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Abstract. This letter demonstrates the linear dynamic range enhancement of
a mode-localized MEMS sensor based on two weakly coupled cantilevers under
electrostatic actuation resulting in a repulsive force. An analytical model is
proposed to design the sensor, and the expression of the electrostatic force is
obtained using FEM simulation. Compared to attractive electrostatic actuation,
the intensity of the resulting force is less sensitive to the change in the cantilever's
displacement, with negligible electrostatic nonlinearities. This result is con�rmed
by experimental measurements showing linear vibrations up to 70% of the gap,
which is almost three times higher than the electrostatic critical amplitude of
a similar device using attractive electrostatic force. Finally, the mass sensing
capability is highlighted by depositing a few picograms of platinum on the sensor.
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1. Introduction

MEMS mass sensors exploiting the mode localiza-
tion [1] have been considered in several studies over the
last decade. Compared to sensors using the frequency
shift of a single resonator, this new generation of sensor
is less sensitive to the ambient condition changes [2].
To detect a mass, it measures the change in the vi-
bration mode of a system composed of weakly coupled
identical resonators. The ability to measure a mass
with this principle has been proposed for the �rst time
in [3] with a device composed of two mechanically cou-
pled cantilevers. Then, other studies proposing di�er-
ent types of mode-localized sensors with various ap-
plications have emerged [4]. It also concerns other
applications like energy harvesting [5, 6]. For MEMS
sensors, the authors often investigate the number of
coupled resonators [7�9], and the use of other kind of
resonators and coupling [10, 11]. Recently, the cou-
pling between resonators of di�erent physical nature
has been proposed [12,13].
To determine the added mass on mode-localized sen-
sors, there are many output metrics that can be consid-
ered [14], but they are all based on vibration amplitude
measurement. In order to improve the mass resolution
of the sensor, one should be able to drive the resonators
at high vibration amplitude. Besides, it is shown in [15]
that the resolution is inversely dependent on the driv-
ing force for sensor based on coupled linear resonators.
Consequently, the upper bound limit of the dynamic
range of the used resonator should be enhanced.
For mode-localized sensors using cantilevers actuated
with electrostatic attractive force, the linear dynamic
range is limited by the critical amplitude [16] often im-
posed by electrostatic nonlinearities. Above this criti-
cal amplitude, the resonator shows a multi-valued re-
sponse. Our previous work [17] shows the advantage
of driving such a device beyond this limit, i.e. in-
volving nonlinear behavior, but there is still the risk
of failure due to the pull-in phenomenon. However,
there is another type of electrostatic actuation which
is based on repulsive force. It is often used for micro-
mirrors [18, 19], but it can also be used for cantilevers
[20, 21]. This actuation has the advantage of achiev-
ing large stroke [22] while avoiding pull-in instability.
While mode-localized sensors with attractive electro-
static forces have been widely studied, to the best of
our knowledge, the implementation of repulsive forces
for the actuation of such sensors has not been investi-
gated. Thus, we propose in this letter to study theoret-
ically and experimentally the use of this type of electro-
static actuation with mode-localized sensors composed
of weakly coupled MEMS cantilevers. We �rst present
the design and the modeling of the proposed device.
Then, the experimental study is carried out with the
fabricated device.

2. Design and model

As shown in Figure 1, The sensor considered in
this study is composed of two cantilevers connected
by a coupling beam near the �xed end. Under each
cantilever, we have a bottom electrode with two side
electrodes. To generate the vibration of the system,
we actuate one of the two cantilevers (Cantilever 1)
by applying a combined AC-DC voltage on its two
side electrodes, while the two cantilevers, the bottom
electrodes, and the two side electrodes around the non-
actuated cantilever (Cantilever 2) are grounded. The

Cantilever 1
(actuated)

Coupling beam

Side electrodes
(vAC+VDC)

Cantilever 2
(non-actuated)

Bottom electrode

Figure 1. The two coupled cantilevers using repulsive
electrostatic actuation.

dimensions of the device are given in Table 1 where the
gap g represents the distance between the cantilever
and the bottom electrode.

