
Automated Generation of Initial Configurations
for Testing Component Systems

Frédéric Dadeau, Jean-Philippe Gros, and Olga Kouchnarenko

Univ. Bourgogne Franche-Comté, CNRS, FEMTO-ST Institute,
15B avenue des Montboucons, 25030 Besançon, Cedex, France

firstname.lastname@femto-st.fr

Abstract. In the context of component-based systems, this paper pre-
sents the automated generation of initial states, from which an adaptive
system starts to receive sequences of events that aim to provoke recon-
figurations. For generating these states, also called configurations, we
present a combinatorial algorithm supporting various architectural ele-
ments and relationships among them, while satisfying consistency con-
straints expressed by invariants. Moreover, this algorithm deals with the
system-dependant instantiations of the primitive and composite compo-
nents, parameters and relations, in order to produce meaningful struc-
tured configurations. While testing adaptation policies for component-
based systems, this algorithm allows us to improve the capability of ful-
filling coverage criteria by using different initial configurations. To illus-
trate the approach, the paper reports on experiments on a simulation
with platoons of autonomous vehicles.

1 Introduction

Even if models of component-based systems are very heterogeneous, most of
them consider software components either as black boxes, or as grey boxes if some
of their inner features are visible, having fully-described interfaces. Systems’
behaviour is then specified using components’ definitions. In general, the system
state, also called a configuration, is the specific definition of the elements that
define what a system is composed of, while a reconfiguration can be seen as
a transition from a configuration to another. In this context, adaptation rules
or policies can be used to guide dynamic reconfigurations of component-based
systems [6,18,10] by using either architectural constraints on configurations, or
events, or temporal constraints over sequences of events and reconfigurations.

Overall, our goal is to validate that the adaptation policy rules are faithfully
implemented by the system. In [7], the system execution has been validated w.r.t.
the adaptation policy by checking that the reconfigurations that are triggered
during the execution correspond to those authorized in the adaptation policy. In
addition, [8] addresses the issue of validating that the system execution, which
starts from a particular configuration, respects the utilities of the reconfiguration
rules of the adaptation policy. It is easy to see that the testing process depends
on initial configurations. For example, in the context of autonomous systems,

2 F. Dadeau, J.-P. Gros, O. Kouchnarenko

Fig. 1. The process of online test generation for adaptive systems

when the execution starts from a configuration with the full battery, only a few
reconfigurations are expected and, consequently, the test cases to cover aimed
behaviour with reconfigurations may be long enough. On the contrary, starting
from a configuration where the battery level is low, provokes reconfigurations
to save energy, and the test cases are expected to be shorter. So, to go further,
the present paper presents the automated generation of initial configurations,
from which the adaptive system starts to receive sequences of events that aim
to provoke reconfigurations.

This process is summarized in Fig. 1. The adaptive system’s architecture is
described by a component-based model, from which initial configurations are
automatically generated while instantiating the model (1). These initial config-
urations are necessary inputs to initialize testing (2) of the system, as the tests
are executed starting from them, as well as the system itself. To take into ac-
count the environment in which the system is executed, usage models [25] for
components are provided as inputs as well. Starting from initial configurations,
test cases are composed of the events, which are extracted from components
usage models (3). These events are sent by the test generator to the system (4),
in an online testing manner: as the system’s behavior depends on the environ-
ment, test outputs are observed on the reconfiguration trace (5), and analyzed
by the test generator (6) to both guide the next event to be sent to the system
under test (4), and verify that the system behaves as expected w.r.t. the various
artifacts that are available, namely adaptation policies with temporal properties
(not shown in Fig. 1). This last point has been described in [7], where as the
present paper focuses on points (1) and (2).

In order to generate initial configurations, we first considered a random data
generator. However, due to the complexity of the structures to be generated for
component-based systems, such a random generator could possibly not termi-
nate, or hardly converge to a relevant configuration, which is realistic in terms of
architecture. Indeed, the relationships that are defined by the component model,
regarding parenting relationships, delegations and bindings, define a constraint

Generation of Initial Configurations for Testing 3

satisfaction problem (CSP), that cannot be effectively solved by a random pro-
cess. While constraint solvers exist, such as CLPS [5], using them is problematic
in our context. First issue is a large number of solutions computed that will be
structurally similar, due to symmetries in the solution space. Second, solvers are
usually meant to determine if a CSP has a solution, but a fine tuning of the
solver is required to obtain some variety in the proposed solutions.

To overcome these issues, the contributions of this work are to propose a ded-
icated combinatorial algorithm that is used to enumerate all possible symmetry-
free solutions of the CSP defined by the component model, in order to produce
initial configurations. This algorithm integrates symmetry elimination patterns
which reduce the combinations to be considered. While this algorithm can be
used to perform bounded exhaustive testing as in [22], the resulting configuration
set can be sampled to select a subset of configurations, that reduce the number
of test data to consider. A sampling method, aiming to amplify the variety of
configurations, is presented as a second contribution.
Outline. The paper is organized as follows. After a brief overview of the compo-
nent-based systems under adaptation policies, some basic notions on coverage cri-
teria for their testing are presented in Sect. 2. Section 3 presents the component-
based model that is used to represent systems configurations. The configuration
generation process, based on bounded exhaustive computation of the possible
configurations is presented in Sect. 4. The algorithm is described along with op-
timisations that aim to reduce the combinatorial explosion, and data selection
criteria that make it possible to sample the solutions to a small but significant
subset. Section 5 reports on experimental results w.r.t. the research questions.
Related works are presented in Sect. 6 before concluding in Sect. 7.

