Mobile Effect Reduction in Data-Centric Storage for Wireless Sensor Networks
Hung-Cuong LE *, Hervé GUYENNET* and Noureddine ZERHOUNI †
*Laboratoire d’Informatique de l’Université de Franche Comté, France

{ hungcuong.le, guyennet}@lifc.univ-fcomte.fr

†Laboratoire d’Automatique de Besançon, France

noureddine.zerhouni@ens2m.fr

Keywords: Clustering, Data dissemination, Mobility, Wireless Sensor Network
Abstract

The future sensor networks are usually scale to size of thousands to millions of sensors deployed in an area to sense events. Hence, they usually have a huge amount of data to manage. The way how to store data can influence the response time and the lifetime of the network. One of the existent work in this domain is called Data-Centric Storage (DCS), and it is a recent research tendency in wireless sensor network. DCS has to face with two problems. First, it uses hash function to determine which node to store data. When the hash value does not match the position of a node (which is very frequent), DCS has to search for the nearest node of the hash value to store the data. This process is an energy waste needed to be avoided. Second, in a sensor network, there are often mobile nodes, and they are one of the causes of routing errors in the network. Routing errors implies retransmissions and information lost. Hence, they are also an energy waste. In this paper, we try to solve those two problems. We propose an enhancement of DCS called C-DCS (Clustered Data-Centric Storage) which avoid the search for the nearest node to the hash value and minimize the mobility effect of mobile nodes in sensor network. Besides, we take advantage of clustered architecture to propose a new data aggregation method to reduce the number of communication in the network. By theoretical and simulation result, we prove that the number of transmission is reduced. Therefore, we can improve the network lifetime.
1
Introduction

For the last few years, we can observe a boost development of the wireless networks techniques. From mobile network, WIFI and ad-hoc network, today, research in wireless networks has been much focused on the wireless sensor networks (WSN). A wireless sensor networks is a network composed of thousands to millions of wireless communicated sensors. They are deployed in an area to collect environment events. This network often produces an enormous number of data observed by the sensors. This requires new methods to store and manage these data in an effective way which guarantees not only low energy consumption but also a uniform load distribution over the network. In a sensor network, each node is a small electronically component with a low processing capacity, storage, communication and energy. Hence, sensors are very sensitive with energy consumption and it is necessary to minimize the number of communication between sensors in order to increase the lifetime of the network.

Indeed, the lifetime of a sensor network is defined by various criteria [1] and the most important criterion is the percentage of nodes alive in the network. For example, a network is considered operational if 80% of nodes are alive. Thus, it is necessary to distribute the load over all the nodes in the network, so that every node consumes the same energy level and they drain their energy almost at the same time. A static hierarchical topology often does not optimize the lifetime of the network because the node nearer to the base station have to work more (sense the environment and route the messages of the others). Hence, they consume more energy and become exhausted more quickly than the further nodes. In a sensor network, since we want to maximize the network lifetime, the energy consumption and load distribution become a fundamental problem needed to be resolved.

In some scenarios of sensor network, we are not interested in the identifier of each sensor but just the general sensed information of the physical environment. In this case, we refer to a data-centric scenario where we are interested in an event in an area but not the exact identifier of the sensor which detected this event. For example, a sensor network is deployed in a forest to detect the fire. Whenever there is a fire, it is enough to know whether there is a fire in an area of the forest, but we do not need to know exactly which sensor had detected this event. The research of data-centric includes 3 paradigms: the data-centric routing, the data-centric aggregation and data-centric storage (DCS). Our work focuses on the last paradigm where we want to distribute the load in an effective and intelligent way on the sensor network.

The main idea of DCS is to uniformly distribute all the data of the network over every node. Hence, each node will keep the same number of data, and have to route the same number of data. This approach avoids hotspot and prolongs the lifespan of the network. However, existing works of DCS [6, 8, 9] have to face with two problems. First, it uses hash function to distribute the data over every node. The hash function guarantees a uniform distribution of key, but it does not guarantee that the key matches a position of a node. Hence, when the key does not match a position of a node, DCS has to search for the nearest node of the key, which is an energy waste. Second, sensors are often mobile. When a mobile node moves from one position to another position, it might change the topology and routing information of the network. Thus, this node might become unreachable and we loose all the packet sent via this node and data stored at this node. However, DCS does not really take into account the mobile effect of mobile node in the network. Actually, they simulated a mobile network with small mobile rate. The performance result is less interesting than a static network but they have not proposed any methods to resolve this problem.

In this paper, we try to resolve these problems of DCS and propose a new aggregation method to reduce the number of transmissions in the network. Our paper proposes three major contributions:

· A clustering architecture which avoid the search for non-matching between key and node position.

· Minimise the bad effect of mobile nodes to the network.

· Taking advantage of the clustering architecture to propose a two-level data aggregation which reduces obviously the number of transmission in the network and the load at the hotspot.

In section 2, we present related works. We show in detail problems of DCS in section 3. In section 4, we describe our proposal which resolve problems mentioned in section 3. Then, we show the effectiveness of our approach by comparison with other existing techniques by theory and by simulation in section 5. Lastly, we conclude our work and present some perspectives in section 6.
2
Related Work
When a sensor detects an event, it can react in different manners. For example, it can send this event to the sink or store it locally. Depending on the reaction of nodes, authors of GHT [6, 16] have shown 3 principal scenarios: Local Storage (LS), External Storage (ES) and Data-Centric Storage (DCS).