Table 1. Dimensions of the device

Dimension Value

Length of Cantilever 1 L1 = 100µm
Length of Cantilever 2 L2 = 100µm
Width of the cantilevers b = 20µm
Thickness of the cantilevers h = 1.25µm
Length of the coupling beam Lc = 65µm
Width of the coupling beam bc = 3µm
Position of the coupling beam x̃c = 4.6µm
Gap g = 1µm
Width of the bottom electrode bb = 28µm
Width of the side electrodes bse = 15µm
Position of the side electrodes x̃e = 40µm
Distance between each electrode ge = 3µm

Before modeling the device, we �rst determine
the expression of the electrostatic force applied to
Cantilever 1. An analytical model of the force has
already been proposed in [23] for this kind of actuation.
But for greater accuracy, we choose to perform a
simulation with COMSOL Multiphysics®. To do so,
we consider a 2D FEM model (Figure 2(a)) composed
of the cross sections of the two cantilevers, the bottom
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electrodes, the side electrodes, and the surrounding
medium. We then apply a DC voltage of 1V on
the two side electrodes of Cantilever 1, and the other
electrodes and the two cantilevers are grounded. The
mechanical displacement of the cantilever is blocked
in order to determine the electrostatic force exerted
by measuring the reaction force on the upper side of
the cantilever. After calculation, the electric potential
and electric �eld lines are shown in Figure 2(b).
We then perform simulations with di�erent values of
the distance between the cantilever and the bottom
electrode (g + w̃i, where w̃i is the displacement of
Cantilever i). Distances between 0.3µm to 3.8µm are
considered, and the intensity of the electrostatic force
is determined for each of them. The results are shown
in Figure 2(c) and (d).
In Figure 2(c), we notice that for the chosen range
of the distances, the relative variation of the force
intensity for Cantilever 1 is less than 10 %. Unlike
the attractive electrostatic force which is inversely
proportional to the square of g + w̃1, the repulsive
force is less dependent on the cantilever displacement.
Consequently, the softening or the hardening e�ects
of this actuation are not important. But another
consequence is that the electrostatic nonlinearities are
negligible. To determine now the expression of the
force, we use Matlab R2016b to �nd the coe�cients of
the third order polynomial that is the best �t for the
curve obtained in Figure 2(c). From this, the intensity
of the repulsive electrostatic force F̃E per unit length
of Cantilever 1 and for a voltage of 1V is given by

F̃E = C̃0 + C̃1 (g + w̃1)

+ C̃2(g + w̃1)
2

+ C̃3(g + w̃1)
3

(1)

where C̃0 = 1.80 10−7N/m/V 2, C̃1 =
2.84 10−2N/m2/V 2, C̃2 = −1.16 104N/m3/V 2

and C̃3 = 8.70 108N/m4/V 2. For other voltages,
this expression is just multiplied by V 2 (where V
is the voltage used). Concerning the non-actuated
cantilever, the simulation result in Figure 2(d) shows
that there is also a small force applied to Cantilever
2, and its intensity is approximately equal to 3 % of
that of the force applied to Cantilever 1. To consider
this force in the analytical model, we assume that for
Cantilever 2, the electrostatic force intensity per unit
length is equal to 0.03 F̃E .

Once we get the expression of the electrostatic
force, we can study the dynamic behavior of the device.
As the proposed device presents similarities with that
studied in our previous work [24], we use for the
mechanical part the same analytical model which is
composed of two Euler- Bernoulli beams connected
by a torsional spring. So, the equation governing the

(b)

(c)

Cantilever 1 Cantilever 2

Side electrodes (V) Bottom electrode

Displacements blocked

(a)

(d)

Figure 2. (a) Schematic of the 2D FEM model, (b) electric
potential and electric �eld lines for a given value of the distance
between the cantilever and the bottom electrode, (c) and (d)
intensity of the electrostatic force on Cantilever 1 and Cantilever
2 as a function of the distance between the cantilever and the
bottom electrode.

vibration of the system is given by

EIw̃′′′′1 + (ρbh+ m̃δ (x̃− x̃m)) ¨̃w1 + c̃1 ˙̃w1

− k̃r (w̃′1 (x̃c)− w̃′2 (x̃c)) δ
′ (x̃− x̃c)

= H (x̃− x̃e)
(
VDC + vAC cos

(
Ω̃t̃

))2

∗ F̃E (2)