2 Background

On component-based systems under adaptation policies. In this paper,
only the basic and generic concepts of component-based systems are considered
to allow their application to various hierarchical models: components as entities
of several types, required and provided interfaces as interaction points between
components, bindings to link component interfaces. Components are either prim-
itive components providing data or services, or composite compound components
delegating their interfaces. Components can have some attributes used as config-
uration parameters. This section presents a running example of such a system,
whereas Section 3 provides the reader with needed formal notions.

Example 1. Let us start with an example of a Vehicle Platooning Application
(VPA for short) inspired from [4]. This complex system is composed of vehicles
which are either in solo mode, or organized in some platoons, as displayed in
Fig. 2. This figure also provides a component-based architecture corresponding
to the displayed VPA situation. In VPA, each platoon is led by a leader vehicle.
Any vehicle in solo mode can ask to join a platoon or decide to create a new
platoon with another vehicle in solo mode. Each vehicle in a platoon can ask to

4 F. Dadeau, J.-P. Gros, O. Kouchnarenko

quit it either because the vehicle reached his destination, or because it needs to
refill its energy. The platoon leader may change either because another vehicle
has more autonomy or a further destination. Some external events happen in
the system environment, e.g., a new vehicle can arrive on the road, or a driver
may decide to quit the platoon on his way to a new destination. These changes
on system’s architecture level are considered as dynamic reconfigurations.

For dynamic reconfigurations to occur only in suitable circumstance, adap-
tation rules indicate, for a given set of configurations, which reconfiguration
operations can be triggered, with a utility level associated. Following [6], they
are of the form when b if g then utility of ope is f . As introduced in [18],
reconfiguration operations in adaptation policies are guarded by temporal logic
properties that may either make use of propositional formulae over configura-
tions, or involve sequences of events and/or reconfigurations.

when after Join normal until Quit normal and VehicleId.battery < 33
if state = leader then utility of PassRelay is high

when after Join normal until Quit normal and VehicleId.battery > Leader.battery
if state = platooned then utility of GetRelay is medium

Example 2. Let us consider 2 adaptation rules involving the PassRelay and Get-
Relay reconfigurations. Intuitively, the above rules apply to all vehicles and are
used to determine when it is possible to have a relay between the leader and
another vehicle of the platoon. In the first case, the PassRelay reconfiguration of
high utility can be triggered when the leader has not enough autonomy.In the
second case, the GetRelay reconfiguration of medium utility may trigger when
the autonomy of a vehicle is greater than the autonomy of the leader.

Notice that a reconfiguration is suggested with a utility value (e.g. from Ft = {
high, medium, low}). For the formal definition, the reader can refer to [7].

Fig. 2. Component architecture for the considered VPA (top-right side)

Generation of Initial Configurations for Testing 5

On coverage criteria for adaptation policies. In a previous work [7], we
have proposed a test generation technique which aims to generate sequences of
external events, from usage models of system’s components, in order to exercise
the reconfiguration rules described in the adaptation policy. The dedicated cov-
erage criteria have been designed for adaptation rules with temporal patterns by
exploiting coverage criteria for temporal patterns described in [23].

These coverage criteria can be used as a means to handle the input data,
to evaluate a test suite, by measuring how much of the considered artifacts–
e.g., temporal properties and adaptation rules with temporal properties–the test
suite covers, and to decide when to stop testing. In [23], a temporal property
is considered as covered by a test suite TS if each transition of the property
test automaton is covered by at least one test case tc from TS. Having the same
temporal patterns allows us to consider coverage criteria for adaptation rules and
thus for adaptation policies. In [7], the adaptation rule is covered by a test case
tc if the rule is eligible–there is a configuration that tc reaches, where b scope
and g guard predicates are evaluated to true,–and ope is actually triggered from
such a configuration. Coverage criteria for policies are obtained by lifting this
notion to sets of rules.

As a consequence, the introduced coverage criteria for adaptation rules allow
the user to evaluate if (i) the triggered reconfigurations were among eligible ones,
in order to detect undesirable reconfigurations, and (ii) a generated test suite
execution has triggered all the reconfiguration rules that were described in the
adaptation policy, so as to detect specified but never triggered reconfigurations,
even for long test cases generated.

3 Component-based Model

This section gives means for specifying component-based systems. Their archi-
tectural model is defined as a triplet 〈Elem,Rel, Inst〉, where Elem is a set of
the component elements, Rel describes the architectural relationships between
these elements, and Inst is an instantiation of Elem and Rel in terms of actual
components and relations.
Components. Components are entities that can be assembled to create an ap-
plication. As usual, interfaces are used for interactions between components. A
provided interface is an interface that the component realizes, whereas a required
interface is an interface that the component needs to be able to run. Compos-
ite components may delegate their interfaces to inner components. Formally,
Elem = {CTypes, IProvided, IRequired, Params, ITypes, PTypes, Contings},
where CTypes is the non-empty set of components types, IProvided (resp.
IRequired) is the set of interfaces, which are provided (resp. required) by the
components, Params is the set of components’ parameters, ITypes (resp. PTypes)
is a finite set of the interfaces (resp. parameters) types, Contings is the set of
contingencies that represent the cardinality of required interfaces (single or mul-
tiple connections, optional or mandatory).

