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Abstract

We study certain physically-relevant subgeometries of binary symplectic polar spaces W(2N−
1, 2) of small rank N, when the points of these spaces canonically encode N-qubit observables.
Key characteristics of a subspace of such a space W(2N − 1, 2) are: the number of its negative
lines, the distribution of types of observables, the character of the geometric hyperplane the
subspace shares with the distinguished (non-singular) quadric of W(2N−1, 2) and the structure
of its Veldkamp space. In particular, we classify and count polar subspaces of W(2N − 1, 2)
whose rank is N − 1. W(3, 2) features three negative lines of the same type and its W(1, 2)’s are
of five different types. W(5, 2) is endowed with 90 negative lines of two types and its W(3, 2)’s
split into 13 types. A total of 279 out of 480 W(3, 2)’s with three negative lines are composite,
i.e., they all originate from the two-qubit W(3, 2). Given a three-qubit W(3, 2) and any of its
geometric hyperplanes, there are three other W(3, 2)’s possessing the same hyperplane. The
same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic
quadric of W(5, 2) is found to host particular sets of seven W(3, 2)’s, each of them being uniquely
tied to a Conwell heptad with respect to the quadric. There is also a particular type of W(3, 2)’s,
a representative of which features a point each line through which is negative. Finally, W(7, 2)
is found to possess 1908 negative lines of five types and its W(5, 2)’s fall into as many as 29
types. A total of 1524 out of 1560 W(5, 2)’s with 90 negative lines originate from the three-qubit
W(5, 2). Remarkably, the difference in the number of negative lines for any two distinct types
of four-qubit W(5, 2)’s is a multiple of four.

Keywords — N-qubit observables; binary symplectic polar spaces; distinguished sets of
doilies; geometric hyperplanes; Veldkamp lines

1 Introduction
Some fifteen years ago, it was discovered (see, e.g., [2, 3, 4, 5]) that there exists a deep connection
between the structure of the N-qubit Pauli group and that of the binary symplectic polar space of
rank N, W(2N− 1, 2), where commutation relations between elements of the group are encoded
in collinearity relations between points of W(2N − 1, 2). This connection has subsequently been
used to obtain a deeper insight into, for example, finite geometric nature of observable-based
proofs of quantum contextuality (for a recent review, see [6]), properties of certain black-hole
entropy formulas [7] and the so-called black-hole/qubit correspondence [8], leading to a finite-
geometric underpinningof four distinct Hitchin’s invariants and the Cartan invariant of form

*This paper is the author version of [1].
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theories of gravity [9] and even to an intriguing finite-geometric toy model of space-time [10].
This group-geometric connection was further strengthened by making use of the concept of
geometric hyperplane and that of the Veldkamp space of W(2N − 1, 2) [11]. As per quantum
contextuality, famous two-qubit Mermin-Peres magic squares were found to be isomorphic to a
special class of geometric hyperplanes of W(3, 2) called grids [12], whereas three-qubit Mermin
pentagrams were found to have their natural settings in the magic Veldkamp line of W(5, 2) [13],
being also isomorphic—under the Grassmannian correspondence of type Gr(2, 4)—to ovoids
of W(3, 2) [14]. Concerning the black-hole/qubit correspondence, here a key role is played
by the geometric hyperplane isomorphic to an elliptic quadric of W(5, 2). Interestingly, form
theories of gravity seem to indicate that a certain part of the magic Veldkamp line in the four-
qubit symplectic polar space, W(7, 2), and the associated extended geometric hyperplanes are
of physical relevance as well.

From the preceding paragraph it is obvious that revealing finer traits of the structure of
binary symplectic polar spaces of small rank can be vital for further physical applications of
these spaces. Having this in view, we will focus on sets of W(2N−3, 2)’s located in W(2N−1, 2),
for N = 2, 3, 4, providing their comprehensive observable-based taxonomy. Key parameters
of our classification of such subspaces of W(2N − 1, 2) will be: the number of negative lines
they contain (which is also an important parameter when it comes to quantum contextuality),
the distribution of different types of observables they feature, the character of the geometric
hyperplane a subspace of a given type shares with the distinguished (non-singular) quadric of
W(2N − 1, 2) and, in the case of refined ‘decomposition’ of three-qubit W(3, 2)’s, also the very
structure of their Veldkamp lines.

The paper is organized as follows. Section 2 provides the reader with the necessary finite-
geometric background and notation. Section 3 deals with W(3, 2) and the hierarchy of its triads.
Section 4 addresses the three-qubit W(5, 2) and its W(3, 2)’s; here we classify W(3, 2)’s in two
distinct ways and illustrate the fact that there are four W(3, 2)’s sharing a geometric hyperplane,
or a specific tricentric triad. Section 5 focuses on prominent septuplets of W(3, 2)’s that are
closely related to Conwell heptads with respect to a hyperbolic quadric of W(5, 2). Section 6
classifies W(5, 2)’s living in the four-qubit W(7, 2) and furnishes a couple of examples of their
composite types. Finally, Section 7 is devoted to concluding remarks.

2 Finite Geometry Background
Given a d-dimensional projective space PG(d, 2) over GF(2), a polar space P in this projective space
consists of the projective subspaces that aretotally isotropic/singular with respect to a given non-
singular bilinear form; PG(d, 2) is called the ambient projective space ofP. A projective subspace of
maximal dimension inP is called agenerator; all generators have the same (projective) dimension
r − 1. One calls r the rank of the polar space.

