Two-Dimensional Steady-State Thermal Analytical Model of Permanent-Magnet Synchronous Machines Operating in Generator Mode

Z. Djelloul-Khedda, K. Boughrara, F. Dubas, G. Baocheng, and A. Ei Hadj

Abstract

Purpose — Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks (LPTN) depending on the desired accuracy. The analytical prediction of temperature distribution based on the formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. Therefore, this paper presents a two-dimensional (2-D) analytical model of steady-state temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode.

Design/methodology/approach — The proposed model is based on the multi-layer models with the convolution theorem (i.e., Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power losses in the PMSM with the finite-element method (FEM).

Findings — In order to validate the proposed analytical model, the analytical results are compared with those obtained by thermal FEM. The comparisons show good results of the proposed model.

Originality/value — A new 2-D analytical model based on the PDE in steady-state for full prediction of temperature distribution in the PMSM with taken into account the heat transfer by conduction, convection and radiation.

Keywords: Permanent magnet machine, Thermal analysis, Iron losses, Power losses, Finite element method.

Paper type Research paper

I. INTRODUCTION

The PMSM are becoming important importance in various industries. In recent years, these types of machines are increasingly used in many fields including automotive, aerospace, energy production, household appliances, manufacturing and medical applications. Nowadays, with increasing customer demand for high-torque and high-power densities, highly efficient and small size PMSM, the thermal analysis becomes extremely necessary.

The thermal stress can cause the insulation, the performance degradation and/or the failure of the electrical machine (e.g., reduced efficiency, winding failures or PM demagnetization), hence impact directly on the lifetime of a machine (Wang et al., 2008; Li et al., 2017). The heat sources in electrical machines can be classified into three types: i) electrical losses (i.e., Joule losses in the windings), ii) mechanical losses (i.e., friction losses in bearings and in the air-gap), and iii) electromagnetic losses (i.e., iron core and PMs losses). To extend lifetime and protecting the different part of PMSM from high temperature, there are two different ways. The first is to dissipate the losses by cooling and the second is to reduce the losses by optimized electromagnetic design of the electrical machine (Ghahfarokhi et al., 2016). For this reason, the accurate knowledge of the temperature and heat flow distribution created by the power losses in each part of the machine is very important.

Various tools can be used to analyze the temperature distribution in electrical machines. The most commonly used are numerical methods, such as FEM, or analytical method, such as LPTN. This latter is the most popular method used to estimate the temperature rise in electrical machines. It has the advantage of a fast calculation time. The steady-state thermal model is based on the representation of heat sources and machine materials by a heat generator and thermal resistances respectively. For the transient analysis, heat thermal capacitances are added to consider the temperature variation with time. However, the circuit that accurately models the main heat transfer paths require from the developer to invest some effort to define (Nasab et al., 2020; Zhang et al., 2021; Boglietti et al., 2009). On the other side, FEM are also very often used for thermal analysis of electrical machines. They can be coupled to electromagnetic analysis or directly take the power losses as heat sources (Chang et al., 2017; Wang et al., 2020; Zhang et al., 2017; Jiang and Jahns 2015). The main advantage of this numerical method is that any device geometry can be modeled. Moreover, the distribution and the average values of temperatures in all parts of the electrical machine can be obtained and higher accuracy can be given compared with the results of LPTN. Nevertheless, it is very demanding in terms of computational time of the simulations. Indeed, FEM can only be used to model conduction heat transfer in solid components. On the basis of experimental correlations, the radiation and convection must be approximated as boundary conditions (BCs) (Nategh et al., 2012).

In fact, the computational fluid dynamics (CFD) can be also used to calculate the correlation of heat transfer coefficients of each surface between solid and fluid domains (Nategh et al., 2013; Yang et al., 2017; Nategh et al., 2019). Furthermore, multi-physics technique that couples the two numerical methods (i.e., FEM and CFD) is used to take the turbulent flow properties without need...
to use heat transfer coefficients as input data in FEM (Dong et al., 2019; Hosain et al., 2017; Chong 2019). This technique is also well known in the field of thermal analysis of electrical machines. It has the distinction of being able to describe the fluid flow. However, next to the very considerable time commitment for simulation and model formation, very powerful computer hardware is required (Adouni and Cardoso 2019).