In LS, sensors store detected events locally. Normally, sensors do not have to send messages to the base station. They send messages only when they receive a query for the event stored in their memory. When there is no query, sensors do not send any data. However, once there is a query, this query has to be flooded to all nodes in the network.

In ES, sensors send all detected data to the base station. Data is processed in the base station. There is no cost at queries but there may be detected events which are not interested to users.

Data-centric storage in the sensor network is inspired from the idea of data distribution and files sharing of structured peer to peer network, such as CAN [2], Chord [3], Tapestry [4], Pastry [5]. A structured peer to peer network is built upon a distributed hash table (DHT) and is a kind of overlay network. The distributed hash function allows nodes to uniformly distribute data over the network, so that each node is responsible to a part of the overall data of the network. So, every node is equal and no node has to work harder than the others. To search a data in the network, a DHT applies an intelligent routing to route the requests to the nodes responsible for the requested data. The result is obtained after a certain number of hops (O(logN) for the majority, where N represents the number of nodes in the network). With these characteristics, the DHT becomes a good candidate to apply to the data distribution in the sensor network.

However, the architecture of sensor network and peer to peer network are different. The peer to peer network is built upon the standard of IP network and it does not take the real distance between nodes into account. Here, two nodes are considered close if they are close semantically in the overlay network. Two nodes which are very close in the geographic distance might be very far in the overlay network and vice versa. This assumption is unacceptable for the sensor network because this network strongly rely to the physical position of the nodes. Hence, the network lifetime of sensor network strongly depends on the number of hops of the communications between nodes. In order to apply DHT to the sensor networks, it is necessary to take into account this difference for better adapting to the mobile and sensitive environment of the sensor network.

Geographic Hash Table (GHT) [6, 16] is the first work to deal with this problem for the sensor network. The authors show the situations where the DCS is preferable and propose a new technique of data distribution adaptable to the sensor network. GHT applies DHT and offers the same service: each node is responsible for a part of the over all data of the network, it stores and replies for all the queries for these data. Every node observes events and when they find any events, they hash this value to obtain a key and store it on a node responsible for this key. When a node wants to search for an event, it hashes this event to obtain a key and route the query to the node responsible for this key.

However, the routing technique in GHT is not the same as the DHT. Since it can not directly apply the routing technique of DHT as the reasons mentioned above, GHT uses GPSR [7] a stateless routing geographical algorithm in the wireless network multi-hop. GPSR uses geographical position of nodes to route packet. Once a node has a packet to send, it searches for the nearest neighbour to the destination to the forward the packet. This process is repeated until the packet reaches the destination. Indeed, GHT changes GPSR to better adapt to its routing algorithm. This modification forces the nodes to replicate data at many nodes and so they consume more energy. Moreover, every node requires a device (a GPS for example) to know its geographical position. This requirement is not always easy for the sensors because the GPS are normally expensive and are not very precise. We will analyze more in detail the problems of this protocol in section 3.

GEM [8] is also a well-known proposal of data-centric storage. GEM is better than GHT at the fact that the sensors do not need to know their geographical position. Here, they build a virtual coordination space to facilitate the routing in the network. This protocol is a good candidate for data-centric storage in a static topology. However, there are always differences between the physical position and the virtual position in virtual coordination space. Moreover, this space should be updated periodically, which increases the overhead of the network. This protocol will become heavy if there are mobile nodes in the network because the node looses their virtual connection between them and many other nodes have to update their virtual space.

In [9], the authors propose a scalable replication method which improves the response time for the summary type query. Here, the network is divided into Z zone. In each zone, there is a monitor node for each event-type. Each monitor node store and exchange summary information with all other monitor nodes. The monitor node has to know global information which limits the scalability of this approach. Moreover, this communication creates overhead for the network. Authors do not describe when and how to elect a replica node. In case of replica node is the same as monitor node, if it fails, we lost all information stored in this zone. They do not describe how to construct the logical ring to exchange information between monitor nodes, especially with a high number of nodes. Moreover, the information exchange between monitor nodes cannot be done frequently. The response for summary result could be inaccurate.
3
Problems of DCS with sensor network
In the previous section, we have talked briefly about the two problems of DCS. In this section, we will describe these problems in details in order to clarify our proposal in the next section.

Indeed, DCS techniques use the GPSR [7] for the routing in the network. In order to work, the GPSR requires that all nodes in the network must know the addresses of its neighbours with 1-hop. Moreover, the GPSR is designed for the routing where the source address and the destination address are known. However, DCS method uses a hash function to distribute uniformly data over the network. The hash function guarantees the uniform distribution of key in the network, but it does not guarantee the match between key value and a node position. When a node has an event to store, it hashes this event to obtain a key (a position). Then, it routes a message to this position. However, as the network is deployed randomly, we are not sure that there will be a node at the position of the key. The solution of GHT [6, 16] is to search for the nearest node of that key. In fact, the first time that the nearest node receives a message for a position, it does not know whether it is the nearest node. Hence, it continues to forward the message in a perimeter until it receives the same message. Now, it knows that it is the nearest node of the key. The nearest node becomes "home node" and itinerary that the message passed is called "home perimeter". In fact, by crossing several nodes around the home perimeter before finding a home node to store the data is a communication waste need to be avoided.