Polar spaces of relevance for us are of three types (see, for example, [15, 16]): symplectic,
hyperbolic and elliptic. The symplectic polar space W(2N − 1, 2), N ≥ 1, consists of all the points
of PG(2N − 1, 2), {(x1, x2, . . . , x2N) : x j ∈ {0, 1}, j ∈ {1, 2, . . . , 2N}}\ {(0, 0, . . . , 0)}, together with the
totally isotropic subspaces with respect to the standard symplectic form

σ(x, y) = x1 yN+1 − xN+1 y1 + x2 yN+2 − xN+2 y2 + · · · + xN y2N − x2N yN. (1)

This space features
|W|p = 4N

− 1 (2)

points and
|W|g = (2 + 1)(22 + 1) · · · (2N + 1) (3)

generators. The hyperbolic orthogonal polar space Q+(2N − 1, 2), N ≥ 1, is formed by all the
subspaces of PG(2N−1, 2) that lie on a given non-singular hyperbolic quadric, with the standard
equation

x1xN+1 + x2xN+2 . . . + xNx2N = 0. (4)

Each Q+(2N − 1, 2) contains

|Q+|p = (2N−1 + 1)(2N
− 1) (5)
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points and there are
|W|Q+ = |Q+|p + 1 = (2N−1 + 1)(2N

− 1) + 1 (6)

copies of them in W(2N − 1, 2). Finally, the elliptic orthogonal polar space Q−(2N − 1, 2), N ≥ 2,
comprises all points and subspaces of PG(2N − 1, 2) satisfying the standard equation

f (x1, xN+1) + x2xN+2 + · · · + xNx2N = 0, (7)

where f is an irreducible quadratic polynomial over GF(2). Each Q−(2N − 1, 2) contains

|Q−|p = (2N−1
− 1)(2N + 1) (8)

points and there are
|W|Q− = |Q−|p + 1 = (2N−1

− 1)(2N + 1) + 1 (9)

copies of them in W(2N− 1, 2). For both symplectic and hyperbolic polar spaces r = N, whereas
for the elliptic one r = N − 1. The smallest non-trivial symplectic polar space is the N = 2 one,
W(3, 2), often referred to as the doily. It features 15 points (see Eq. 2) and the same number of
lines (that are also its generators, see Eq. 3), with three points per line and three lines through a
point; it is a self-dual 153-configuration and the only one out of 245,342 such configurations that
is triangle-free, being, in fact, isomorphic to the generalized quadrangle of order two (GQ(2, 2)).
This symplectic polar space features ten Q+(3, 2)’s (by Eq. 6)) and six Q−(3, 2)’s (by Eq. 9). A
Q
+(3, 2) contains nine points and six lines forming a 3 × 3 grid, so it is also called a grid. A
Q
−(3, 2) features five pairwise non-collinear points, hence it is an ovoid. A triple of mutually

non-collinear points of W(3, 2) is called a triad and a point collinear with all the three points of
a triad is called a center of the triad; W(3, 2) contains 60 unicentric and 20 tricentric triads.

The N-qubit observables we will be dealing with belong to the set

SN = {G1 ⊗ G2 ⊗ · · · ⊗ GN : G j ∈ {I,X,Y,Z}, j ∈ {1, 2, . . . ,N}}\{IN} (10)

where IN ≡ I(1) ⊗ I(2) ⊗ . . . ⊗ I(N),

X =
(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
(11)

are the Pauli matrices, I is the identity matrix and ‘⊗’ stands for the tensor product of matrices.
SN, whose elements are simply those of the N-qubit Pauli group if the global phase is disre-
garded, features two kinds of observables, namely symmetric(i.e., observables featuring an even
number of Y’s) andskew-symmetric; the number of symmetric observables is (2N−1 + 1)(2N

− 1).
We shall further employ a finer classification where an observable having N − 1, N − 2, N − 3,
. . . I’s will be, respectively, of type A, B, C, . . . ; also, whenever it is clear from the context,
G1 ⊗ G2 ⊗ · · · ⊗ GN will be short-handed to G1G2 · · ·GN.

For a particular value of N, the 4N
− 1 elements of SN can be bijectively identified with

the same number of points of W(2N − 1, 2) in such a way that the images of two commuting
elements lie on the same line of this polar space, andgenerators of W(2N − 1, 2) correspond to
maximal sets of mutually commuting elements. If we take the symplectic form defined by Eq.
1, then this bijection acquires the form

G j ↔ (x j, x j+N), j ∈ {1, 2, . . . ,N}, (12)

assuming that
I↔ (0, 0), X↔ (0, 1), Y↔ (1, 1), and Z↔ (1, 0). (13)

Employing the above-introduced bijection (for more details see, e.g., [13]), it can be shown
that given an observable O, the set of symmetric observables commuting with O together
with the set of skew-symmetric observables not commuting with O will lie on a certain non-
degenerate quadric of W(2N−1, 2), this quadric being hyperbolic (resp. elliptic) if O is symmetric
(resp. skew-symmetric). We can express this important property by making, whenever appro-
priate, this associated observable explicit in a subscript, Q±(O)(2N − 1, 2), noting that there exists
a particular hyperbolic quadric associated with I:

Q
+
(I)(2N − 1, 2) := {(x1, x2, . . . , x2N) ∈W(2N − 1, 2) | x1xN+1 + x2xN+2+

. . . + xNx2N = 0}.
(14)
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Given a point-line incidence geometry Γ(P,L), a geometric hyperplane of Γ(P,L) is a subset of its
point set such that a line of the geometry is either fully contained in the subset or has with it just a
single point in common. The Veldkamp spaceV(Γ) of Γ(P,L) is the space in which [17]: (i) a point
is a geometric hyperplane of Γ and (ii) a line is the collection, denoted H′H′′, of all geometric
hyperplanes H of Γ such that H′ ∩H′′ = H′ ∩H = H′′ ∩H or H = H′,H′′, where H′ and H′′ are
distinct points of V(Γ). For a Γ(P,L) with three points on a line, all Veldkamp lines are of the
form {H′,H′′,H′∆H′′} where H′∆H′′ is the complement of symmetric difference of H′ and H′′,
i.e., they form a vector space over GF(2). As demonstrated in [11],V(W(2N− 1, 2)) � PG(2N, 2).
Its points are both hyperbolic and elliptic quadrics of W(2N−1, 2), as well as its perp-sets. Given
a point x of W(2N− 1, 2), theperp-set Q̂(x)(2N− 1, 2) of x consists of all the points collinear with it,

