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Abstract. Embedding music genre classifiers in music recommenda-
tion systems offers a satisfying user experience. It predicts music tracks
depending on the user’s taste in music. In this paper, we propose a
preprocessing approach for generating STFT spectrograms and upgrades
to a CNN-based music classifier named Bottom-up Broadcast Neural
Network (BBNN). These upgrades concern the expansion of the number
of inception and dense blocks, as well as the enhancement of the inception
block through reduction block implementation. The proposed approach
is able to outperform state-of-the-art music genre classifiers in terms
of accuracy scores. It achieves an accuracy of 97.51% and 74.39% over
the GTZAN and the FMA dataset respectively. Code is available at
https://github.com/elachkarcharbel/music-genre-classifier.
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Music Recommendation Systems.

1 Introduction

Modern studies found interest in building robust music classifiers to automate
genre classification of unlabeled music tracks. There were diverse approaches in
their feature engineering process as well as the neural network selection [TI2I3/415].

In this paper, we propose a custom approach for music genre classification.
STFT spectrograms are generated and diversified by slicing each spectrogram into
multiple slices to ensure a variety of visual representations among the same music
track. Furthermore, upgrades to a state-of-the-art Convolutional Neural Network
(CNN) network for music genre classification named BBNN [2] are proposed. The
contribution of this paper relies on two main improvements: expanding
the number of inception and dense blocks of the network and enhancing the
inception block by implementing the reduction block B proposed in [6] instead
of the existing block inspired by [7]. The proposition is evaluated through its
application using the GTZAN [§] and the FMA [9] music datasets.

The remainder of this paper is organized as follows: in Section 2, we discuss
the recent music related classifiers used on the two datasets. In Section 3, we
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present the preprocessing process in addition to the contributed upgrades. Section
4 explores the experimental results of the proposed upgrades over competitive
CNN networks, followed by a conclusion and future work thoughts in Section 5.

2 Related Work

Many studies took advantage of deep learning technologies to build efficient music
genre classifiers. They adapted visual-related features (audio spectrogram) to
build CNNs for audio classification tasks [14UTT]. The audio data is converted to
spectrograms and used as input features to CNN classifiers. These spectrograms
are the visual representation of the spectrum of frequencies of the audio signal.
As mentioned in Section 1, the proposed contribution is validated through exper-
imental results. These experiments are applied using both the GTZAN dataset
[8) and the FMA dataset [9]. Thus, the most recent and relevant publications
over the two datasets are presented below.

Starting with GTZAN-related publications, a framework achieved an accuracy
of 93.7% over the GTZAN dataset by producing a multilinear subspace analysis.
It reduced the dimension of cortical representations of music signals [10]. Further
studies took profit from DNNs and CNNs to try reaching higher accuracies
over music datasets. Inspired by multilingual techniques for automatic speech
recognition, a multilingual DNN was used in [4] for music genre classification
purposes. It was able to achieve an accuracy of 93.4% through 10-fold cross-
validation over the GTZAN dataset. Several approaches used CNN-based networks
but were not able to exceed the accuracy of 91% such as [TJTTIT2/T3]. Others tried
refining their results by overcoming the blurry classification of certain genres
inside the GTZAN dataset. Their study did not surpass the accuracies mentioned
previously [3]. After several attempts to outperform the accuracy reached in
[10], three publications succeeded in using Mel spectrograms as input features
to their DNNs. The use of convolutional long-short term memory-based neural
networks (CNN LSTM) in combination with a transfer learning model helped in
achieving an accuracy of 94.20% in [14]. As for the two remaining publications,
the BBNN network proposed in [2] was able to achieve an accuracy of 93.90%
by fully exploiting Mel spectrograms as a low-level feature for the music genre
classification. The GIF generation method proposed in [5] was able to achieve the
highest accuracy of 94.70% by providing efficient audio processing for animated
GIF generation through acoustic features. Although this dataset has several
faults [I5], it is still the most dataset used in music genre classification use cases.
These faults are taken into consideration in the preprocessing process that we
will develop in later sections.