Fig. 1 illustrates the case when node A wants to store an event at position Y=Hash(event). Node A uses GPSR to send a message to the position Y and hopes that there is a node at the position Y. However, there is no node in the position Y. Node A forward the message to node D via nodes B and C. At the node D, because it does not know any node at position Y, it continues to forward the message around Y until it finds the same message. In this case, it knows that it is the nearest node to the position Y and decides to be "home node" for Y. It stores the data for position Y. We can easily find that the node D wastes energy to forward the message in the "home perimeter".

In sensor networks, there are often mobile sensors. They are sensors deployed in mobile objects: an animal in a forest, a robot in a factory etc. In some cases, we do not know whether a node is mobile or stable before the deployment. In a mobile sensor network, the fact of using GPSR can generate another problem illustrated in Fig. 1. When node A wants to send a message to the node D, it knows that B is the nearest neighbour to D, so A sends a message to B, and the node B forwards the message to C and D. The problem occurs if B is a mobile node. If the node B moves to the new position B' out of the radio range of A, and A is not aware of this movement, A sends a message to B, but when B is out of the radio range of A, this message never reaches the node B. The same problem will occur if B is the storage node of the data. In this case, A cannot retrieve the data stored in the node B. Therefore, mobile nodes are less interested to store or to forward packet because once they move around, the stored data in these nodes will be lost.

4
C-DCS
In this section, we will describe in detail our proposal which enhances the data-centric storage for scalable sensor network to avoid the two problems mentioned in section 3. Furthermore, we would like to propose a new aggregation level, which can reduce the number of transmission in certain scenario. We assume a sensor network randomly deployed, which means that the nodes are distributed uniformly in an area. At the beginning, all sensors have the same capacity and the energy level. By using a service support [10, 11, 12], every node knows its position in the network.

In section 4.1, we describe how to organise the network into clusters. Then, we show how nodes enhance the data storage and retrieval in section 4.2. In section 4.3, we take advantage of clustered network to propose a two-level aggregation in order to reduce the number of communication in certain scenario. Finally, we discuss how to guarantee fault tolerance by replicating data and alternating cluster-head role in section 4.4 and 4.5.

4.1 Network organization:
In our proposal, we organize the network in clusters. We divide the network space into C clusters with the same size (Fig. 2). We estimate the size of cluster in order to have at less one sensor in each cluster. Since every node knows its position, it knows exactly the cluster it belongs to. In each cluster, one node is elected to be the cluster head, and it becomes the manager of the cluster. Many clustering methods have been proposed recently [13, 14]. Each method has specific criterion to elect cluster head. But, since we consider the mobile node as a source of disturbance of the network (section 3), we choose the clustering method based on the mobility of sensors.

We classify the node into two principal types: stable node and mobile node. Now, the problem is how to know whether a node is stable or mobile. In case when each node has been equipped a service support which enables them to know its position in the network at any time, by measuring the change of its position to the time, a node can know its mobility level. When the mobility level overpasses a certain threshold, a node knows that it is a mobile node and vice versa.

However, as the location service support is often expensive, we can assume a sensor network without this device. First, when sensors are deployed in the network, they do not know their position. Then, we let a mobile object with a location service support walk in the network, and broadcast its actual position. This can be done by someone walking with a GPS, or a plane flying over the forest. After received the position signal, sensors are aware of their position, but they cannot know whether they are mobile node. Now, nodes can use MOBIC [15] to calculate its mobility level. In MOBIC, the node measures the level of signal strength emitted from its neighbours. The mobility level of a node is defined from the difference of the level of signal strength between different moments. When the node moves, the level of signal strength changes, and it is inverse proportional to the distance that the node moves. A high difference means a long movement of the node and vice versa. Hence, when this difference overpasses a certain threshold, we consider this node as a mobile node.

In fact, the measurement of mobility level is relative and it depends on each type of application. For each application, there are different mobility level threshold. For example, in a forest monitoring application, we can define a threshold: a sensor which changes its positions continuously during more a half of the day is considered as mobile node. Hence, the sensors on the body of animal are considered as mobile node as its position changes all the time when animal are awake.

After the deployment, each node measures its mobility level in order to know whether it is a mobile or stable node. After that, sensors in a cluster elect between them a cluster head. As mentioned above, mobile nodes are the cause of routing errors; they do not take part in this election process. Only stable nodes are permitted to participate in this election procedure. Mobile nodes do not have the right to elect. Here, we apply the same election rules of CLA [13], where each node chooses its identifier and the node with the smallest identifier becomes the cluster head. At the deployment phase, when the energy level of every node in the network is the same, each node chooses randomly its identifier to be the cluster head. Then, when the energy level of nodes in the cluster becomes different, we force the node to choose its identifier according to its remaining energy level. A node which has much energy will choose a small identifier and vice versa. So the node which has the smallest identifier in its cluster is the node which has much energy so it will be elected as a cluster head.