Q̂(x)(2N − 1, 2) := {y ∈W(2N − 1, 2) | σ(x, y) = 0}; (15)

the point x being referred to as the nucleus of Q̂(x)(2N − 1, 2).
We shall briefly recall basic properties of the Veldkamp space of the doily, V(W(3, 2)) ≃

PG(4, 2), whose in-depth description can be found in [12]. The 31 points ofV(W(3, 2)) comprise
fifteen perp-sets, ten grids and six ovoids—as also illustrated in Fig. 1. The 155 lines of
V(W(3, 2)) split into five distinct types as summarized in Table 1 and depicted in Fig. 2. (Table
1, as well as Fig. 1 and 2, were taken from [18].)

Figure 1: The three kinds of geometric hyperplanes of W(3, 2). The 15 points of the doily are
represented by small circles and its 15 lines are illustrated by the straight segments as well as
by the segments of circles; note that not every intersection of two segments counts for a point of
the doily. The upper panel shows grids (red bullets), the middle panel perp-sets (yellow bullets)
and the bottom panel ovoids (blue bullets). Each picture—except that located in the bottom
right-hand corner—stands for five different hyperplanes, the four others being obtained from it
by its successive rotations through 72 degrees around the center of the pentagon.

Table 1: An overview of the properties of the five different types of lines of V(W(3, 2)) in terms
of the core (i.e., the set of points common to all the three hyperplanes forming the line) and the
types of geometric hyperplanes featured by a generic line of a given type. The last column gives
the total number of lines per each type.

Type Core Perps Ovoids Grids #

I Two Secant Lines 1 0 2 45
II Single Line 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15
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Figure 2: An illustrative portrayal of representatives (rows) of the five (numbered consecutively
from top to bottom) different types of lines ofV(W(3, 2)), each being uniquely determined by the
properties of its core (black bullets).

In what follows, we will mainly be focused on W(2N−3, 2)’s that are located in W(2N−1, 2).
These are, in general, of two different kinds [11]. A W(2N − 3, 2) of the first kind, to be called
linear, is isomorphic to the intersection of two perp-sets with non-collinear nuclei and their
number in W(2N − 1, 2) is

|W|Wl =
1
3

4N−1(4N
− 1). (16)

A W(2N − 3, 2) of the second kind, to be called quadratic, is isomorphic to the intersection of
a hyperbolic quadric and an elliptic quadric and W(2N − 1, 2) features

|W|Wq = 4N−1(4N
− 1) (17)

of them. By way of example, in W(3, 2) a linear (resp. quadratic) W(1, 2) corresponds to a
tricentric (resp. unicentric) triad.

In the sequel, when referring to W(2N−1, 2) and its subspaces, we will always have in mind
the W(2N − 1, 2) and its subspaces whose points are labelled by N-qubit observables from the
set SN as expressed by Eq. 12 and 13. Moreover, a linear subspace of such W(2N − 1, 2) will
be calledpositive or negative according as the (ordinary) product of the observables located in
it is +IN or −IN, respectively. Let us illustrate this point, taking again the N = 2 case. Up to
isomorphism, there is just one type of the two-qubit doily. Its six observables of type A are IX,
XI, IY, YI, IZ and ZI and its nine ones of type B areXX, XY, XZ, YX, YY, YZ, ZX, ZY and ZZ,
the latter lying on a particular hyperbolic quadric, Q+(YY)(3, 2). Among the fifteen lines only the
three lines {XX,YY,ZZ}, {XY,YZ,ZX} and {XZ,YX,ZY} are negative, forming also one system of
generators of Q+(YY)(3, 2).

3 W(3,2) and Its Two-Qubit W(1,2)’s
This is a rather trivial case. As already mentioned in Section 2, the doily contains three negative
lines, which are all of the same(B−B−B) type. Among its W(1, 2)’s, we find two types of linear
ones and three types of quadratic ones whose properties are summarized in Table 2.
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Table 2: Classification of W(1, 2)’s living in W(3, 2). Column one (T) shows the type, columns two
and three (OA and OB) indicate the number of observables of corresponding types and columns
four (Wl) and five (Wq) yield, respectively, the number of ‘linear’ and ‘quadratic’ W(1, 2)’s of a
given type.

T OA OB Wl Wq

1 0 3 − 6
2 1 2 − 36
3 1 2 18 −

4 2 1 − 18
5 3 0 2 −

It is worth noticing that the six quadratic W(1, 2)’s (i.e., unicentric triads) of Type 1 lie on the
distinguished quadric Q+(YY)(3, 2), being in fact its six ovoids.

4 W(5,2) and Its Three-Qubit Doilies
The space W(5, 2) contains 63 points, 315 lines and 135 generators, the latter being all Fano
planes. Among the 63 canonical three-qubit observables associated to the points, nine are of
type A, twenty-seven are type B and twenty-seven are of type C. Through an observable of type
C, there pass six negative lines, all being of type C − C − B; thus the total number of negative
lines of this type is 27×6

2 = 81. Through an observable of type B, there pass four negative lines.
Of them, three are of the above-mentioned type and the fourth one is of type B−B−B; the total
number of negative lines of the latter type is 27×1

3 = 9.As no negative line features an observable
of type A, one finds that the W(5, 2) accommodates as many as (81 + 9 =) 90 negative lines.