6 F. Dadeau, J.-P. Gros, O. Kouchnarenko

Example 3 (Components of the VPA example). The architectural elements of
the VPA configuration depicted in Fig. 2 are as follows:
CTypes = {Road, P latoon, V ehicle}
IProvided = {connV, leader}
IRequired = {vehicles, next}
Parameters = {battery, position, speed, goal}
ITypes = {V Info}
PTypes = {int, float}
Contings = {singleopt, singlemandatory,multiopt,multimandatory}

Relationships. The architectural relationships among components are defined
by a tuple Rel = {IPType, IRType, Provider,Requirer, Contingency, Param-
Type, Definer, ParentTypes,DelegProv, DelegReq} in which IPType (resp.
IRType) is a total function that maps a provided interface in IProvided (resp. a
required interface in IRequired) to its type in ITypes, Provider (resp.Requirer)
is a total function that maps a provided interface in IProvided (resp. a required
interface in IRequired) to its component type in CTypes. Contingency asso-
ciates each required interface in IRequired with its contingency. ParamType
is a total function that associates with each parameter in Params its type in
PTypes, Definer is a total function to define the component type in CTypes
for each parameter, ParentTypes associates each component type with the com-
ponent types of its parent components1, and DelegProv (resp. DelegReq) de-
scribes pairs of provided interfaces (resp. required interfaces) that are linked by
a delegation from a parent component to one of its subcomponents.

Example 4 (3 relationships of the VPA example). For the VPA component model,
one has Provider = {connV 7→ V ehicle, leader 7→ Platoon}, Requirer =
{vehicles 7→ Road, next 7→ V ehicle}, and DelegateProv = {connV 7→ leader}.

Instantiation. An instantiation provides the main entities of the component-
based system and thus defines its particular configuration, which consists of
the components that are present and put together thanks to their relationships.
The instantiation is a 6-tuple Inst = {Comps,CT, Parents,Binds,DelProv,
DelReq, V alue} in which Comps is the set of component instances; a total func-
tion, called CT , associates with each component in Comps its type in CTypes;
Parents associates with each component in Comps the set of its parent compo-
nents;Binds is a relation to bind provided and required interfaces of components;
DelProv (resp. DelReq) describes the delegated interface of a sub-component
in relation with the delegating interface of the parent component; and V alue
provides the value of each component parameter.

Example 5 (Instantiation of the VPA example). A component can be instanti-
ated several times, as e.g. the components of type V ehicle. The configuration in

1 each component type is mapped to a set of component types, as we assume that
components can be shared by composite components.

Generation of Initial Configurations for Testing 7

Fig. 2 is given by the following instantiation:
Comps = {v1.1, v1.2, v1.3, v2.1, v2.2, v3, v4, v5, r, p1, p2}
CT = {{v1.1 7→ V ehicle, ..., p1 7→ Platoon, ..., r 7→ Road}
Parents = {v2.1 7→ {p1}, ..., v3 7→ ∅, ..., p 7→ ∅, r 7→ ∅}
Binds = {((v3, connV), (r, vehicles)), ..., ((v2.2, connV), (v2.1, next)), ...}
DelProv = {((v1.1, connV), (p1, leader)), ..., ((v2.1, connV), (p2, leader))}
DelReq = {}
V alue = {v1.1 7→ {battery 7→ 31, position 7→ 253.3, ...}, ...}

In addition, following [20], set-theoretical constraints on this architectural
model are provided so as to express: (i) the consistent typing of components,
(ii) the consistent binding of interfaces, and finally (iii) the consistent parent
relationship. For example, only components having a common parent can be
bound; mandatory contingencies are fulfilled; a delegated interface of parent
component is bound to an appropriate interface of a child component. Finally,
some constraints inherent to the considered system are expressed as system-
dependant invariant properties, like in [20]. They are also needed for the system
configurations to be consistent.

We refer to [9,18] for the definition of components, interfaces, bindings, etc.,
and their consistent assembly obeying invariants. We call a state or a configura-
tion of a component-based system a set of instantiated above-mentioned archi-
tectural elements together with their types and relations to link them.

4 Generation of Initial Configurations

Given the component-based model 〈Elem,Rel, Inst〉, this section describes a
configuration generation algorithm that is used to enumerate all possible sym-
metry-free solutions of the CSP defined by the component model, in order to
produce initial configurations. The aim of this combinatorial algorithm is to build
a set of configurations that are correct-by-construction, especially regarding the
architectural and consistency constraints that guarantee the correct parenting,
delegations and bindings. Nevertheless, the execution of the test cases from all
the computed configurations can be a tedious task, especially the setup of the
test environment for a given configuration. Hence, some of the solutions can be
sampled to produce a reduced set of configurations that are different from each
other. These configurations can then be used as initial configurations for the
online testing process described in Sect. 1.

4.1 Combinatorial Algorithm

The test generation algorithm is summarized below as Algorithm 1. It takes
as an input component model parts Elem and Rel, and aims to produce all
instantiations SInst up to a given size (expressed as the number of components)
that fulfill the description. In order to eliminate irrelevant configurations w.r.t.
the system-dependant invariant (notably to restrict possible bindings, e.g. in

8 F. Dadeau, J.-P. Gros, O. Kouchnarenko

order to prevent vehicles to be connected to each other outside a platoon), an
invariant function can be provided in order to define valid configurations.