EIw̃′′′′2 + ρbh ¨̃w2 + c̃2 ˙̃w2

− k̃r (w̃′2 (x̃c)− w̃′1 (x̃c)) δ
′ (x̃− x̃c)

= H (x̃− x̃e)
(
VDC + vAC cos

(
Ω̃t̃

))2

∗ 0.03F̃E (3)

where primes and dots denote respectively the partial
di�erentiation with respect to the position along the



4

microbeam x̃ and to the time t̃, E is the Young's
modulus of the constitutive material, I is the moment
of inertia of the cross section, w̃i (i = 1, 2) is the
de�ection of Cantilever i, ρ is the material density, m
is the mass perturbation, x̃m is its position, c̃i is the
damping coe�cient, k̃r is the torsional sti�ness of the
coupling beam, δ is the Dirac delta function, H is the
Heaviside function, and vAC and VDC are respectively
the AC and DC actuation voltages. To solve (2)
and (3), we use one mode Galerkin discretization,
and readers can see supplementary material for more
details. Since the electrostatic force is less dependent
on the displacement, we have neglected the quadratic
and cubic nonlinearities in the �nal equation.

One of the problems encountered on mode-
localized sensors is the microfabrication tolerance that
prevents us from having perfectly identical coupled
resonators. To counterbalance the e�ect of these
manufacturing defects, a previous work [25] proposes to
use an asymmetrical device where the short microbeam
which is actuated is 98µm long while the other one
is 100µm long. The softening e�ect of the attractive
electrostatic actuation is then used by tuning the
DC voltage in order to reduce the e�ective sti�ness
of the short cantilever, thus allowing to balance the
system. In our case, the theoretical results in Figure 3
show that the electrostatic softening e�ect is much
less present with repulsive electrostatic forces. As a
result, an identical length of 100µm was chosen for
both cantilevers on the layout, and the DC voltage will
only be used to compensate for the asymmetry created
by the manufacturing defects.
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Figure 3. Length of the actuated cantilever as a function of the
required DC voltage (the length of the non actuated cantilever
is equal to 100µm).

3. Experimental results

After the modeling and the design, we use the
PolyMUMPS® process [26] to fabricate the device.
It is then placed in a vacuum chamber, and the vi-
bration at the free end of each cantilever is measured
with a single point laser Doppler vibrometer (LDV).
As shown in Figure 4, the experimental measurement
is performed with a Picoscope® 5444B that supplies

the actuation voltage, and measures the signal from
the LDV. To balance the device, we have to actuate

Ch B Ch A

AC

PicoScope

Ch B Ch A

AC

PicoScope

LD
V

Vacuum
chamber

DC

~

Amplifier

Figure 4. Schematic of the experimental setup.

the cantilever having the highest e�ective sti�ness. To
determine this, we actuate simultaneously both can-
tilevers. The microbeam with the lowest sti�ness will
then vibrate more in the �rst mode (at the lowest fre-
quency), while the one with the highest sti�ness will
vibrate more in the second mode. Once the cantilever
to be actuated is identi�ed, we apply the combined
AC-DC voltage to its side electrodes. We then increase
gradually the DC voltage to decrease its e�ective sti�-
ness, until the vibration amplitudes of the cantilevers
become identical on the two modes (symmetric mode
and antisymmetric mode). For the chosen device, a
DC voltage VDC = 110V was required to reach the
balanced state. We then perform simulation with this
same voltage for the theoretical frequency response. A
quality factor Q = 900 is used, and it is measured
from the half-power bandwidth method. The identi-
�cation of the balancing DC voltage of 110V proves
that there is a slight di�erence between the two man-
ufactured cantilevers. Thus, in the model, we have
to include this defect by decreasing slightly the length
of the supposed actuated cantilever so that the bal-
anced state is reached with this same DC voltage of
110V . Therefore, we set L1 = 99.96µm in the model,
while L2 is kept at 100µm (according to Figure 3).
The theoretical and experimental frequency responses
at the balanced state are shown in Figure 5, where
W1 th/W1 exp andW2 th/W2 exp are respectively the the-
oretical/experimental vibration amplitude at the end
of the actuated and the non-actuated cantilevers.
The comparison between the experimental and theoret-
ical frequency responses shows that they are in good
agreement, which allows us to validate the model. We
also notice that for VDC = 110V , the vibration am-
plitude of each cantilever are identical on each mode,
re�ecting the balanced state. For other tested devices,
the required DC voltages to obtain this balanced state
do not exceed 110V . Concerning the theoretical am-
plitude of each mode (Figure 5(a)), that of the �rst
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Figure 5. Frequency responses of the device at the balanced
state for vAC = 125mV and VDC = 110V : (a) theoretical
frequency response (analytical model) and (b) experimental
frequency response.