When we pass to W(3, 2)’s, we find a (much) richer structure, because alongside the types of
observables we can employ one more parameter, namely the number of negative lines a given
W(3, 2) contains. In fact, we find that the 336 linear doilies(see Eq. 16) fall into six different
types and the 1008 quadratic ones (see Eq. 17) into seven types; we note in passing that Type 9
splits further into two subtypes depending on whether the two observables of type A do (Type
9A, 162 members) or do not (Type 9B, 54 members) commute. This classification is summarized
in Table 3 and is also pictorially illustrated in Fig. 3. It is worth noticing here that there are two
different types of doilies (Type 3 and Type 6) exhibiting an even number of negative lines.
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Figure 3: Representatives—numbered consecutively from left to right, top to bottom—of the
13 different types of three-qubit doilies; Type 1 is top left, Type 13 bottom middle; we also
distinguish between Type 9A (3rd row, right) and Type 9B (4th row, left). The three different types
of observables are distinguished by different colors and the negative lines are drawn heavy.
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Table 3: Classification of doilies living in W(5, 2). Column one (T) shows the type, column two
(C−) the number of negative lines in a doily of the given type, columns three to five (OA to OC)
indicate the number of observables of corresponding types and columns six (Dl) and seven (Dq)
yield, respectively, the number of ‘linear’ and ‘quadratic’ doilies of a given type.

T C− OA OB OC Dl Dq

1 7 0 7 8 − 81
2 7 0 9 6 27 −

3 6 1 5 9 − 108

4 5 2 5 8 162 −

5 5 2 7 6 − 162

6 4 3 5 7 − 324

7 3 0 9 6 9 −

8 3 0 15 0 − 36
9 3 2 7 6 − 216

10 3 2 9 4 81 −

11 3 4 5 6 54 −

12 3 4 7 4 − 81
13 3 6 9 0 3 −

The 27 observables of type B lie on an elliptic quadric of W(5, 2), which can be defined as
follows:

Q
−

(YYY)(5, 2) := x2
1 + x1x4 + x2

4 + x2
2 + x2x5 + x2

5 + x2
3 + x3x6 + x2

6 = 0. (18)

Here, we took a coordinate basis of W(5, 2) in which the symplectic form σ(x, y) is given by
Eq. 1,

σ(x, y) = (x1 y4 − x4 y1) + (x2 y5 − x5 y2) + (x3 y6 − x6 y3),

so that the correspondence between the 63 three-qubit observables (see Eq. 10)

S3 = {G1 ⊗ G2 ⊗ G3 : G j ∈ {I,X,Y,Z}, j ∈ {1, 2, 3}}\I3

and the 63 points of W(5, 2) is of the form (see Eq. 12)

G j ↔ (x j, x j+3), j ∈ {1, 2, 3},

taking also into account Eq. 13.
This special quadric Q−(YYY)(5, 2), as any non-degenerate quadric, is a geometric hyperplane of

W(5, 2). As a doily is also a subgeometry of W(5, 2), it either lies fully in Q−(YYY)(5, 2) (Type 8), or
shares with Q−(YYY)(5, 2) a set of points that form a geometric hyperplane; an ovoid (Types 3, 4, 6
and 11), a perp-set (Types 1, 5, 9 and 12) and a grid (Types 2, 7, 10 and 13). One also observes
that no quadratic doily shares a grid with Q−(YYY)(5, 2).

In addition to the distinguished elliptic quadric, there are also three distinguished hyperbolic
quadrics in W(5, 2), namely: the quadric whose 35 observables feature either two X′s or no X,

Q
+
(ZZZ)(5, 2) := x2

4 + x2
5 + x2

6 + x1x4 + x2x5 + x3x6 = 0, (19)

the one whose 35 observables feature either two Y′s or no Y (see Eq. 14),

Q
+
(III)(5, 2) := x1x4 + x2x5 + x3x6 = 0, (20)

and the one whose 35 observables feature either two Z′s or no Z,

Q
+
(XXX)(5, 2) := x2

1 + x2
2 + x2

3 + x1x4 + x2x5 + x3x6 = 0. (21)

Accordingly, there are three distinguished doilies of Type 8, namely the ones the quadric
Q
−

(YYY)(5, 2) shares with these three hyperbolic quadrics.
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Take the two-qubit doily. Add formally to each observable, at the same position, the same
mark from the set {X,Y,Z}. Pick up a geometric hyperplane in this three-qubit labeled doily
and replace by I the added mark in each observable that belongs to this geometric hyperplane.
One obviously gets a three-qubit doily. Now, there are 31 geometric hyperplanes in the doily,
three possibilities (X,Y,Z) to pick up a mark and three possibilities(left, middle, right) where to
insert the mark; so there will be 31 × 3 × 3 = 279 doilies created this way. In particular, out of
the 15 × 9 = 135 doilies ‘induced’ by perp-sets, 81 are of Type 10 and 54 of Type 11; out of the
10 × 9 = 90 doilies ‘generated’ by grids, eighty-one are of Type 12 and nine of Type 8; finally,
the 6 × 9 = 54 doilies stemming from ovoids are all of the same type 9B. So, if we look at Table
3, all doilies of Types 1 to 7, 27 doilies of Type 8 and all doilies of Type 9A can be regarded as
‘genuine’ three-qubit guys, nine doilies of Type 8 that originate from grids (henceforth referred
to as Type 8′) and all doilies of Types 9B to 13 can be viewed as ‘built from the two-qubit guy’;
with Type 13 doilies being even more two-qubit-like.