Concerning the FMA-related publications, a method of vertically slicing STFT
spectrograms took place, in addition to applying oversampling and undersampling
techniques for data augmentation purposes. This method achieved an F-score
of 62.20% using an MLP classifier [16]. Another study trained a convolutional
recurrent neural network (C-RNN) using raw audio to provide a real-time classifi-
cation of FMA’s music genres. It achieved an accuracy of 65.23% [I7]. Motivated



Combining Reduction and Dense Blocks for Music Genre Classification 3

by FMA’s challenges, an approach of two Deep Convolutional Neural Networks
(DCNN) was proposed to classify music genres. The first DCNN was trained
by the whole artist labels simultaneously, and the second was trained with a
subset of the artist labels based on the artist’s identity. This approach achieved
an accuracy of 57.91% taking Mel spectrograms as input features to the DCNNs
created [I8]. Moreover, a method proposed in [13] took advantage of Densely
Connected Convolutional Networks (DenseNet), found to be better than Residual
Neural Network (ResNet) in music classification studies. It achieved an accuracy
of 68.20% over the small subset of FMA.

3 Proposed Approach

In this section, the BBNN network proposed in [2] is briefly introduced. Later,
the proposed approach is elaborated while mentioning the proposed upgrades to
achieve higher accuracy results against the GTZAN and the FMA dataset.

As mentioned in the related work, the Bottom-up Broadcast Neural Network
(BBNN) is a recent CNN architecture that fully exploits the low-level features of
a spectrogram. It takes the multi-scale time-frequency information transferring
suitable semantic features for the decision-making layers [2]. The BBNN network
consists of inception blocks interconnected through dense blocks. The inception
block is inspired by the inception v1 module proposed in [7] while adding a
Batch Normalization (BN) operation and a Rectified Linear Unit activation
(ReLU) before each convolution. This approach relied on generating coloured Mel
spectrograms from the music tracks while providing the latter as input features
to the CNN network. The spectrograms had the size of 647x128 and were used
as-is for training purposes. This network was able to achieve the second-best
accuracy over the GTZAN dataset (93.90%) by stacking three inception blocks
with their corresponding dense connections.

3.1 Preprocessing

Spectrograms are the key to successful music genre classification using CNN-
based networks. Based on the approaches mentioned in Section 2, greyscale
STFT spectrograms are adopted instead of coloured Mel spectrograms. The
majority of CNN-based music genre classifiers relied on Mel spectrograms since
STF'T spectrograms required greater GPU memory for their increased quantity
of embedded features. Thus, we use STFT spectrograms in our experiments to
leverage the latter increase on accuracy scores, in addition to the availability
of efficient GPUs for experimental testing. Using the Sound eXchange (SOX)
package, the greyscale spectrograms are generated with a size of 600x128. As
expressed in Section 2, the GTZAN dataset has several faults [I5]. For instance,
three audio tracks were discarded while recursively generating the spectrograms
using the SOX package. Each music track of the discarded ones was associated
with a separate genre of the dataset. Therefore, we randomly removed a single
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Fig. 1. Spectrogram slicing approach

audio track from the remaining genres to normalize the number of music tracks
per genre.

Subsequently, the Python Imaging Libray (PIL) is used to slice the STFT
spectrograms into multiple images. The spectrogram is divided into three to
four separated slices. Each slice is a normalized 128x128 slice that represents a
6.4 seconds track out of the initial 30 seconds music tracks. Therefore, the last
one and a half slices of the spectrogram are discarded, keeping only the first
three slices (a, b and c¢ in Fig. . This approach is mainly used for better data
preparation for CNNs by normalizing the spectrogram’s width and height. It also
increases the diversity of the music genres, since spectrograms variate dependently
on the time axis. Thus, this normalization does not accentuate overfitting due
to the variety in every spectrogram’s slices. It is important to mention that the
discarded slices may hold useful data for our classification. However, we adopted
this approach to limit the number of training/testing images as well as ensuring
the obtention of the same number of slices per music track (music tracks length
is not always consistent to 30 seconds).