In the thermal analysis of electrical machines, except for the approaches mentioned previously, there are few attempts in previous researches to develop other methods based on the analytical calculation of heat transfer using the formal resolution of thermal PDE. Buyukdegirmenci et al., (2013a) developed a closed-form solution (viz., multi-layer model based on Poisson’s and Laplace’s equations) for the steady-state stator temperature distribution over one slot pitch in a radial air-gap electrical machine. Only two homogeneous layers have been used (i.e., stator lamination and slot/tooth region) where the slot/tooth region was modeled as a homogeneous body with an effective thermal conductivity. The heat source of copper losses is modeled using a heat-flux BC outside of slot/tooth region. In Buyukdegirmenci et al., (2013b), the simplified multi-layer model has been applied to a linear stator structure and has been improved by add more heat-flux BC using horizontal and vertical planar heat sources. Grobler et al., (2013) and Grobler et al., (2015) presents a 2-D analytical thermal model for a high-speed PMSM. The developed model only allows the temperature to be calculated in a single region inside the PM of the electrical machine. However, the main drawback of the previous approaches is that they cannot consider the different thermal conductivities of the machine parts. Therefore, the analytical prediction of temperature distribution based on the formal resolution of thermal PDE by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. To best of the authors’ knowledge, there are only two references in the literature that deal with this type of modeling, viz., Boughrara et al., (2018) and Boughrara and Dubas (2021), where the authors developed a new 2-D exact analytical for the steady-state heat transfer prediction considering different thermal conductivity in all parts of electrical machines with isotropic or anisotropic materials. It is based on the new subdomain technique developed by Dubas and Boughrara (2017a) and Dubas and Boughrara (2017b) which was first applied in the electromagnetic field and can take into account the variation of material properties in both directions (i.e., the thermal conductivity in the case of thermal analysis or the magnetic permeability in the case of electromagnetic analysis). This capacity was not available in the conventional subdomain technique (Dubas and Espanet 2009; Boughrara et al., 2012). However, the model developed in Dubas and Boughrara (2017a) and Dubas and Boughrara (2017b) does not take into account the heat transfer by radiation and the losses in the stator are calculated uniformly, without calculating separately the losses in the stator teeth and yoke. The same remark can be made for the heat transfer by radiation in Buyukdegirmenci et al., (2013a), Buyukdegirmenci et al., (2013b), Grobler et al., (2013) and Grobler et al., (2015).

In this paper, we present a new 2-D thermal analytical model based on the formal resolution of thermal PDE in steady-state for PMSM operating in generator mode. It is based on the multi-layer models with the convolution theorem (i.e., Cauchy’s product theorem) by the harmonic modeling technique (or the Fourier method) by applying complex Fourier’s series and the separation of variables method (Sprangers et al., 2016; Djelloul-Khedda et al., 2017; Djelloul-Khedda et al., 2019). The developed model takes into account the variation of thermal conductivity in different parts of the electrical machine. In addition to the heat transfer by conductive and convective in the electrical machine, the heat transfer by radiation is also taken into account. It is worthy to point out that the presented method has not been used to develop any thermal model in the literature. The loss determination is carried out by FEM in different parts of the studied machine, where the iron losses are calculated for different parts separately as rotor yoke, stator yoke and teeth. This allows the value and location of heat sources to be well determined. The temperature distribution in all regions of PMSM is predicted with and without the air-gap cooling. Finally, a parametric study was performed to see the temperature change for different parameters. All the results of the proposed analytical model are verified and validated by the thermal FEM (Meeker, 2010).

II. Motor Configuration

The PMSM operating in generator mode is shown in Fig. 1. It consists of an outer stator with \(Q_s = 36 \) slots and \(q = 3 \) phases overlapping winding (viz., the single layer distributed winding), and an inner rotor PM surface-mounted by radially magnetized patterns with \(2p = 12 \) poles where \(p \) is the number of pole pairs. The main dimensions and parameters of the studied machine are given in Table 1.
Fig. 1. Studied PMSM (1/4 of the machine).

Fig. 2. Single-phase electrical equivalent circuit.

Fig. 3. Single-phase phasor diagram.