This stratification of three-qubit doilies can also be spotted in a different way. Take a
representative doily of a particular type, for example, that of Type 3 depicted in Fig. 4, top.
From its three-qubit labels, keep first only the left mark (bottom left figure), then the middle
mark (bottom middle figure) and, finally, the right mark (bottom right figure). In each of these
three ‘residual’ doilies it is easy to see that if you take the points featuring a given non-trivial
mark (i.e., X, Y or Z) together with the points featuring I, these always form a geometric
hyperplane and the whole set form a Veldkamp line of the doily where the points featuring I
represent its core. Employing Table 1 we readily see that this Veldkamp line is of type V (the
core is a single point) for the left residual doily, type III (the core is a tricentric triad) for the
middle doily and of type IV (the core is a unicentric triad) for the right one. To account this
way for the 13 types of three-qubit doilies, we also need the concept of a trivial Veldkamp line
of the doily, i.e., a line consisting of a geometric hyperplane counted twice and the full doily,
which exactly accounts for those doilies ‘generated’ by the two-qubit doily. This classification is
summarized in Table 4. Here, columns two to six give the number of ordinary Veldkamp lines
of a given type, columns seven to nine show the same for trivial Veldkamp lines and the last
column corresponds to the degenerate case when all the points of a residual doily bear the label
I. Note that all doilies stemming from the two-qubit doily (i. e., Types 8′ to 13) feature ordinary
Veldkamp lines of the same type.

Using a computer, we have also found out a very interesting property that given a doily
and any geometric hyperplane in it, there are three other doilies having the same geometric
hyperplane. Fig. 5 serves as a visualization of this fact when the common geometric hyperplane
is an ovoid. The four doilies sharing a geometric hyperplane, however, do not stand on the
same footing. This is quite easy to spot from our example depicted in Fig. 5. A point of the doily
is collinear with three distinct points of an ovoid, the three points forming a unicentric triad.
Let us pick up such a triad, say {ZYI,XYI,YYI} and look for its centers in each of the four doilies.
These are IYI (top doily), IIX (left doily), IIY (right doily) and IYZ (bottom doily). We see that
the last three observables are mutually anticommuting, whereas the first observable commutes
with each of them. This property is found to hold for each of

( 5
3
)
= 10 triads contained in an

ovoid. Hence, the top doily of Fig. 5 has indeed a different footing than the remaining three.
A similar 3 + 1 split up is also observed in any quadruple of doilies having a grid in common
because a point of the doily is also collinear with three points of a grid that form a unicentric
triad. However, when the shared hyperplane is a perp-set, one gets a different, namely a 2 + 2
split, because in this case the corresponding triple of points forms a tricentric triad.
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Table 4: A refined classification of doilies living in W(5, 2). We use the following abbreviations
for the cores of Veldkamp lines: 2cl—two concurrent lines, le—line, ttr—tricentric triad, utr—
unicentric triad, pt—point, ov—ovoid, ps—perp-set, gr—grid and fl stands for the full doily.

T 2cl le ttr utr pt ov ps gr fl

1 1 − − − 2 − − − −

2 − 3 − − − − − − −

3 − − 1 1 1 − − − −

4 − 1 2 − − − − − −

5 1 − − 2 − − − − −

6 1 − 1 1 − − − − −

7 − 3 − − − − − − −

8 3 − − − − − − − −

9A 1 − − 2 − − − − −

8′ − − 2 − − − − 1 −

9B − − 2 − − 1 − − −

10 − − 2 − − − 1 − −

11 − − 2 − − − 1 − −

12 − − 2 − − − − 1 −

13 − − 2 − − − − − 1
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XX
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YZY

YZI

IIY

Figure 4: A formal decomposition of a three-qubit doily (top) into three ‘single-qubit residuals’
(bottom). In each doily of the bottom row, the three geometric hyperplanes forming a Veldkamp
line are distinguished by different color, with their common points being drawn black; also, the
nuclei of perp-sets are represented by double circles.

A tricentric triad of a linear resp. quadratic doily of W(5, 2) defines a line resp. plane in the
ambient PG(5, 2). The latter type of a triad is found to be shared by four quadratic doilies. Given
the three observables of such a triad, there are seven observables commuting with each of them,
the corresponding seven points lying in a Fano plane (namely in the polar plane to the plane
defined by the triad) in the ambient PG(5, 2). One of the seven observables has a distinguished
footing as it commutes with each of the remaining six ones, with these six observables forming
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three commuting pairs. Out of the six observables, one can form just four tricentric triads of
which each is complementary to the triad we started with and thus defines with the latter a
unique quadratic doily. These properties are also illustrated in Fig. 6.
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XYIZYI
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XXZ

IIX

ZYX

ZZY XXY

XYX

YYI

IZZ

XYIZYI

IXZ
YYX

ZXY

YXYYZY

XZY

IIY

ZYY

ZZX XXX
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YYI
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IYZ
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YYI

IZZ

XYIZYI

IXZ
YIZ

ZZI

YZIYXI
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Figure 5: An illustration of the case when four different doilies share an ovoid (boldfaced). The
top doily is of Type 11, the bottom one of Type 8, and both the left and right doilies are of Type 3.

Among the 13 different types of three-qubit doilies, there is one type, namely Type 3, which
has two remarkable properties. The first property is that there is one point (to be called a deep
point) such that all three lines passing through it are negative. Let us take a representative doily
of such a type shown in Fig. 3, 1st row right. The deep point is ZIZ. Then one sees that there are
just two points (to be called zero-points) such that neither of them lies on a negative line; one is
IIY and the other is XIZ. These two points and the deep point form in the doily a tricentric triad,
hence a copy of ‘linear’ W(1, 2). The second property is related to the fact that through each
observable of type B there pass four negative lines. Three of them are such that each features
one observable of type B and two observables of type C, whereas the remaining one consists of
all observables of type B. Written vertically, the four negative lines passing through our deep
point ZIZ are:

ZIZ ZIZ ZIZ ZIZ
XXX XYX XZX XIX
YXY YYY YZY YIY

We see that the three lines that are located in the doily are of the same type, viz. B − C − C.
If we also include the fourth negative line, viz. the B − B − B one, we obtain what we can
call a ‘doily with a tail.’ Taking into account the above-mentioned four-doilies-per-hyperplane
property, we see that there are altogether 12 doilies, four per each observable, having the same
tail and all being of Type 3.
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Figure 6: Four three-qubit doilies on a ‘planar’ tricentric triad (represented by hexagons). The
seven observables commuting with the three hexagonal ones are, for better illustration, colored
differently. The three red lines of the Fano plane that meet at the distinguished observable (gray)
are totally isotropic, whilst the remaining four (depicted green) are not. The four complementary
triads (of observables) are illustrated by a full black circle and three half-circles.