3.2 Network Contribution

Inspired by the BBNN network [2], custom modifications are proposed to achieve
higher accuracy results. Even though the BBNN stacks three inception blocks
connected with dense blocks, the trained model possessed a tiny size (only 0.18
M). Using a small sample of both datasets, we performed a hyperparameter
search taking the number of inception and dense blocks as the hyperparameter
in question. The search result showed that the optimal number of blocks is equal
to 6 for achieving the greatest accuracy. At this stage, the proposed network
consisted of doubling the number of inception and dense blocks in the Broadcast
Module (BM) of the BBNN, leaving the remaining layers (Shallow, Transition,
and Decision) as proposed in [2].

Increasing the number of blocks reflected an increase in accuracy scores. On the
other hand, it expanded the size of the training model and slowed the training
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Fig. 2. Proposed inception block modifications over the BBNN network

process. Consequently, the architecture of the BBNN network was modified to
reduce significant drawbacks due to overfitting and computation problems in the
inception v1 block [6]. Many CNN related studies, in particular a music-related
study in [I3], proved that dense blocks are better than residual blocks. Thus, it
was decided to keep the dense connection of the BBNN network intact. Moreover,
the BBNN network relied on the inception v1 proposed in [7] while adding BN
and ReLU operations before each convolution. The original inception v1 was
found computationally expensive as well as prone to overfitting in many cases.
At this stage, the next contribution was to replace the modified inception v1
blocks with modified inception v4 blocks in order to improve the computation
efficiency and most importantly to increase the accuracy. As mentioned in [6],
the earlier inception modules (v1, v2, v3) were found more complicated than
necessary. They proposed specialized ”Reduction Blocks” A and B to change
the width and height of the grid. This change produces a performance boost by
applying uniform and simplified operations to the network. Figure 2] presents the
modified inception blocks in detail. The block on the left concerns the custom
inception v1 block of BBNN, and the block on the right concerns our proposed
inception v4 block. As previously mentioned, the left block is inspired by the
inception v1 block in [7], while adding BN and ReLU operation before each
convolution. On the other hand, the proposed inception block is inspired by the
"Reduction Block B” introduced in [6]. Compared with BBNN’s inception block
in [2], the "Reduction Block B” of inception v4 [6] reduces the network complexity
by mainly removing unnecessary 1x1 convolution operations and replacing the
5x5 convolution with a stack of 1x7, 7x1, and 3x3 convolution operations. Also,
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it accentuates memory optimization to backpropagation by implementing the
factorization technique of inception v3. This technique is responsible to reduce
the dimensionality of convolution layers, which reduce overfitting problems. In
this matter, it was proposed to use the same architecture as the ”Reduction
Block B”, while implementing BN and ReLU operations before each convolution.

4 Experimental Evaluation

In this section, the training hyperparameters are presented while evaluating
the proposed contribution against state-of-the-art music genre classifiers. The
training operations are performed using an NVIDIA Tesla V100 SXM2 GPU
with 32 GB of memory.

4.1 Hyperparameters and Training Details

As mentioned in Section 3, the input images were prepared by generating a STFT
spectrogram out of each music track of the GTZAN and the FMA dataset. Each
spectrogram (600x128) was sliced into 128x128 slices, taking only the first three
slices as a visual representation of each music track. At this stage, the input
images for GTZAN classification were 297 slices of spectrograms per genre (99
music tracks per genre), and the input images for FMA classification were 3000
per genre (1000 music tracks per genre).

Inspired by BBNN [2], the proposed network upgrades were added as well as
the hyperparameters to start the training. Considering that the BBNN network
was initially tested against the GTZAN dataset [§], the same hyperparameters as
the BBNN network were used for this case. The ADAM optimizer was selected to
minimize the categorical cross-entropy between music genre labels, a batch size of
8 and an epoch size equal to 100. An initial learning rate of 0.01 was configured,
while automatically decreasing its value by a factor of 0.5 once the loss stops
improving after 3 epochs. The early stopping mechanism was implemented to
prevent overfitting, and the GTZAN input spectrograms were fed to the classifier
through 10-folds cross-validation training. Since all related publications used
different dataset split ratios, the same ratio as BBNN’s [2] is adopted to compare
our results with BBNN in particular and with other publications in general.
Thus, the training, testing and validation sets were randomly divided following
an 8/1/1 proportion (80% for training, 10% for testing, and 10% for validation).
The resulting training and testing accuracies were calculated by averaging all the
accuracies concluded in the cross-validation folds.