TABLE I
PARAMETERS OF PMSM

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Parameters</th>
<th>Values (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_r</td>
<td>PMs remanence flux density</td>
<td>1.2 (T)</td>
</tr>
<tr>
<td>μ_{rm}</td>
<td>PMs relative permeability</td>
<td>1.02</td>
</tr>
<tr>
<td>σ_m</td>
<td>PMs conductivity</td>
<td>0.556E6 (S.m$^{-1}$)</td>
</tr>
<tr>
<td>Q_s</td>
<td>Number of stator slots</td>
<td>36</td>
</tr>
<tr>
<td>p</td>
<td>Number of pole-pairs</td>
<td>6</td>
</tr>
<tr>
<td>R_{sh}</td>
<td>Shaft radius</td>
<td>45 (mm)</td>
</tr>
<tr>
<td>h_{yp}</td>
<td>Rotor yoke height</td>
<td>77.8 (mm)</td>
</tr>
<tr>
<td>h_m</td>
<td>PMs height</td>
<td>13.7 (mm)</td>
</tr>
<tr>
<td>h_y</td>
<td>Air-gap length</td>
<td>2.5 (mm)</td>
</tr>
<tr>
<td>h_t</td>
<td>Tooth tips height</td>
<td>3 (mm)</td>
</tr>
<tr>
<td>h_s</td>
<td>Stator slot height</td>
<td>30.5 (mm)</td>
</tr>
<tr>
<td>h_{yp}</td>
<td>Stator yoke height</td>
<td>15.5 (mm)</td>
</tr>
<tr>
<td>l_a</td>
<td>Axial length</td>
<td>310 (mm)</td>
</tr>
<tr>
<td>θ_a</td>
<td>Axial length</td>
<td>5 (°)</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>Stator teeth angle</td>
<td>5 (°)</td>
</tr>
<tr>
<td>ϕ_{so}</td>
<td>Stator slot opening angle</td>
<td>1.5 (°)</td>
</tr>
<tr>
<td>ϕ_t</td>
<td>Stator teeth tips angle</td>
<td>7.2 (°)</td>
</tr>
<tr>
<td>ϕ_m</td>
<td>PMs opening angle</td>
<td>24 (°)</td>
</tr>
<tr>
<td>ϕ_{ps}</td>
<td>Angle of air space between PMs</td>
<td>6 (°)</td>
</tr>
<tr>
<td>Ω_{me}</td>
<td>Mechanical speed</td>
<td>500 (rpm)</td>
</tr>
<tr>
<td>R_s</td>
<td>Stator resistance</td>
<td>53.19E-3 (Ω)</td>
</tr>
<tr>
<td>F</td>
<td>Stator fill factor</td>
<td>0.29</td>
</tr>
<tr>
<td>N_c</td>
<td>Number of conductors of slot coil</td>
<td>11</td>
</tr>
</tbody>
</table>
III. Electromagnetic Performances

The prediction of the integral quantities allows the electromagnetic performance evaluation of PMSM. Moreover, this performance is affected and simultaneously affects the temperature in electrical machines.

A. Electric Power Calculation

The electric power generated by the PMSM is calculated as

$$P_e = \frac{1}{T} \int_{T} R_L [i_a(t)^2 + i_b(t)^2 + i_c(t)^2] dt$$

(1)

where R_L is the load resistance, T is the electrical period, and $\{i_a, i_b, i_c\}$ are the phase currents.

B. Electromagnetic Torque Calculation

According to the Maxwell stress tensor, the electromagnetic torque T_{em} is computed by

$$T_{em}(t) = \frac{L_u R_o^2}{\mu_0} \int_0^{2\pi} B_r^{airg}(R_g, \theta, t) B_t^{airg}(R_g, \theta, t) d\theta$$

(2)

where μ_0 is the vacuum permeability, L_u is the axial length of the electrical machine, $R_g = (R_s + R_L)/2$ is the average radius in the air-gap, and B_r^{airg} & B_t^{airg} are respectively the radial and tangential components of the magnetic flux density in the air-gap.

C. Mechanical Power Calculation

The PMSM mechanical power is calculated by

$$P_{me}(t) = \frac{2\pi \Omega_{me}}{60} |T_{em}(t)|$$

(3)

where Ω_{me} is the mechanical speed.

D. Back Electromotive Force (EMF) Calculation

The single-phase back EMF, i.e., E_a, can be computed as

$$E_a = -\frac{N_C L_u}{S} \left(\int_{\Omega^+} \frac{\partial A}{\partial t} d\Omega - \int_{\Omega^-} \frac{\partial A}{\partial t} d\Omega \right)$$

(4)

where N_C is the number of conductors of slot coil, S is the conductor area of each turn of phase winding, A is the magnetic vector potential component along the z-axis, and Ω^+ & Ω^- are respectively the cross-sectional areas of ‘go’ and ‘return’ conductor of the coil.