5 ‘Conwell’ Heptads of Doilies in W(5,2)
Recall Sylvester’s famous construction of W(3, 2), see [19]. Given a six-element set M6 ≡

{1, 2, 3, 4, 5, 6}, a duad is an unordered pair (i j) ∈ M6, i , j and a syntheme is a set of three
pairwise disjoint duads, i.e., a set {(i j), (kl), (mn)} where i, j, k, l,m,n ∈ M6 are all distinct. The
point-line incidence structure whose points are duads and whose lines are synthemes, with
incidence being inclusion, is isomorphic to W(3, 2), as also illustrated in Fig. 7.

23

26

16

15

35

14

36

45

12 34 56

24

13

46

25

Figure 7: A duad-syntheme model of W(3, 2).

Next, take a seven-element set, M7 ≡ {1, 2, 3, 4, 5, 6, 7}. One can form from it
( 7

3
)
= 35

unordered triples (i jk), i , j , k , i. From each set of fifteen triples having the same element in
common, we can create a doily using the duad-syntheme construction on that six-element subset
of M7 where the common element is omitted. So, we achieve seven different doilies, one per each
element, as depicted in Fig. 8. Any two of them have an ovoid in common; because each ovoid
is characterized by two elements, say a and b, and it is of the form {(abc), (abd), (abe), (ab f ), (abg)},
where a, b, c, d, e, f , g ∈ M7 are all different, hence it belongs to both the a-doily and the b-doily.
Also, any triple is shared by three doilies.
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Figure 8: An abstract heptad of doilies on a seven-element set.

A remarkable fact is that this abstract heptad of doilies has a neat realization in our three-
qubit W(5, 2). To see this, we have to introduce the notion of a Conwell heptad of PG(5, 2). Given
a Q+(5, 2) of PG(5, 2), a Conwell heptad [20] (in the modern language [21] also known as a
maximal exterior set) with respect to Q+(5, 2) is a set of seven off-quadric points such that each
line joining two distinct points of the heptad is skew to the Q+(5, 2). There are exactly 8 heptads
with respect to Q+(5, 2). Any two of them have exactly one point in common and any point
off Q+(5, 2) is exactly in two heptads; also any six points of a heptad are linearly independent
in PG(5, 2). Next [22], let P be a point on Q+(5, 2). The tangent hyperplane of Q+(5, 2) at P
intersects a heptad C in exactly three points P1,P2 and P3 such that the points P,P1,P2 and P3

are coplanar and P1,P2 and P3 are not collinear; that is, the points P1,P2 and P3 represent a conic
in the plane and the point P is its knot (the common intersection of its tangents). Hence, there
exists a bijection from the set of the 35 points of Q+(5, 2) onto the set of the 35 triples of points
of C.

Now, let us take a Q+(5, 2) that belongs to W(5, 2), for example, Q+(III)(5, 2) (see Eq. 20) that
accommodates all symmetric observables from S3. The eight Conwell heptads with respect to
this distinguished hyperbolic quadric, expressed in terms of three-qubit observables, are:

1 2 3 4 5 6 7 8
ZYX YZI YIZ YZI YIZ YXI XYI YII
YIX YXZ YZX YXI YIX YZZ ZYZ ZYI
YZZ YXX YXX IYZ XYI YZX ZYX XYZ
XYX IYI IYX IYX IZY IYI ZIY XYX
IYZ IXY ZYZ ZIY IXY IZY XZY XIY
YXZ XZY IIY YYY YYY XXY XXY ZZY
IIY ZZY XYZ XIY ZYI ZXY YII ZXY

We see that each Conwell heptad entails seven pairwise anticommuting observables and so,
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in fact, corresponds to a set of generators of a seven-dimensional Clifford algebra [23]. Let us
pick up one of them, say the heptad number 1 , and associate its observables with the elements
of M7 as follows:

1↔ ZYX, 2↔ YIX, 3↔ YZZ, 4↔ XYX, 5↔ IYZ, 6↔ YXZ, 7↔ IIY.

From the above-described relation between tangent hyperplanes to a hyperbolic quadric
and a Conwell heptad it follows that any unordered triple (i jk), i, j, k ∈ M7, will be associated
with a particular point onQ+(III)(5, 2) and its associated observable is the(ordinary) product of the
observables associated with elements/points i, j and k; for example, 146 ↔ ZYX.XYX.YXZ =
IXZ. Hence, all seven doilies of the heptad lie fully in Q+(III)(5, 2) and, since no two of them
share a line, they partition the set of 105 lines of Q+(III)(5, 2). Fig. 9 serves as a visualization of
this particular ‘Conwell’ heptad of doilies. As W(5, 2) contains 36 hyperbolic quadrics(see Eq.
6), it features altogether 36 × 8 = 288 such heptads of doilies. It is also worth mentioning that
employing the well-known Klein correspondence between the points of Q+(5, 2) and the lines
of PG(3, 2)(see, e.g., [24, Table 15.10] for more details) and taking into account that the doily is
a self-dual object, any Conwell heptad of doilies corresponds to a heptad of mutually azygetic
doilies in PG(3,2) (see, e.g., [25]).
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Figure 9: A ‘Conwell’ heptad of doilies in the three-qubit W(5, 2). Following our convention,
different types of observables are distinguished by different colors and negative lines are shown
in bold.