Concerning the FMA dataset, the increase in the batch size revealed an

accuracy increase. However, the same hyperparameters as GTZAN were used, in
addition to keeping the same value of the batch size (8), to align our results with
the existing ones.
Before initiating the training, the inception block’s training parameters were
calculated for both, the BBNN network and the proposed approach. This calcu-
lation showed that the proposed inception block uses less than 26.78 percentage
points (pp) of BBNN’s inception block parameters.
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4.2 Testing Results

In the tables below (Table 1 and Table 2), the proposed approach is compared to
the most recent and accurate methods. These methods either rely on deep learning
models or hand-crafted feature descriptors to provide an efficient classification of
the GTZAN and the FMA datasets.

Table 1. Comparative table for GTZAN classification methods in terms of accuracy

(%)
GTZAN Classification
Methods Preprocessing Accuracy
AuDeeplI] Mel Spectrogram 85.40
NNet2[11] STEFT 87.40
Hybrid model[3] MFCC, SSD, etc. 88.30
Transform learning[12] MFCC 89.80
DenseNet+Data augmentation[I3] STFT Spectrogram 90.20
Multi-DNNA] MFCC 93.40
TPNTF[I0] MFCC 93.70
BBNN|2] Mel Spectrogram 93.90
DNN+Transfer learning[14] Mel Spectrogram 94.20
GIF generation Framework|5] MFCC Spectrogram 94.70
Our approach STFT Spectrogram 97.51

Table 1 compares the music genre classifiers used on the GTZAN dataset. It
shows the different methods used over this dataset, including its preprocessing
features and the resulted accuracies. As mentioned in Section 2, each method
relied on a different preprocessing and training approach to achieve the highest
accuracy possible. The classification methods are enumerated in ascending order
based on the accuracy score. As for the proposed approach, its related fields are
displayed in bold in the table. The results show that the proposed method can
outperform the accuracy of the BBNN network [2] specifically by 3.61 pp, and
outperform the highest accuracy mentioned [5] by 2.81 pp.

Table 2. Comparative table for FMA classification methods in terms of accuracy (%)

FMA Classification (fma-small subset)
Methods Preprocessing Accuracy
Representation learning|[18] Mel Spectrogram 57.91
BBNN|2] Mel Spectrogram 61.11
SongNet [17] Raw audio 65.23
DenseNet+Data augmentation[I3] STFT Spectrogram 68.20
Our approach STFT Spectrogram 74.39
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As for the small subset of FMA, Table 2 presents the methods applied over
the latter to provide accurate music genre classification. Similar to Table 1, this
table shows the different methods used over this dataset, in addition to the
preprocessing features used and the resulted accuracies. As for the proposed
approach, it outperformed the highest accuracy over the FMA small subset [13]
by 6.19 pp. Since the proposed approach was inspired by the BBNN network and
the latter is not tested against the small subset of FMA, the BBNN Github code
E| was used as-is over this dataset for experimentation purposes. It resulted in an
accuracy of 61.11%, found to be less than 13.28 pp of the proposed approach.
It is important to note that the outperformance against the related publications is
not limited to the proposed network contribution only. The proposed preprocessing
process assisted in this outperformance, especially with the GTZAN faults, where
we reduced the number of music tracks per genre. Furthermore, the idea of slicing
the generated spectrograms to obtain a diversity of visual representations among
the same music track.

5 Conclusion and Future Work

In this paper, upgrades to a CNN-based music genre classifier named BBNN
are proposed, in addition to a custom preprocessing process for generating
STFT spectrograms out of the music tracks. The experiment results showed
that the proposed approach was able to outperform existing methods in terms
of accuracy. It achieved an accuracy of 97.51% and 74.39% over the GTZAN
and the FMA datasets individually while outperforming the best GTZAN and
FMA classification methods by 2.81 pp and 6.19 pp respectively. Also, the
proposed approach was found to be better in terms of accuracy while relying
on an optimized inception block that uses fewer training parameters to achieve
greater results. Our future work should focus on leveraging recent technologies,
such as audio and visual transformers, while focusing on reducing the model size
and speeding the training process, to create greater music genre classifiers.
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