mode is slightly higher than that of the second mode,
due to the parasitic force on Cantilever 2. For the ex-
perimental frequency response (Figure 5(b)), the dif-
ference between the amplitude of each mode is more
signi�cant, which means that the actual parasitic force
applied to the non-actuated cantilever is more impor-
tant. This is due to a representativeness problem of the
2D simulations of the device. But using the 2D �nite
elements model is justi�ed since it is not necessary to
determine with a great accuracy this parasitic force for
the targeted application which is the mass sensing.

Concerning the linear dynamic range, we now
drive the device at high vibration amplitude by
increasing the AC voltage, and the result is shown in
Figure 6(a). We notice in this experimental frequency
response that the vibration is still linear, we do
not have a softening behavior re�ecting electrostatic
nonlinearities even if the vibration amplitudes are
close to 500nm. To determine the linear range,
we plot the variation of the amplitude of the �rst
mode as a function of the applied AC voltage.
The result in Figure 6(b) shows that the linear
range goes up to about 700nm that represents
70 % of the gap. After this limit, the vibration
is no longer linear, and the ratio between the
amplitude and the AC voltage decreases. The
possible cause of the nonlinearity can be the
increase in the damping force, because nonlinearity
can be neither electrostatic nor mechanical since
the critical mechanical amplitude beyond which
mechanical nonlinearity appears, indicates a value of
Acm = 6.3L1/

√
Q = 21µm [27]. But compared to a

similar device using attractive electrostatic force [17]
and where nonlinear vibrations appear as soon as the
amplitude exceeds 20 % of the gap, it can be concluded
that the linear dynamic range has been increased with
the repulsive electrostatic force.

To demonstrate the mass sensing with the sensor,
we add a small mass estimated to be around 10 pg
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Figure 6. (a) Experimental frequency response of the device
with high vibration amplitude (vAC = 1V and VDC = 110V )
and (b) vibration amplitude of the symmetric mode as a function
of the applied AC voltage

at the free end of the actuated cantilever by using a
focused ion beam deposition of platinum (Figure 7(a)).
Once the mass is deposited, we measure again the
frequency response of the device. We also perform
simulation by adding the same mass. All results are
shown in Figure 7(b) and (c).
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Figure 7. (a) Scanning electron microscope image of the
device and the added mass, (b)theoretical and (c) experimental
frequency responses of the device once a mass is added on the
actuated cantilever (vAC = 500mV and VDC = 110V )

The comparison between theoretical and experimental
results shows that they are in good agreement. After
adding the mass, the vibration becomes localized on
the actuated cantilever in the �rst mode. When we use
high vibration amplitude, we should ensure that the
maximum amplitude of this cantilever remains within
the linear range described in Figure 6(b).
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4. Conclusion

This paper has investigated the use of repulsive
electrostatic actuation on a mass sensor with weakly
coupled MEMS cantilevers using mode localization.
Simulations with a 2D FEM model is �rst performed
to determine the expression of the electrostatic force.
The obtained expression is then used in the analytical
model based on Euler-Bernoulli beam theory. It
shows a resulting force which is less dependent on
the displacement of the cantilever than in the case
of the attractive electrostatic force, indicating the
absence of electrostatic nonlinearities. After carrying
out experimentation with the fabricated device, we
have also obtained the same results, with a linear
range of vibration amplitude up to 70 % of the gap,
while the critical amplitude of a similar device using
attractive force does not exceed 20 % of the gap.
By using a repulsive electrostatic actuation, we have
thus increased the upper bound limit of the linear
dynamic range of the device. The ability of the
sensor to detect a mass of a few picograms is also
demonstrated both theoretically and experimentally.
Concerning the experimentations, a vibrometer has
been used to measure the vibration of the device. But
as this may not be relevant in the context of a sensor
application, we may investigate in future works the
use of other readout techniques that are suitable for
nomadic sensors.
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