6 W(7,2) and Its Four-Qubit W(5,2)’s
The space W(7, 2) possesses 255 points, 5355 lines, 11,475 planes and 2295 generators, the latter
being all PG(3,2)’s. Among the 255 canonical four-qubit observables associated to the points,
12 are of type A, 54 of type B, 108 of type C and 81 of type D. Through an observable of type D
there pass: four negative lines of type D − D − D, totaling to 81×4

3 = 108; twelve negative lines
of type D −D − B, totaling to 81×12

2 = 486; and twelve negative lines of type D − C − C, totaling
to 81 × 12 = 972. Through an observable of type C there pass, apart from the above-mentioned
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lines of type D − C − C, six negative lines of type C − C − B, totaling to 108×6
2 = 324. Through an

observable of type B there passes, apart from the already discussed two types of lines, a single
negative line of type B−B−B, the total number of such lines being 54×1

3 = 18. Since no negative
line can contain an observable of type A, the four-qubit W(7, 2) thus exhibits five distinct types
of negative lines whose total number is (108 + 486 + 972 + 324 + 18 =) 1908.

When it comes to W(5, 2)’s, we find 11 types among their 5440 linear members and as many
as 18 types among their 16,320 quadratic cousins, as summarized in Table 5. It represents no
difficulty to check that 54 observables of type B and 81 of type D lie on a particular hyperbolic
quadric in W(7, 2), to be referred to as the distinguished hyperbolic quadric Q+(YYYY)(7, 2), which
is also a geometric hyperplane in the latter space. A W(5, 2) either lies fully in this quadric
(Types 2 and 21) or shares with it a set of points that forms a geometric hyperplane. Hence, the
sum of OB and OD in each row of Table 5 must be one of the following numbers: 27 (when the
hyperplane of W(5, 2) is an elliptic quadric), 31 (a perp-set) and/or 35 (a hyperbolic quadric); for
the reader’s convenience, the type of such geometric hyperplane is explicitly listed in column 9
of Table 5. One sees that no linear W(5, 2) shares with Q+(YYYY)(7, 2) a perp-set and no quadratic
W(5, 2) cuts this distinguished quadric in an elliptic quadric. Comparing Table 5 with Table 3,
one readily discerns that whereas W(3, 2)’s in W(5, 2) are endowed with both an even and odd
number of negative lines, for W(5, 2)’s in W(7, 2) this number is always even; in addition, the
difference in C− for any two distinct types of four-qubit W(5, 2)’s is a multiple of four.

Let us have a closer look at W(5, 2)’s featuring 90 (i.e., the smallest possible number of)
negative lines. We can easily show that almost all of them originate from the three-qubit
W(5, 2). First, by adding I to each three-qubit observable at the same position we achieve the
four trivial four-qubit W(5, 2)’s of Type 29. Next, adding to each observable at the same position
a mark from the set {X,Y,Z}, picking up a geometric hyperplane in this four-qubit labeled W(5, 2)
and replacing by I the added mark of each observable in the geometric hyperplane one gets
a four-qubit W(5, 2) with 90 negative lines. Now, there are 28 (# of elliptic quadrics) + 36 (#
of hyperbolic quadrics) + 63 (# of perp-sets) = 127 geometric hyperplanes in the W(5, 2), three
possibilities (X,Y,Z) to pick up a mark and four possibilities (left, middle-left, middle-right,
right) where to insert the mark. So, there will be 127 × 3 × 4 = 1524 four-qubit W(5, 2)’s created
this way, which only falls short by 36 the total number of W(5, 2)’s endowed with 90 negative
lines (the four guys of Type 29 being, of course, disregarded). A concise summary is given in
the last column of Table 5, where the type of geometric hyperplane is further specified by the
character/type of the associated (three-qubit) observable. One observes that Type 23 is the only
irreducible type of W(5, 2)’s having 90 negative lines.

We shall illustrate this process by a couple of examples. Let us start with the perp-set of the
three-qubit W(5, 2) whose nucleus is an observable of type A, say XII. Out of 31 observables
commuting with this observable there are seven of type A(XII, IXI, IIX, IYI, IIY, IZI and IIZ),
fifteen of type B (IXX, IXY, IXZ, XXI, XIX, IYX, IYY, IYZ, XYI, XIY, IZX, IZY, IZZ, XZI, and
XIZ) and nine of type C (XXX, XXY, XXZ, XYX, XYY, XYZ, XZX, XZY, and XZZ). Hence,
out of 32 observables off the perp, there will be 9 − 7 = 2 of type A, 27 − 15 = 12 of type B and
27 − 9 = 18 of type C:

Q̂(XII) OA OB OC

on 7 15 9
off 2 12 18

Next, each observable of the perp-set acquires a trivial mark I and hence goes into the
four-qubit observable of the same type. However, an observable lying off the perp-set gets a
non-trivial label X, Y or Z and so yields the four-qubit observable of the subsequent type; that
is, O(3)

A → O(4)
B , O(3)

B → O(4)
C and O(3)

C → O(4)
D . Hence, in our case, we get:

(Q̂(XII)) OA OB OC OD

(on – type intact) 7 15 9 0
(off – type shifted) 0 2 12 18

Total 7 17 21 18
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Table 5: Classification of W(5, 2)’s living in W(7, 2). Column one (T) shows the type, column two
(C−) the number of negative lines in a W(5, 2) of the given type, columns three to six (OA to OD)
indicate the number of observables featuring three I’s, two I’s, one I or no I, respectively, columns
seven (Wl) and eight (Wq) yield, respectively, the number of ‘linear’ and ‘quadratic’ W(5, 2)’s of
a given type, the last but one column depicts the type of intersection of a representative W(5, 2)
with the distinguished hyperbolic quadric and the last column indicates the type of geometric
hyperplane featuring the trivial mark(I) for composite W(5, 2)’s.