 SHAPE * MERGEFORMAT

In [6, 16], authors propose a structured replication to achieve load balancing. They just divide the hotspot node into many positions so that each node stores a portion of an event type. R-DCS [9] improve GHT with the logical ring. They do a trade-off between summary queries with information exchange between nodes in the logical ring. The objective of clustering in R-DCS and GHT is different to our proposal. Our objective of clustering is to avoid the search for non-matching between key and node position and to do a new data aggregation level in each cluster
4.2 Data storage and retrieval in the network
In this section, we will describe how nodes store and retrieve data while avoiding problems mentioned in the section 3.

4.2.1 Data storage

In our approach, mobile nodes do not take part in the routing and storage protocol. There are only stable nodes which participate in this process. Each node keeps a list of its neighbouring nodes except the mobile node.

When a stable node wants to send a data, first, it hashes the value of this data to obtain the destination address. Then, it searches among its neighbours the nearest stable node to the destination and sends the packet to this node. As stated earlier, the problem arrives when the destination address does not match any node address. By organising nodes in clusters, we can avoid this problem. We apply GPSR until it reaches any nodes in the cluster of the destination. This node is not at the destination address, but it will not search for the node at that position. In place of that, it forwards directly to the cluster head. The cluster head is responsible for every value in its cluster, but not only the value in its position. Even the destination address does not match any node addresses; we do not have to search for the nearest node with that destination. Hence, we can avoid energy waste in this process.

 SHAPE * MERGEFORMAT

Fig. 3 illustrates this procedure with a network deployed in a square zone 10*10. When node A detects an event X (Ex: temperature=100°C), it hashes the value X. Suppose that the result of hash function Y = hash(“temperature=100”) = (7,2). The node A forwards the message to its nearest neighbour to Y and so on. It follows the arrow label 1. Recall that there is no node at the position Y = (7, 2). The approach of GHT is to cross the "home perimeter" to know the home node to store the value Y. In our approach, once the message arrives to the node B, it will not search for the node at position Y=(7,2). Since it is in the cluster C4, it knows that the value (7, 2) is responsible by the cluster head C (everyone knows their cluster head address), so B forwards the message directly to its cluster head without crossing any home perimeter.

 SHAPE * MERGEFORMAT

Until now, we have not discussed about the work of mobile nodes. We consider that these nodes do not participate in the routing and storage data. But, as they are in the network to observe events, they must share the information which they observed. Indeed, when a node is mobile, it does not even need to know the address of its neighbours because if they keep a list of its neighbour’s address, it has to update this list all the time when it moves and it is an energy waste. Thus, we design the advertising protocol for mobile node a little more complicated than the stable node. Figure 4 illustrates a case when a mobile node wants to send a data. As in a normal case, when a mobile node M detects an event X, it hashes the value X to obtain a hash value Y. Then, it broadcasts a request message REQ (REQUEST) around it to know which the closest node to Y is. When the nodes around M receive REQ, if they are ready to help the node M, they send to M a message APV (APPROVE) with their position. The node M receives APV; it chooses the nearest node to Y to send the message. In Fig. 4, it chooses the node S to forward the message. The next routing is the same as a routing between the stable nodes as mentioned above.

4.2.2 Data retrieval

The data retrieval procedure is the opposite of the storage procedure and is illustrated in Fig. 3. An access point is placed somewhere in the network to make the query. When a user wants to search for the value X (Ex: when and where the temperature was 100°C), the access point will hash the value X to obtain the hash value Y = hash(“temperature=100”) = (7, 2). The access point applies the routing described above and sends the query to the cluster head of the position Y. This message follows the arrows label 2 and arrives at the cluster head of C4. The cluster head uses the reverse trajectory label 3 to send the response to the access point. By using the hash function with the routing above, the access point knows exactly which node keeps the information correspond to the query in order to send the query to this node.

In fact, in a sensor application, a mobile node often stays mobile for its lifetime. For example, a sensor which is attached to the body of an animal, or in a robot is always mobile. However, as we classify sensors in two different types: stable node and mobile node, we can consider the case when sensors change their status from stable to mobile and vice-versa. When a node changes its status from mobile to stable node, it simply changes its property and announce to its neighbors about this change. From now, it participates in the routing, storage data and election of cluster head. On the contrary, when a node changes its status from stable to mobile node, the situation is a bit more complicated. If the stable node is a normal node, it simply announces to its neighbors that it becomes mobile node and it does not route or store data. If the stable node is a cluster head, to guarantee the integrity of the system, it has to find a node to replace its role. Then it transfers all of its data to this node. Now it can move freely without disturbing other nodes.
4.3 Two-level aggregation

In previous section, we have described our proposal which avoids two problems of DCS with sensor network. In this section, we want to take advantage of the clustered architecture to propose an addition level of data aggregation in sensor network. In fact, in certain application, users are interested in only aggregation information of the events: the total, max, min, average value etc. Example: a user wants to know only the maximum temperature of the network. In this case, we do a slight modification of the routing protocol in comparison with the previous section. We force the nodes in a cluster to send message via the cluster head. And the cluster head is the only one who has the right to forward the message to others. Here, we can apply a two-level data aggregation in order to reduce the number of communication.