Algorithm 1 is parameterized by: the minimal and maximal number of com-
ponents of each type, the total number of components, a parameter instantiation
function, which aims to determine how component parameters are supposed to
be valued, and an invariant function which is supposed to provide additional
constraints on the configurations, which complement the description of the com-
ponent model and rule out irrelevant configurations.

The combinatorial algorithm proceeds by successive steps. Each step consists
in identifying the possible solutions before considering the valid one, one-by-one
to proceed to the next step. Once a given step has explored all the possibilities,

1: Inputs
2: Elem
3: Rel
4: N : int
5: invariant: Inst → B
6: genParameters: Comp, CT , Definer → V alues
7: Output
8: SInst // the set of possible instantiations
9: Begin
10: SInst ← ∅
11: for all Comp, CT from genComponents(N) do
12: for all Parents from genParenting(Comp, CT) do
13: if not isFresh(Parents) then
14: proceed to the next value of Parents
15: end if
16: for all Delegations from genDelegations(Comp, Parents) do
17: if not isFresh(Delegations) then
18: proceed to the next value of Delegations
19: end if
20: for all Binds from genBindings(Comp, Parents, Delegations) do
21: if not isFresh(Binds) then
22: proceed to the next value of Binds
23: end if
24: V alues = genParameters(Comp, CT , Definer)
25: Inst = 〈 Comp, CT , Parents, Delegations, Binds, V alues 〉
26: if invariant(Inst) then
27: SInst ← SInst ∪ Inst
28: end if
29: end for
30: end for
31: end for
32: end for
33: End

Algorithm 1: Initial configurations generation

Generation of Initial Configurations for Testing 9

the algorithm backtracks to the previous step to consider the next solution before
moving onto the next step. The different steps are the following.

Step 1. The algorithm starts (line l.11) by considering all possible partitions of
the components according to their types, bound by a maximal cardinality size.
This step relies on the CTypes description in Elem. Each pair from Comps
×CT (of components and types in Inst) is considered for the subsequent step.

Step 2. The second step (l.12) aims to produce, for a given set of instances, a
parenting relationship that fulfills the following constraints: (i) each composite
component has at least two children, and (ii) no loop may appear in the parenting
relationship. At this step, the isFresh function (l.13) is used to detect if the
solution that is computed has been already encountered modulo permutation
in a previous iteration of the current loop, as illustrated by Fig. 3. If so, the
solution is not considered for the subsequent step, and the algorithm proceeds
the next parenting solution.

Step 3. The third step (l.16) consists in delegating required or provided interfaces
of the composite components to one of its children. To save space Delegations
represents both DelProv and DelReq described previously. All interfaces of the
composites have to be delegated to their inner components. Similarly to the
previous step, symmetrical solutions are ruled out, as illustrated by Fig. 4.

Step 4. The fourth step (l.20) consists in computing, based on the current
parenting and delegations, a binding of compatible required and provided in-
terfaces, that satisfies architectural constraints (e.g. only components with the
same parent can be bound) and contingency constraints (single/multiple, manda-
tory/optional). Here again, symmetrical solutions, as illustrated by Fig. 5, are
not considered.

Step 5. Once the structure of component system is generated, the algorithm
eventually computes data values for the component parameters, according to
their type, based on a given valuation function that can be user-defined (l.24-
25). For both discrete and continuous domains of the considered parameters,
this function makes use of the Beta-distribution method [12] with parameterized
probabilistic distributions allowing the user to vary the density of random draw
from these domains, and to automate the process. In the end, the configuration
that has been computed is checked against the invariant (l. 26), before being
stored (l. 27).
Finally, only valid and consistent configurations up to size N are computed2.

Proposition 1. Given number N of components’ instances to be generated, Al-
gorithm 1 terminates either by providing a set SInst of consistent configurations
with up to N components (without those obtained by permutations of architectural
elements), or by returning the empty set if none of the configurations satisfies
consistency constraints or system-dependant invariant.
2 The interested reader can find an implementation of this algorithm at https://
fdadeau.github.io/CSConfigGen/

https://fdadeau.github.io/CSConfigGen/
https://fdadeau.github.io/CSConfigGen/

10 F. Dadeau, J.-P. Gros, O. Kouchnarenko

⇔

Fig. 3. Symmetries in parenting relationships

⇔

Fig. 4. Symmetries in delegations

⇔

Fig. 5. Symmetries in bindings

4.2 Initial Configuration Sampling

Once initial configurations generated, there is a need to select some of them
for testing the system under adaptation policies. Intuitively, while using cov-
erage criteria for handling test inputs, the greater the difference between the
configurations, the higher the coverage rate will be.
Comparing configurations. The difference between the configurations is com-
puted by processing them two by two. This computation can be divided into 2
parts: on the overall architecture, and on particular system-dependant features.
First, we compare the overall structure of the configurations by counting the
difference ∆comps between the numbers of the components instances (primitive
and compound ones), and the difference ∆hierachy between the numbers of all
the ancestors of the involved components. This way, a better coefficient will be
given to a complex configuration with nested composite components, compared
with a flat configuration. Depending of the systems under consideration, the
number of bindings may differentiate the configurations as well, hence ∆bindings.