T C− OA OB OC OD Wl Wq Int GH

1 130 3 9 33 18 108 − ell − − −

2 126 0 24 0 39 − 108 full − − −

3 126 1 13 27 22 − 1944 hyp − − −

4 126 2 10 30 21 − 1620 perp − − −

5 122 1 15 27 20 972 − hyp − − −

6 122 2 10 30 21 − 648 perp − − −

7 118 0 16 32 15 − 324 perp − − −

8 118 3 9 33 18 648 − ell − − −

9 118 3 11 25 24 − 1296 hyp − − −

10 114 1 15 27 20 324 − hyp − − −

11 114 1 17 27 18 − 216 hyp − − −

12 114 3 13 25 22 1944 − hyp − − −

13 114 4 12 28 19 − 1944 perp − − −

14 110 3 15 25 20 − 1944 hyp − − −

15 110 5 11 23 24 648 − hyp − − −

16 106 5 13 23 22 − 1944 hyp − − −

17 102 1 21 27 14 − 648 hyp − − −

18 102 2 18 30 13 − 324 perp − − −

19 102 3 15 25 20 − 648 hyp − − −

20 102 4 12 28 19 − 1944 perp − − −

21 90 0 36 0 27 − 12 full ell: O = YYY
22 90 2 22 30 9 − 108 perp hyp: all 9 O’s featuring two Y’s
23 90 3 9 33 18 36 − ell − − −

24 90 3 21 25 14 324 − hyp perp: all 27 O’s of type C
25 90 4 16 28 15 − 324 perp ell: all 27 O’s featuring one Y
26 90 5 15 31 12 324 − ell perp: all 27 O’s of type B
27 90 6 18 26 13 − 324 perp hyp: 26 O’s having no Y + III
28 90 7 17 21 18 108 − hyp perp: all 9 O’s of type A
29 90 9 27 27 0 4 − ell full W(5, 2)

Comparing with Table 5 we see that this is a four-qubit W(5, 2) of Type 28.
As the second example we shall take the case when the geometric hyperplane of W(5, 2) is

an elliptic quadric generated by an antisymmetric observable of type B, say YXI. This quadric,
Q
−

(YXI)(5, 2), consists of all symmetric observables that commute with YXI and all antisymmetric
observables that anticommute with YXI. In particular, it contain 4 observables of type A (IXI,
IIX, IIZ and IYI), 11 observables of type B (XZI, ZZI, YIY, IXX, IXZ, YZI, IYX, IYZ, XIY, ZIY
and IZY) and 12 observables of type C(XZX, ZZX, XZZ, ZZZ, YXY, XYY, ZYY, YZX, YZZ,
XXY, ZXYand YYY). So, out of 36 observables off the quadric, there will be 5, 16 and 15 of type
A, B and C, respectively. In a succinct form,
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Q
−

(YXI)(5, 2) OA OB OC

on 4 11 12
off 5 16 15

From this it follows that the corresponding four-qubit W(5, 2) is of Type 25:

(Q−(YXI)(5, 2)) OA OB OC OD

(on – type intact) 4 11 12 0
(off – type shifted) 0 5 16 15

Total 4 16 28 15

7 Conclusions
We have introduced a remarkable observable-based taxonomy of subspaces of W(2N − 1, 2),
2 ≤ N ≤ 4, whose rank is just one less than that of the ambient space. Alongside the distribution
of various types of observables, an important parameter of the classification was the number
of negative lines contained in a subspace. As already mentioned in the introduction, this latter
parameter is essential in checking whether a given finite geometric configuration is contextual
or not. For example, our preliminary analysis shows that all three-qubit and four-qubit doilies
are, as their two-qubit sibling, contextual. In a separate paper we plan to address this question
in more detail, also employing the degree of contextuality for a variety of other symplectic
subspaces. However, when approaching subspaces of higher rank this way, it would be natural
to include as parameters the number of negative linear subspaces of every viable dimension
from 1 to N−2, i.e., consider negative lines, negative planes, . . . , negative generators; so, already
in the case of N = 4 we can add one more parameter, the number of negative planes a four-qubit
W(5, 2) is endowed with, to achieve an interesting refinement of our Table 5. As the three-qubit
W(5, 2) features 54 negative planes [26], each composite four-qubit W(5, 2) must have the same
number of negative planes; in connection with this fact, it would be interesting to check whether
each irreducible four-qubit W(5, 2) having 90 lines (Type 23) also enjoys this property.

Another interesting extension/variation of our taxonomy would be to take into account the
number of negative lines passing through a point of the subspace. Let us call this number the
order of a point and for each subspace W(2s − 1, 2) define the following string of parameters
[p0, p1, p2, . . . , p4s−1−1], where pk, 0 ≤ k ≤ 4s−1

− 1 stands for the number of points of order k
the subspace contains. Applying this to three-qubit doilies (s = 2), we find the following five
patterns (as readily discerned from Fig. 3): [0, 9, 6, 0] (Types 1 and 2), [2, 9, 3, 1] (Type 3), [5, 5, 5, 0]
(Types 4 and 5), [6, 6, 3, 0] (Type 6) and [6, 9, 0, 0] (Types 7 to 13).

A slightly different possibility of employing our strategy is to analyse other distinguished
subgeometries of W(2N − 1, 2) such as, for example, the split Cayley hexagon of order two
[27]. This generalized polygon can be embedded into W(5, 2), and in two different ways [28],
classical and skew. We have already discerned two distinct kinds of the former and as many
as thirteen different types of the latter. Yet a full understanding of the case requires a more
rigorous computer-assisted approach and will, therefore, be treated in a separate paper.
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