The first level is the aggregation in each cluster. After received a list of data from the children, the cluster head aggregates the data and sends only the aggregated result. Suppose that there are 5 nodes in a cluster. So in stead of sending 5 packets to the responsible node, the cluster head aggregates the data and sends only one aggregated packet. So in one cluster, the nodes can save 4 transmissions. In fact, those transmissions are multi-hop transmissions. So, we can reduce a high number of communications. Different to the normal case where sensor hashed the value that it sensed from the environment, in this aggregation model, sensor hashes the aggregation type and the event type. Moreover, as nodes in a cluster are spatial correlated, they probably sense the same information. Sensors can apply an overhearing technique [17] to reduce redundant transmission. In place of sending the same information to the cluster head, only one sensor sends data to the cluster head.

The second level is at the node which stores the data. Example: the node which stores every temperature value of the network. When the query arrives at this node, it makes another aggregation of data and sends only the aggregated data to the access point. So again, we can save energy by sending only aggregated value to the sink.

Let us observe Fig. 5, suppose that we want to find the max value of the temperature in the network. The first aggregation level is at the cluster head. In the cluster C1, every node (stable and mobile nodes) sends the temperature it senses to the cluster head. The cluster head hashes the aggregation type and event type to obtain the key Y = hash(“max(temperature)”) = (8,2). Since this position belongs to the cluster 4, the cluster head of C1 chooses the max value of temperature and send this value to the cluster head of C4. The cluster head of C4 becomes the node responsible for the max value of temperature in the network. The arrows label 1 illustrates this routing from the cluster head C1 to the cluster head C4. The cluster head of C4 receives every max temperature of each cluster head in the network. When it receives a request from the sink, it compares these values and sends the max value to the sink. The arrows label 2 illustrates the routing of the request packet from the sink to the cluster head of C4 and the arrows label 3 illustrates the routing of the aggregated response from the cluster head C3 to the sink.

 SHAPE * MERGEFORMAT

4.4 Data replication technique

In the network organisation proposed above, there is only one node responsible for all the data in a cluster. It becomes a bottle neck and a single access point of a cluster. Whenever it breaks down, we lose all the data stored in this cluster. That is why we propose a method of data replication for the fault tolerance. Each cluster head has a replicated node which keeps a copy of its data. The choice of the replicated node is simple. The cluster head sends a request for assistant to every node in his cluster to find the volunteer. When it finds a voluntary node, it recruits it like its assistant. Periodically, it transmits its data to backup at the replicated node. Whenever the cluster head breaks down, there is always the replicated node which keeps all the data of the cluster. The replicated node becomes the cluster head if it finds that the cluster head broke down. In fact, the probability which two nodes: the cluster head and the replicated node broke down at the same time is very low. Therefore, our proposal guarantees that the data are not lost even in case of the mobile nodes and when the nodes break down.

In comparison with other DCS techniques, GHT [6, 16] and R-DCS [9] also propose a replication method. However, the replication technique used in GHT is not a real replication; it is just a data distribution image to reduce load for hotspot event. So if there are failures, it cannot recover all the data. In R-DCS, the replica node does not replicate any data. It simply stores data for the given event-type. So when replica node fails, we lost data in these nodes and we have only summary data stored in monitor node. On the contrary, in our proposal, we replicate real data. The replica node actually stores the same data as the cluster head, which is different to other DCS techniques. Hence, in case of failures, we always have a replica node to recover the full data.

4.5 Cluster head re-election

In fact, in a sensor network, the clustering method always suffers from a disadvantage: the cluster head works harder than the others. Then, it consumes more energy and run out of energy more quickly. So, we apply a re-election method in each cluster. Periodically, after a time T, every node re-computes its identifier for the next re-election. The chosen identifier is inversely proportional with the energy level of each node. A node with lower energy level will choose a high identifier to avoid to be elected as cluster head. A node with high energy level will choose a low identifier. Therefore, it has more chance to be elected as cluster head. By this way, we can distribute the load in a cluster and increase the lifetime of the network.
5 Performance Evaluation
In this section, we analyze the performance of our proposal to compare with other related works. To facilitate the comparison, we use the same metric measurement as in [6, 16]. Suppose that all the messages have the same size, these metric are as follows:
· Total: The over all number of messages sent in the network.

· Hotspot: The maximal number of message sent at any nodes in the network

5.1 Theoretical analyse

In this section, we measure theoretically the cost of the storage and routing of our proposal C-DCS. Suppose a sensor network with N nodes to detect E events. Dtotal is the total number of detected event, Q is the number of query and Dq is the number of detected event corresponds to these queries. We refer to the measurement of the 3 ordinary scenarios mentioned in [6]

 REF _Ref158006555 \r \h
[16] and compare with our proposal:

5.1.1 External storage:

Each detected event requires
[image: image5.wmf]()

ON

hops to route from a node to the sink. Since there is Dtotal detected event, the cost
[image: image6.wmf]()

total

TotalDN

=

. Every event is stored at the sink, so it costs nothing for querying but the sink suffers from a
[image: image7.wmf]total

HotspotD

=

.
5.1.2 Local storage:

In this case, the detected events are stored locally at each node. It costs nothing for storage. However, when a sink makes a query, this query is flooded to all the nodes in the network with the cost O(N). All the response has to cross a trajectory at cost
[image: image8.wmf]()

ON

. We have Dq response for each event, so the cost
[image: image9.wmf]q

TotalQNDN

=+

. The sink has a
[image: image10.wmf]q

HotspotQD

=+

.