E. Voltages and Currents Calculation

The stator phase circuit equation can be obtained from the single-phase electrical equivalent circuit shown in Fig. 2 by

$$U_a = E_a - R_s i_a - L_s \frac{di_a}{dt} = R_L i_a + L_L \frac{di_a}{dt}$$

(5)

where R_s is the stator resistance, L_s and L_L are respectively the stator and load inductance, and U_a is the voltage of one phase.

According to single-phase phasor diagram shown in Fig. 3, (5) can be given by

$$U_a(t) \approx E_a - R_s i_a - jX_s i_a = R_L i_a + jX_L i_a$$

(6)

where X_s and X_L are respectively the stator and the load impedance given by

$$X_s = p\omega_r L_s$$

(7)

$$X_L = p\omega_r L_L$$

(8)

where ω_r is the rotor speed in (rad/s).

From (6), we can obtain the currents of one phase by

$$i_a = \frac{E_a}{R_s + R_L + j(X_s + X_L)}$$

(9)
IV. LOSS CALCULATION

Losses in electrical machines are an important part of the electromagnetic performance evaluation. Moreover, these losses directly affect the efficiency and are the main source of heat generation in these machines. However, in our case, because the low-speed of rotor, the friction losses in the air-gap is neglected.

A. Iron Core Loss Calculation

For a no-sinusoidal excitation and according to Bertotti’s (1988) model, the iron core loss calculation, i.e., \(P_{\text{iron}} \), in the PMSM can be expressed by

\[
P_{\text{iron}} = P_{\text{hys}} + P_{\text{edd}} + P_{\text{ex}} = k_h \frac{1}{T} B_m^2 C_f + k_{ed} \frac{1}{T} \int_{T} \left(\frac{dB}{dt} \right)^2 dt + k_{ex} \frac{1}{T} \int_{T} \left| \frac{dB}{dt} \right|^{1.5} dt
\]

(10)

where \(P_{\text{hys}} \), \(P_{\text{edd}} \), and \(P_{\text{ex}} \) are respectively the hysteresis, eddy-current and excess losses; \(B \) is the iron core magnetic density; \(B_m \) is the peak value of the magnetic flux density in the iron core; \(T \) is the iron core magnetic flux density period; \(k_h \), \(k_{ed} \), and \(k_{ex} \) are respectively the coefficient of hysteresis, eddy-current and excess losses. The eddy-current losses coefficient and the correction factor \(C_f \) used to take the total loss depend on the magnitude of every local minor loops are given by

\[
k_{ed} = \frac{\sigma_{\text{iron}} q^2}{12 N_i}
\]

(11)

\[
C_f = 1 + \frac{0.65}{B_m} \sum_{i=1}^{N_i} \Delta B_i
\]

(12)

where \(\sigma_{\text{iron}} \) is the electrical conductivity; \(q \) is the lamination thickness; \(N_i \) is the number of hysteresis loops, and \(\Delta B_i \) is the magnitude of \(i^{th} \) hysteresis loop.

B. PMs Loss Calculation

In general, the 3-D PMs eddy-current losses can be expressed by Benlamine et al., (2015)

\[
P_m = \int \frac{J^2}{\sigma_m} dV
\]

(13)

where \(J \) is the resultant eddy-current density, \(\sigma_m \) is the electrical conductivity of PMs, and \(V \) is the PMs volume.

C. Winding Loss Calculation

The copper loss in the stator winding is calculated as

\[
P_{\text{sl}} = \frac{1}{T} \int_{T} R_s \left(i_s^2(t) + i_r^2(t) + i_p^2(t) \right) dt
\]

(14)

D. Principal Quantities and Power Loss Results

The extracted parameters values of the studied machine are calculated at \(\Omega_{\text{ne}} \) with an electric load \(\{R_L = 2.22 \Omega & L_L = 3.22 \text{ mH} \} \) [see Fig. 2]. Using the dimensions/parameters of the studied machine and the coefficients of M800-65A (i.e., laminated steel core) given in Table I and II respectively. The main quantities of the machine performance are calculated based on the FEM and summarized in Table III. The iron core losses are calculated in different parts of the electrical machine, viz.: rotor/stator yoke and teeth losses. The results of different type of power losses will be used as input data for the developed analytical thermal model.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Parameters</th>
<th>Values (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{\text{hys}})</td>
<td>Hysteresis losses coefficient</td>
<td>225.252 (W.s.T^{-1}.m^{-3})</td>
</tr>
<tr>
<td>(k_{ed})</td>
<td>Excess loss coefficient</td>
<td>1.414E-1 (W.s^{1.5}.T^{-1.5}.m^{-3})</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Steinmetz constant</td>
<td>2</td>
</tr>
<tr>
<td>(\sigma_{\text{iron}})</td>
<td>Conductivity</td>
<td>3.546E6 (S.m^{-1})</td>
</tr>
<tr>
<td>(d_l)</td>
<td>Lamination thickness</td>
<td>0.65 (mm)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Lamination mass density</td>
<td>7.8E3 (kg.m^{-3})</td>
</tr>
</tbody>
</table>
TABLE III