In [1], a negative inverse exponential function is used to limit the complexity
score, together with a coefficient to scale it between two values. In the same
spirit, we have chosen a logarithmic function to limit our coefficient values. So,
in the end, a coefficient on the overall architecture difference is computed by the
following formulae:

k = log10(∆
∆hierarchy+∆bindings
comps)

Example 6. Let us consider again the configuration in Fig. 2 with 8 vehicles, 2
platoons, 1 road, and 3 bindings (configuration A). Let us compare it to con-
figuration B composed of 5 solo vehicles on the road. One has ∆comps = 5 for

Generation of Initial Configurations for Testing 11

primitive and compound components, ∆hierarchy = 5, and ∆bindings = 3, so
k = log10(5

5+3) = 5.59.

Second, while testing adaptation rules, the test case generation may be im-
pacted by the values of the component parameters, that are involved in the rules.
So, the validation engineer should be able to examine the parameters that are
worthy of attention. To compare two configurations with a different number of
the components of the same type, for each parameter of interest of the configura-
tion with more instances, the closest values are two by two selected for merging,
until the same number of values is obtained. So, given number n of instances of
the same type considered, l1 and l2 sorted lists of n values of parameter Par,
the proportional difference is computed by the following formulae:

scorePar =
100

n× (maxPar −minPar)
×

n∑
i=1

|l1i − l2i |

where maxPar and minPar represent resp. maximal and minimal values of pa-
rameter Par. The scores of all parameters from Pars ⊆ Params that impact
the adaptation rule, are aggregated in a final score, where k is the coefficient on
the overall architecture difference between two configurations:

difScore = k ×
∑

Par∈Pars
scorePar

Example 7. Let us consider again configurations A and B from Example 6, with
a focus on battery parameter. Let us suppose that the battery level values for
the vehicles in A are (20, 22, 34, 54, 62, 72, 80, 99). As there are 3 more vehicles
in A, the 3 pairs of the closest values are: (20, 22), (55, 62) and (72, 80). After
the merging step (here by averaging), one has l1 = (21, 34, 58, 76, 99). For B, let
us take l2 = {26, 55, 62, 74, 89}. Applying scorePar to battery gives:

scoreBat =
100

5× (100− 20)
×

5∑
i=1

|l1i − l2i | = 0.25× 42 = 8.4

Assuming distance parameter score being scoredistance = 5.1, the aggregated
difference score is then: difScore = 5.59× (8.4 + 5.1) = 75.46.

Configuration sampling. Sampling consists in reducing the set of possible
configurations to a subset of size NS, in which the difference scores between the
configurations are maximized. Such an optimization problem can be solved by
various kind of approaches, such as SAT-solving, linear programming, cluster-
ing [13], genetic programming [19], etc. For this work, we choose to implement a
greedy algorithm, shown below as Algorithm 2. Based on the set of m generated
initial configurations computed, an m×m score matrix (named Scores line 2) is
built, where ai,j element represents difScore between configuration i and con-
figuration j 3. NS (line 2) denotes the number of configurations to select, which
is the cardinality of Configs set of indexes of selected configurations (line 6).
3 In this matrix ai,i = 0 and ai,j = aj,i. The complexity of the computation is
quadratic in the number m of configurations.

12 F. Dadeau, J.-P. Gros, O. Kouchnarenko

The algorithm starts by selecting the biggest score in Scores matrix with
function selectHigestScore (line 6), and marks the corresponding element as se-
lected (line 7). Configs set is then updated (lines 8, 9). Here selectHigestSco-
re(Scores) function browses the matrix given parameters, and returns the in-
dexes corresponding to the biggest difference score between i-th and j-th config-
urations. Then, in the corresponding row i and column j the biggest remaining

1: Inputs
2: Scores, NS
3: Output
4: Configs
5: Begin
6: i, j ← selectHigestScore(Scores)
7: mark ai,j as selected
8: Configs.add(i)
9: Configs.add(j)

10: repeat
11: j′ ← selectHighestScoreInLine(i)
12: mark ai,j′ as selected
13: Configs.add(j′)
14: i′ ← selectHighestScoreInColumn(j)
15: mark ai′,j as selected
16: Configs.add(i′)
17: i← i′

18: j ← j′

19: until Configs.size() < NS
20: return Configs
21: End

Algorithm 2: Initial config. sampling

scores are chosen (lines 11
and 14), and the corre-
sponding configurations in-
dexes are added to Configs
(lines 13 and 16). Function
selectHighestScoreInLine(i) (resp.
selectHighestScoreInColumn(j))
browses the i-th row (resp.
the j-th column) of Scores
matrix, and returns the index
of the column (j′) (resp. row
i′) corresponding to their re-
spective biggest score. In or-
der to prepare the next it-
eration step, the indexes are
updated (lines 17, 18). The
steps in lines 11 to 18 are
repeated, until Configs size
reaches NS.

By construction, only con-
figurations with big difference
scores are selected.
Proposition 2. Given NS,
number of configurations to
select from SInst set of size
m, Algorithm 2 terminates by providing Configs set of size NS ≤ m of config-
uration indexes from SInst that have the most significant difference scores.

4.3 Integration into the Online Test Generation Process

The online testing process relies on the usage models, one per component type,
which are probabilistic automata. They capture the behavior of components and
determine, for a given state, which external events can be sent to the compo-
nent, at a given rate. As an example, Figure 6 represents the usage model of
Vehicle type components. In this figure, edges with solid lines represent external
events that may be used for stimulating (i.e., testing) the component, whereas
dotted lines represent internal events that may occur and change the state of
the automaton. Edges may also be labelled by δ, which represents a quiescence,
meaning that no event will be sent to the system. Finally, the number in paren-
theses represents the probability for the considered event to be selected.

