acceleration information.
6. The SHEEP method does not require a contrast calibration, and it is applicable from the multiple-fringe regime well into the partialfringe regime.