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Parameters</th>
<th>Values (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_{abc}</td>
<td>RMS phase current</td>
<td>80.33 (A)</td>
</tr>
<tr>
<td>U_{abc}</td>
<td>RMS phase tension</td>
<td>200 (V)</td>
</tr>
<tr>
<td>T_{em}</td>
<td>Electromagnetic torque</td>
<td>870.11 (N.m)</td>
</tr>
<tr>
<td>P_{me}</td>
<td>Mechanical power</td>
<td>45.559 (kW)</td>
</tr>
<tr>
<td>P_s</td>
<td>Electrical power</td>
<td>42.862 (kW)</td>
</tr>
<tr>
<td>P_{ry}</td>
<td>Rotor yoke losses</td>
<td>48.43E-3 (W)</td>
</tr>
<tr>
<td>P_m</td>
<td>PMs losses</td>
<td>17.74 (W)</td>
</tr>
<tr>
<td>P_{sl}</td>
<td>Stator slot losses</td>
<td>1.03 (kW)</td>
</tr>
<tr>
<td>P_t</td>
<td>Stator teeth losses</td>
<td>344.69 (W)</td>
</tr>
<tr>
<td>P_{sy}</td>
<td>Stator yoke losses</td>
<td>288.56 (W)</td>
</tr>
<tr>
<td>P_{loss}</td>
<td>Total power losses</td>
<td>1.68 (kW)</td>
</tr>
</tbody>
</table>

V. THERMAL ANALYTICAL MODELING

A. Problem Formulation and Assumptions

The model is formulated in a 2-D polar coordinate system. The problem can be divided into $\tau = 2p$, then, the periodicity of the problem is $2\pi/\tau$ with six regions (i.e., layers) as shown in Fig. 1, viz.,

- Regions I and VI: the rotor and stator yoke;
- Region II: the PMs and the air-space between PMs;
- Region III: the air-gap;
- Region IV: the stator isthmus-opening and tooth-tips;
- Region V: the stator slots and teeth.

The angular position of the ith stator slot-opening and lth PMs are defined respectively by

\[
\alpha_i = \frac{2\pi}{Q_s}i - \frac{\pi}{Q_s}, \quad \pi_i = \frac{\pi}{p} - \frac{l}{p} \tag{15}
\]

with $1 \leq i \leq Q_s$ and $1 \leq l \leq 2p$.

The model is formulated with the following assumptions:

- Interfaces between regions are assumed to be perfect;
- Heat sources are uniform and constant;
- Materials are considered isotropic having constant thermal conductivities without any variation with temperature;
- Stator and rotor slot/teeth have radial sides;
- The axial length of the machine is considered infinite and invariant (i.e., the end-effects are neglected);
- The thermal conductivity in regions is spatially invariant in the radial direction, but can be spatially variant in the tangential direction.

B. Heat Source and Thermal Conductivity Distribution

The heat power source density P can be cc by

\[
P(\theta) = \sum_{n=-\infty}^{\infty} \hat{P}_n e^{-jn\pi\theta} \tag{17}
\]

where $j = \sqrt{-1}$, $n \in]-\infty, +\infty[$ is spatial harmonic orders. Practically, we develop (17) and the all following expressions which will be presented in complex Fourier series expansion to a certain rank harmonic N where $n \in [-N, +N]$. \hat{P}_n is the complex Fourier coefficient defined by
\[\hat{p}_n = \begin{cases} \sum_{i=1}^{Q/\tau} \frac{1}{2\pi fn} \left[P_T e^{-jn\theta_T} \left(1 - e^{-jn\tau \theta_T} \right) + 2jP_S \sin \left(\frac{n\tau \theta_S}{2} \right) \right] e^{jn\alpha_i}, & n \neq 0 \\ \frac{Q}{2\pi} (p_T \theta_T + p_S \theta_S), & n = 0 \end{cases} \] (18)

where \(\{Q, P_T, P_S, \theta_T, \theta_S, \alpha_i, i\} \) are replaced by region according to Table IV. In this table, \(\{V_{ry}, V_m, V_q, V_t, V_{sl}, V_{sy}\} \) are the volumes of different parts of source heat given in Appendix A. All coefficients of \(\hat{P}_n \) are grouped together in one column vector \(P \) as
\[P = [\hat{p}_{-N} \ldots \hat{p}_N]^T \] (19)