Generation of Initial Configurations for Testing 13

The usage models are specific to each component type, and each state of the
automaton represents a given configuration for the component. As a consequence,
we assume that there is, for each component type, a function to determine the
initial state of usage model for a component of this type. We denote initCType
this function.

Example 8. Assuming that a component v of type Vehicle appears in the instan-
tiation Inst that is generated by the process described in 4.1 and selected by the
process described in 4.2, this component’s automaton initial state will be given
by the following function:

function init_V ehicle(v, Inst)
if ((v, connV) 6∈ Inst.Binds) return 0
else if (Inst.Parents(v) 6= ∅) return 1
else return 2

5 Experimentation

This section describes experiments to assess the testing approach described in
Sect. 1 and displayed in Fig. 1 while using Algorithms 1 and 2 for initial config-
uration automatic generation and sampling. The goal of the experiments is to
answer the following research questions.
[RQ1] To what extent the use of different initial configurations improves the
generated tests? (shorter? improve coverage? find more faults?)
[RQ2] To what extent the symmetry-breaking in Algorithm 1 reduces the number
of generated configurations?
On the experiments. To experiment, a simulator of the VPA example has been
developed as a Java program (almost 6000 lines of code). It can be modified at
will, e.g. to set up initial configurations and sequences of events. It is also possi-
ble for the validation engineer to modify the implementation of the adaptation
policies that guide system’s reconfigurations. Actually, the implementation may
depend on the reconfigurations utilities and on strategies for handling priorities
of the reconfigurations with the same utility level. The validation of implemen-
tation choice has been described in [8].

For the VPA system under test, 8 adaptation rules have been designed, that
integrate 5 temporal properties of interest.

3

0 21

δ(0.95)

enter(0.05)

leave

join(0.03)

δ(0.97)

acceptJoin

scatter

acceptQuit

forceQuit(0.05)

acceptQuit

δ(0.95)

Fig. 6. Usage model for the Vehicle components

14 F. Dadeau, J.-P. Gros, O. Kouchnarenko

Example 9. In addition to 2 adaptation rules for vehicles from Example 2 involv-
ing battery parameter, we consider the following rule with distance parameter:
when after Join normal until Quit normal and VehicleId.distance < 10
if state != leader then utility of QuitPlatoon is high

On the experimental protocol. Let us now describe the experimental pro-
tocol. Once the set of initial configurations Inst of cardinality 1200 generated
by applying Algorithm 1, matrix Scores of difference scores is computed. After-
wards, 10 closest configurations with small difference scores and 10 farthest ones
with big difference scores are selected by applying twice Algorithm 2 to Score
matrix.

As the test generator performs Markovian walk over components usage mod-
els, the experiment is replayed 170 times for each set of configurations, one by
one (2× 10× 170), to provide a confidence in the experimental results. This al-
lows observing produced traces with actually triggered reconfigurations in order
to compute the coverage criteria rate [7] as recalled in Sect. 2.

For the VPA example simulation, as displayed in Fig. 1, running an exper-
iment consists then in starting from a selected initial configuration and letting
the test generator deal with usage models of components to send the events at
a given rate to the system under adaptation policies. During 3000-step exper-
iments, the reconfigurations occur (with traces produced) and make system’s
architecture evolve.
On the results. The coverage rate is separately aggregated for the properties
and for the adaptation rules by applying coverage criteria described in [7] and
reminded in Sect. 2. Given the set of initial configurations, for each experiment
the coverage rate for the rules is the ratio of the number of adaptation rules,
that are covered by at least one test case starting from a configuration from this
set, to the number of rules under consideration.

Table 1 below reports on the experimental results 4, where the lines corre-
spond to the coverage rate reached for the properties and rules, depending on
the configuration set chosen with either small difScore values, or big difScore
values. The columns represent the running experiment number (from 1 to 170),
with an extract of 9 experiments below. For example, for the run in column n+1,
the first line (Small dif. score) indicates 94% of coverage for properties and 75%
for rules, where as the second line (Big dif. score) indicates 100% coverage for
properties and 75% for adaptation rules. The Av. column indicates the average
coverage rate of a sub-line. For example, in the first line (Small dif. score) the
first sub-line indicates 86.5% properties coverage on average for 170 performed
experiments. Also, for the 8 adaptation rules, 0% coverage rate indicates that no
rule has been triggered during the 3000-step experiment with about 300 external
events sent to the SUT 5, whereas 100% coverage says that all the adaptation
rules have been triggered. The column M.freq. indicates the most often seen
4 More results are in Table at https://fdadeau.github.io/CSConfigGen/table.html
5 Let us note that for each experiment, on the given clock tick, on average 10% of
steps correspond to the events from the usage models sent to the SUT (cf. (4) in
Fig. 1), whereas δ occurs for the remaining 90% of steps.

https://fdadeau.github.io/CSConfigGen/table.html

Generation of Initial Configurations for Testing 15

rate value over 170 experiments performed for each set of configurations. So, 75
indicates that 75% is the most frequent coverage.

Let us note that the most frequent 75%-rate for adaptation rules is due
to the rules, whose QuitDistance reconfiguration is not triggered because of
distance parameter involved. For these rules, 3000-step experiments are not long
enough for decreasing distance values, and the scope and guard predicates of
the concerned rules remain false.