5.1.3 Data-centric storage

In this scenario, the storage cost for each event is
[image: image11.wmf]()

ON

. A query for a data has to pass a trajectory to the node stored this data at cost
[image: image12.wmf]()

ON

. There are two query types: list query and summary query. With list query type, the node has to response a list of event happened in the network, which is stored in its memory. With Summarized DCS (S-DCS), the node aggregates data and sends only one response with a query. According to the query types, we have the following Total and Hotspot:

[image: image13.wmf]totalqq

TotalQNDNDNHotspotQD

=++=+

 (list)

[image: image14.wmf]2

total

TotalQNDNQNHotspotQ

=++=

 (summary)

5.1.4 Clustered Data-Centric Storage

In the normal C-DCS, the storage and query cost is the
[image: image15.wmf]()

ON

. Hence, the total and hotspot is as follow:

[image: image16.wmf]totalqq

TotalQNDNDNHotspotQD

=++=+

 (list)

[image: image17.wmf]2

total

TotalQNDNQNHotspotQ

=++=

 (summary)

Let us recall that GHT uses GPSR for its routing. By modifying the GPSR, it forces the data routing to cross an area called "home perimeter" when there is no node at the destination address. On dense networks, most perimeters are three hops in length [16]. The fact that each message has to cross this area before finding a “home node” is an energy waste. Since the number of message which it crosses in this zone is small in comparison to N, we do not see the difference in total cost between our proposal and DCS (because
[image: image18.wmf]()()

ONXON

+=

, X is the number of nodes in a home perimeter). However, the fact of crossing in a home perimeter for each detected event can generate much more messages in total. Our proposal avoids this kind communication waste because every node in a cluster knows exactly the address of its cluster head in order to forward the message.

Another goal of our approach is to optimize the network operation in case where there are mobile sensors. By using a simple classification of the nodes in the networks: mobile and stable; we minimize the bad effect of mobile nodes in the network and assure a good performance of the routing and storage of the network.
5.1.5 C-DCS with two-level aggregation

In this scenario, we apply the two-level aggregation in order to reduce the number of transmissions. Suppose that M is the average number of the nodes in a cluster. In place of sending every detected event by every node, the cluster head does a data aggregation and sends only one aggregated message for all the nodes in its cluster.

[image: image19.wmf]/2

total

TotalQNDNMQNHotspotQ

=++=

 (two-level aggregations)
In [6, 16], authors mentioned the condition where DCS is preferable: Dtotal >>Dq >>Q. We find that the value of Dtotal is the highest value. Hence, by reducing this value (M times), we reduce a lot of communications in the network.
5.2 Simulation result

In this section, we will prove the effectiveness of our proposal via simulation result. We use the OMNET++ [17] to simulate the sensor network. OMNeT++ is a public-source, component-based, modular and open-architecture simulation environment. Since we are interested in a simulation of a large sensor network and the total of the number of packets sent and received in every node also the hotspot in the network, we simplify the network layers. Here, we do not include the MAC and the physic layer. We suppose that the nodes can transmit with no collisions, no errors. When a node wants to transmit a packet to another node, we are sure that this transmission is succeeded.

5.2.1 Simulation parameters

We simulate a sensor network with N=10.000 nodes distributed uniformly in a zone 100x100. We suppose the distance unit is 10m, we have the deployment zone of 1 km2. The sink is placed at the top-left corner of the network. At first, every node generates a data; they hash data and send it to the cluster head of the cluster responsible for the hash value. Afterwards, the sink sends queries to nodes in the network. We vary this number of query from 0 to 100. When nodes have data for the event type, they send a list of response or a summary response to the sink.
The simulation parameter is described in details in Table 1.

	TABLE I: Simulation parameters

	Parameter
	Value

	Deployment zone
	1 km2

	Radio range
	40 m

	Number of nodes
	10.000

	Mobility nodes population
	5-30 %

	Density
	1 node / 100 m2

	Number of clusters
	1.000

	Number of event types
	100

	Number of event types queried
	0-100

	Number of instances for each event types
	100

5.2.2 Two-level aggregation

In this simulation, all nodes are stable. We compare the performance of our proposal C-DCS with different scenarios LS, ES, DCS and S-DCS (DCS with summary). We examine the total number of packets and the hotspot in the network by varying the number of queries Q.

[image: image20.emf]0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0102030405060708090100

Number of queries

Total messages 1

ES

LS

DCS

S-DCS

C-DCS

Fig. 6: The total message with variation of Q

Fig. 6 illustrates the number of total messages which have been sent by all nodes in the network by varying the number of queries between [0; 100]. The LS (local storage) has the best result when there is no query or a few queries in the network. This is normal because every node stores its data locally. Hence, when there is no query, there is no transmission. However, as we increase the number of query; the total message of LS increases very fast because every query has to be flooded in the network. The ES (external storage) always has the same number of message because every detected event is sent to the sink regardless to the number of queries. The DCS has better result with a normal number of queries. When the number of queries is increased higher, since every detected event is queried, it performs worst result than the ES. However, by using the summary queries, the S-DCS performs better result because in place of sending Dq messages, the nodes aggregate data and send only one aggregated message. The S-DCS use one level aggregation, and it performs better result than LS, ES and DCS in every cases. By using a two-level aggregation, we reduce obviously the number of messages in the network. Every node sends its message to the cluster head; the cluster head aggregates the data and sends only aggregated data to the stored node. Observe Fig. 6, we can see that our proposal offers the best result in comparison with the other approaches.
[image: image21.emf]0