Run number 23 24 25 26 27 28 29 30 31 Av. M.fr.
Small dif. Prop.Cov.(%) ... 56 94 17 94 56 61 94 100 94 ... 86.5 94

score Rule Cov.(%) ... 0 75 0 75 0 13 75 75 75 ... 58.5 75
Big dif. Prop.Cov.(%) ... 100 100 100 100 100 100 94 100 100 ... 98.1 100
score Rule Cov.(%) ... 94 75 75 75 75 100 75 75 75 ... 80.2 75

Table 1. Extract of experimental results and coverage rates

On the symmetry elimination. To address RQ2, we ran an experiment,
which consists in counting the number of configurations that are generated with
or without the symmetry detections that we have considered.

For the VPA example we designed 5 setups that differ in the minimal and
maximal number of components of each type that are generated. The invariant
specifies that vehicles that are not in a platoon are not connected together. The
setups are as follows: Setup#1: 1 Road, 1 to 5 Vehicles, 0 to 2 Platoons, 0 to 1
Station. Setup#2: 1 Road, 5 Vehicles, 0 to 2 Platoons, 0 to 1 Station. Setup#3:
1 Road, 6 Vehicles, 0 to 2 Platoons, 0 to 1 Station. Setup#4: 1 Road, 1 to 5
Vehicles, 1 Platoon, 0 to 1 Station. Setup#5: 1 Road, 1 to 5 Vehicles, 0 to 2
Platoons, 1 Station.

By turning on or off (denoted Setup #1 #2 #3 #4 #5
P , D, B, I 62 26 39 30 44
P , D, B, I 181 93 166 54 149
P , D, B, I 325 244 1098 158 222
P , D, B, I 640 482 2398 378 491
P , D, B, I 1083 897 5270 410 700
P , D, B, I 2249 1953 17495 1294 1466
P , D, B, I 22971 21213 337625 4174 21218

Fig. 7. Number of configurations for each setup

with a line over the correspond-
ing symbol) some of the symme-
try eliminations (parenting P , del-
egations D, bindings B) and in-
variant filtering (I), we obtain the
results shown in Table 7. Setup
#1, #3 and #5 took about 25
seconds on a standard laptop (Dual-
core i5 1.6GHz with 8Go RAM)
to generate 21.000–23.000 config-
urations. Due to the exponential blow up of the unfolding, it takes about 20
minutes to generate the 337.625 configurations of Setup #3, which was reduced
to 16 minutes when enabling symmetry reductions.

All symmetry reductions are clearly relevant in order to master the com-
binatorial explosion, showing that only a tractable number of configurations is
generated even for highly combinatorial setups. On this case study, the experi-
mentation also shows that a large set of irrelevant configurations can be gener-

16 F. Dadeau, J.-P. Gros, O. Kouchnarenko

ated, based only on the description of the component model (without considering
the invariant).

Notice that these symmetrical configurations have 0 for the difference score,
and thus, only one of them will at most be kept by the selection process. As a
consequence, removing them at the soonest prevents useless computations from
being performed.

The obtained experimental results allow assessing the use of automatically
generated initial configurations and their sampling. Indeed, they show that the
set of the generated configurations with significant difference scores gives better
coverage rates, thus answering our research questions.

6 Related Work

System’s configurations are required for online testing approaches to work. In our
approach, these configurations are automatically generated from a component
model by using boundary testing [3,21,24] to generate system’s values. In [21],
the authors present a test case generation based on boundary goals derived from
a formal model, with a feedback to refine boundary criteria if the boundary goals
are not reachable. In our approach, as in [14], the boundaries of the parameters
are defined in the model; in this respect our contribution consists in generating
a wide diversity of combinations.

Our symmetry filtering approach for generating initial configurations is close
to the TACO tool [11], which applies SAT-based techniques instrumented with
a symmetry-breaking predicate to JML-annotated sequential Java programs in
order to eliminate some isomorphic models. Our approach goes further, as we
also consider hierarchical objects.

In the field of software product lines (SPLs), the configuration spaces are of-
ten determined by features and constraints over them, modeled as feature mod-
els (FMs). A feature oriented testing (FOT) described in [16] applies FMs to
test-case designs for black-box testing. In this approach, SAT-based automated
test-suite generation and correctness checking of test-case designs are performed.
In [15] the authors present a comparative study of combinatorial testing (CT)
and random testing (RT) algorithms for testing SPLs. On the chosen bench-
marks, this study shows that the diversity of configurations sampled by CT is 2
to 3 times higher than those sampled by RT.

As reported in [17], in fuzz testing, the performance substantially varies de-
pending on input configuration files, or seeds, used to start fuzzing with. How-
ever, most papers (among 32) have treated their choice casually, apparently
assuming that any seed would work equally well, without providing particulars.
Our experimentations with initial configurations also show that testing process
heavily depends on them.

Generation of Initial Configurations for Testing 17

7 Conclusion and Future Works

In this paper, we have presented an approach to automatically generate initial
configurations for testing component-based systems. The presented algorithm
allows generating structured data composed of architectural elements and rela-
tionships to link them, while satisfying general consistency constraints expressed
by invariants. System-dependant instantiation of component parameters is in-
tegrated at appropriate algorithm steps, in order to generate meaningful inputs
for testing. The provided experimental results on a simulation of platoons of au-
tonomous vehicles show that this approach allows us to improve the capability
of fulfilling coverage criteria by using different initial configurations. Thus, the
present work usefully extends the approach for testing component-based systems
in [7]. This approach is generic for any component-based framework, and can be
extended to adapt to component models, such as BIP [2].