1000

2000

3000

4000

5000

6000

0102030405060708090100

Number of queries

Hotspot 1

ES

LS

DCS

S-DCS

C-DCS

Fig. 7: The hotspot with variation of Q

Fig. 7 illustrates the max number of message sent by any particular nodes (hotspot) in the network. We use the same scenario as the previous simulation, but we take the number of messages sent by each individual node into account. Among all scenarios, the ES performs the worst result because every detected event is sent to the sink, so it has the same number of hotspot regardless to the number of queries. The DCS and LS perform the same result. When we increase the number of queries; the number of replies is increased. Hence, the load of hotspot is increased. The S-DCS improves obviously the hotspot because a node sends only the aggregated data when it receives a query. Therefore, the number of replies is equal to the number of queries. By using two-level aggregations, we reduce the number of messages in each cluster. Hence, our C-DCS overpasses the performance of the S-DCS as illustrated in Fig. 7.

5.2.3 Mobile nodes

In this section, we measure the error rate in mobile sensor network. Here, we consider a network with two types: stable and mobile nodes. We simulate a sensor network with the percentage of mobile sensors varying from 0 to 30 percent of the network. As we consider mobile nodes are deployed in mobile objects (a robot or an animal in the forest), mobile sensor stays mobile for all its life. They do not participate in storing and forwarding data, so the velocity of nodes is not important. We are only interested in the percentage of mobile node.

In normal DCS, stable and mobile nodes have the same role: they store and route packets. However, when a node is mobile, it might not receive packet sent from its neighbour. By using GPSR routing, a node simple forwards a packet to its nearest neighbour to the destination regardless whether it is a mobile node or not. There is no acknowledgement message. Hence, once a node A sends a packet to a node B, if node B is out of radio range of A, we consider the transmission is fail.

In our proposal, as we classify sensors into two types, we can avoid bad effect of mobile nodes to the network. However, we reduce the number of node participating in routing procedure. Hence, there are cases where nodes can not find neighbours to forward packets. We consider this case as an error.

[image: image22.emf]0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

051015202530

Mobile percentage

Error rate .

Normal C-DCSC-DCS with mobile avoidance

Fig. 8: Error rate between normal C-DCS and C-DCS with mobile avoidance

Fig. 8 illustrates the result of this simulation with simulation parameters in Table I. We simulate the scenario of C-DCS with mobile nodes. When there is no mobile node, as we consider all sensors are connected, there is no routing error. When we increase the percentage of mobile nodes from 0 to 30, we can see that the error rate of normal C-DCS increase very fast. Our proposal improves the routing by reducing error rate. We consider the mobile rate from 0 to 30 percent because we think that it is enough for a mobile sensor network. In fact, as mobile nodes do not store or route packets, if the mobile rate is too high, there will be less nodes to route packets and there will be more isolated node (node with no neighbor). However, until 30% of node is mobile, our proposal always performs better than normal C-DCS.

6 Conclusions and Future Works

The data-centric storage is an open recent research tendency in sensor network that there are not many existent works. In this paper, we have presented several existent problems in DCS. Then, we have proposed an enhancement for data-centric storage protocol that we called C-DCS for scalable mobile sensor network. Our proposal helps DCS to avoid existent problems and improves the number of transmission in the network. Hence, the network lifetime can last longer. By theoretical and simulation analyse, we have proved that our proposal reduces obviously the number of communication and error rate in mobile sensor network. As scalability is a very important criterion in WSN, we have simulated a sensor network with 10.000 nodes which proves the scalability of our proposal. In the future works, we hope to do more simulation result in order to validate our proposal in more scenarios.

Acknowledgements

We would like to express our thanks to the Franche Comté region for their financial support for our research at the Franche Comté University, Besançon, FRANCE.
References

[1] H. Karl, A. Willig, “Protocols and Architectures for Wireless Sensor Networks”, Wiley Edition, Avril 2005

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable Network. In Proc. of the ACM SIGCOMM 2001 Conference, San Diago, USA, August 2001.
[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Proc. of the ACM SIGCOMM 2001Conference, San Diago, August 2001.
[4] Y. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, University of California at Berkeley, 2001.
[5] P. Druschel and A. Rowstron. Pastry: Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proc. of the 18th IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001.
[6] S. Ratnasamy, B. Karp, Y. Li, F. Yu, R. Govindan, S. Shenker, and D. Estrin. GHT: A Geographic Hash Table for Data-Centric Storage. In Proceedings of the First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA 2002), Atlanta, Georgia, USA, October 2002.

[7] B. Karp and H. Kung. Greedy Perimeter Stateless Routing. In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2000), Boston, August 2000.

[8] J. Newsome and D. Song. GEM: Graph Embedding for Routing and Data-Centric Storage in Sensor Networks Without Geographic Information. In Proceedings of First International Conference on Embedded Networked Sensor Systems (SenSys’03), Los Angeles, California, USA, November, 2003.

[9] A. Ghose, J. Grossklags, and J. Chuang, Resilient Data-Centric Storagein Ad-Hoc Wireless Sensor Networks, Proceedings of 4th International Conference on Mobile Data Management (MDM2003), Melbourne, Australia, January 2003.

[10] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert Morris, A scalable location service for geographic ad hoc routing, In Proceeding of ACM Mobicom, Boston, MA, 2000

[11] N. Bulusu, J. Heidemann, and D. Estrin, GPS-Less Low Cost Outdoor Localization for Wireless Sensor Networks, IEEE Personal Communications Magazine, October 2000.

[12] A. Savvides, C. C. Han, and M. B. Srivastava, Dynamic fine-grain localization in ad-hoc networks of sensors, In Proceedings of the Seventh Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2001), Rome, Italy, July 2001.

[13] A. Ephremides, J. Wieselthier, and D. Bign concept for reliable mobile radio networks with frequency hoping signaling. In IEE 75, pages 56-73, 1987

[14] M. Gerla and J.-C. Tsai. Multicluster, mobile, multimedia radio network. ACM/Baltzer Journal of Wireless Networks, 1(3) :255-265, July 1995

[15] P. Basu, N. Khan, and T. Little. A Mobility Based Metric for Clustering in Mobile Ad Hoc Networks. In Distributed Computing Systems Workshop (DISC), Lisbon, Portugal, October 2001.

[16] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-Centric Storage in Sensornets. In Proceedings of the First ACM SIGCOMM Workshop on Hot Topics in Networks, Princeton, NJ, USA, October 2002.

[17] H.-C LE, H. Guyennet, N. Zerhouni. Overhearing for Energy Efficient in Event-Driven Wireless Sensor Network. In IEEE International Workshop on Intelligent System Techniques for Wireless Sensor Networks, Vancouver, Canada, Oct 2006.

[18] OMNet++ Community Site. [Online] Available http://www.omnetpp.org/
A

B

D

B’

Fig. 1: Problems of GPSR with sensor network

Y

Energy waste

C

Home node

Home perimeter

Cluster head

Stable node

Fig. 2: Network organisation

C1

C3

C4

Mobile node

C2

3

A

1

1

1

1

10

10

1

 Y=(7,2)

2

2

3

Fig. 3: Storage and routing in the network

Access point

A position

Mobile node

Stable node

Cluster head

C3

C4

C2

C1

Fig. 4: Mobile node sends data

M

S

Y

REQ

APV

Data

Data

Who is willing to forward data?

3

A

1

1

1

1

10

10

1

 Y=(8,2)

2

2

3

Fig. 5: Optimisation with aggregation

Access point

A position

Mobile node

Stable node

Cluster head

C3

C4

C2

C1

_1218454987.unknown

_1218456476.unknown

_1219078810.unknown

_1219153427.unknown

_1234940869.xls
Graph2

		0		0

		5		5

		10		10

		15		15

		20		20

		25		25

		30		30

Normal C-DCS

C-DCS with mobile avoidance

Mobile percentage

Error rate .

0

0

0.0661807184

0

0.1470908204

0.0042081221

0.2081437078

0.012418086

0.2644216822

0.0231812807

0.3132159624

0.0410975684

0.376789961

0.1124830853

Hotspot

				0		10		20		30		40		50		60		70		80		90		100

		ES		4950		4950		4950		4950		4950		4950		4950		4950		4950		4950		4950

		LS		0		524		1032		1540		1999		2543		3058		3562		4093		4590		5050

		DCS		119		606		1108		1706		2203		2803		3403		4002		4302		4803		5102

		S-DCS		119		121		121		125		118		121		123		134		132		152		144

		C-DCS		29		33		35		42		40		52		61		70		80		90		100

Hotspot

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

ES

LS

DCS

S-DCS

C-DCS

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Success Rate

		Mobile		0		5		10		15		20		25		30

		Total-Static				54959		45472		39497		32962		29257		24633

		Waste-Static				3895		7842		10382		11849		13343		14893

				0		0.0661807184		0.1470908204		0.2081437078		0.2644216822		0.3132159624		0.376789961

		Total-Mobile				63510		63655		63145		62786		62624		57717

		Waste-Mobile				0		269		794		1490		2684		7315

				0		0		0.0042081221		0.012418086		0.0231812807		0.0410975684		0.1124830853

				0		5		10		15		20		25		30

		Normal C-DCS		0		0.0661807184		0.1470908204		0.2081437078		0.2644216822		0.3132159624		0.376789961

		C-DCS with mobile avoidance		0		0		0.0042081221		0.012418086		0.0231812807		0.0410975684		0.1124830853

Success Rate

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

Normal C-DCS

C-DCS with mobile avoidance

Mobile percentage

Error rate .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Total

				0		10		20		30		40		50		60		70		80		90		100		waste Message

		ES		661650		661650		661650		661650		661650		661650		661650		661650		661650		661650		661650

		LS		0		161650		332330		489495		664660		830825		996990		1163155		1329320		1495185		1661650

		DCS		465464		523619		586104		643393		698861		762508		818393		894746		976052		1045776		1101785		129679		851

		S-DCS		465464		466496		467898		470638		469874		470775		474269		473105		475112		477218		480164

		C-DCS		51204		52281		53858		54431		55177		57151		58081		59323		61452		62201		63954

Total

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

		0		0		0		0		0

ES

LS

DCS

S-DCS

C-DCS

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

_1218456660.unknown

_1218455042.unknown

_1218455094.unknown

_1218455007.unknown

_1218454747.unknown