One of the future work directions consists in providing the user with a refine-
ment method in order to enlarge or reduce defined boundaries. Also, we intend
to improve detection of dubious reconfigurations, and to provide the user with
the means to validate that an adaptation policy, that is correctly implemented,
fulfills extra-functional properties, such as optimized resource-consumption, etc.

References

1. B. Alkan and R. Harrison. A virtual engineering based approach to verify structural
complexity of component-based automation systems in early design phase. Journal
of Manufacturing Systems, 53:18–31, 2019.

2. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in
BIP. In Proc. of the Fourth IEEE Int. Conf. on Software Engineering and Formal
Methods, SEFM’06, pages 3–12, Washington, DC, USA, 2006. IEEE Computer
Society.

3. B. Beizer and J. Wiley. Black box testing: Techniques for functional testing of
software and systems. IEEE Software, 13(5):98–, 1996.

4. C. Bergenhem. Approaches for facilities layer protocols for platooning. In IEEE
18th Int. Conf. on Intelligent Transportation Systems, ITSC 2015, pages 1989–
1994. IEEE, 2015.

5. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - A constraint solver to animate
a B specification. Int. J. Softw. Tools Technol. Transf., 6(2):143–157, 2004.

6. F. Chauvel, O. Barais, I. Borne, and J.-M. Jézéquel. Composition of qualitative
adaptation policies. In 23rd IEEE/ACM Int. Conf. on Automated Software Engi-
neering (ASE 2008), pages 455–458. IEEE Computer Society, 2008.

7. F. Dadeau, J.-P. Gros, and O. Kouchnarenko. Testing adaptation policies for
software components. Softw. Qual. J., 28(3):1347–1378, 2020.

8. F. Dadeau, J.-P. Gros, and O. Kouchnarenko. Online testing of dynamic reconfig-
urations w.r.t. adaptation policies. Modeling and Analysis of Information Systems,
28(1):52–73, 2021. (In Russian).

9. J. Dormoy, O. Kouchnarenko, and A. Lanoix. Using temporal logic for dynamic
reconfigurations of components. In FACS, Int. Symp. on Formal Aspects of Com-
ponent Software, volume 6921 of LNCS, pages 200–217. Springer Berlin Heidelberg,
2010.

18 F. Dadeau, J.-P. Gros, O. Kouchnarenko

10. R. El Ballouli, S. Bensalem, M. Bozga, and J. Sifakis. Programming dynamic
reconfigurable systems. Int. J. Software Tools for Technololy Transfer, 2021.

11. J. P. Galeotti, N. Rosner, C. G. López Pombo, and M. F. Frias. Taco: Efficient
sat-based bounded verification using symmetry breaking and tight bounds. IEEE
Transactions on Software Engineering, 39(9):1283–1307, 2013.

12. A. Gupta and S. Nadarajah. Handbook of beta distribution and its applications.
CRC press, 2004.

13. J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR: Applied
Statistics, 28(1):100–108, 1979.

14. A. Hussain, S. Tiwari, J. Suryadevara, and E. Enoiu. From modeling to test case
generation in the industrial embedded system domain. In STAF’18 Collocated
Workshops, Revised Selected Papers.

15. H. Jin, T. Kitamura, E.-H. Choi, and T. Tsuchiya. A comparative study on com-
binatorial and random testing for highly configurable systems. In Testing Software
and Systems - 32nd IFIP WG 6.1 International Conference, ICTSS 2020, Naples,
Italy, December 9-11, 2020, Proceedings, volume 12543 of Lecture Notes in Com-
puter Science, pages 302–309. Springer, 2020.

16. T. Kitamura, T. B. N. Do, H. Ohsaki, L. Fang, and S. Yatabe. Test-case design
by feature trees. In Proc. 5th International Symposium, ISoLA 2012, volume 7609
of LNCS, pages 458–473. Springer, 2012.

17. G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz testing. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 2123–2138, 2018.

18. O. Kouchnarenko and J.-F. Weber. Adapting component-based systems at runtime
via policies with temporal patterns. In J. L. Fiadeiro, Z. Liu, and J. Xue, editors,
FACS, 10th Int. Symp. on Formal Aspects of Component Software, volume 8348
of LNCS, pages 234–253. Springer, 2014.

19. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

20. A. Lanoix, J. Dormoy, and O. Kouchnarenko. Combining proof and model-checking
to validate reconfigurable architectures. Electron. Notes Theor. Comput. Sci.,
279(2):43–57, 2011.

21. B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and
B. In FME 2002: Formal Methods - Getting IT Right.

22. K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson. Software assurance
by bounded exhaustive testing. ISSTA’04, page 133–142, New York, NY, USA,
2004. Association for Computing Machinery.

23. S. Taha, J. Julliand, F. Dadeau, K. Cabrera Castillos, and B. Kanso. A compo-
sitional automata-based semantics and preserving transformation rules for testing
property patterns. Formal Aspects of Computing, 27(4):641–664, dec 2015.

24. M. Utting, A Pretschner, and B Legeard. A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab., 22(5):297–312, 2012.

25. G. H. Walton, J. H. Poore, and C. J. Trammell. Statistical testing of software
based on a usage model. Software: Practice and Experience, 25(1):97–108, 1995.

	Automated Generation of Initial Configurations for Testing Component Systems