The thermal conductivity distribution is given in terms of the complex Fourier series decomposition by
\[\lambda(\theta) = \sum_{n=-\infty}^{\infty} \lambda_n e^{-jn\theta} \] (20)
\[\lambda^{inv}(\theta) = \sum_{n=-\infty}^{\infty} \lambda^{inv}_n e^{-jn\theta} \] (21)

where \(\lambda_n \) is the complex Fourier coefficient defined by
\[\lambda_n = \begin{cases} \sum_{i=1}^{Q/\tau} \frac{1}{2\pi fn} \left[\lambda_T e^{-jn\theta_T} \left(1 - e^{-jn\tau \theta_T} \right) + 2j\lambda_S \sin \left(\frac{n\tau \theta_S}{2} \right) \right] e^{jn\alpha_i}, & n \neq 0 \\ \frac{Q}{2\pi} (\lambda_T \theta_T + \lambda_S \theta_S), & n = 0 \end{cases} \] (22)

where \(\{\lambda_T, \lambda_S\} \) are given to Table IV according to the region. To calculate \(\lambda^{inv}_n \), we replaced \(\{\lambda_T, \lambda_S\} \) by \(\{1/\lambda_T, 1/\lambda_S\} \) in (22).

<table>
<thead>
<tr>
<th>Regions</th>
<th>(Q)</th>
<th>(P_T)</th>
<th>(P_S)</th>
<th>(\lambda_T)</th>
<th>(\lambda_S)</th>
<th>(\theta_T)</th>
<th>(\theta_S)</th>
<th>(\alpha_i)</th>
<th>(\iota)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2p</td>
<td>(P_y/V_y)</td>
<td>(P_y/V_y)</td>
<td>(\lambda_x)</td>
<td>(\lambda_y)</td>
<td>(\theta_y)</td>
<td>(\theta_y)</td>
<td>(\gamma_i)</td>
<td>(\iota)</td>
</tr>
<tr>
<td>II</td>
<td>2p</td>
<td>(P_m/V_m)</td>
<td>(0)</td>
<td>(\lambda_m)</td>
<td>(\lambda_x)</td>
<td>(\theta_m)</td>
<td>(\theta_m)</td>
<td>(\gamma_i)</td>
<td>(\iota)</td>
</tr>
<tr>
<td>III</td>
<td>2p</td>
<td>(P_x/V_x)</td>
<td>(P_x/V_x)</td>
<td>(\lambda_x)</td>
<td>(\lambda_x)</td>
<td>(\theta_x)</td>
<td>(\theta_x)</td>
<td>(\gamma_i)</td>
<td>(\iota)</td>
</tr>
<tr>
<td>IV</td>
<td>(Q_x)</td>
<td>(P_i/V_i)</td>
<td>(0)</td>
<td>(\lambda_x)</td>
<td>(\lambda_x)</td>
<td>(\theta_x)</td>
<td>(\theta_x)</td>
<td>(\alpha_i)</td>
<td>(\iota)</td>
</tr>
<tr>
<td>V</td>
<td>(Q_y)</td>
<td>(P_i/V_i)</td>
<td>(P_{ai}/V_{ai})</td>
<td>(\lambda_x)</td>
<td>(\lambda_x)</td>
<td>(\theta_x)</td>
<td>(\theta_x)</td>
<td>(\alpha_i)</td>
<td>(\iota)</td>
</tr>
<tr>
<td>VI</td>
<td>(Q)</td>
<td>(P_y/V_y)</td>
<td>(P_y/V_y)</td>
<td>(\lambda_x)</td>
<td>(\lambda_x)</td>
<td>(\theta_x)</td>
<td>(\theta_x)</td>
<td>(\alpha_i)</td>
<td>(\iota)</td>
</tr>
</tbody>
</table>

Fig. 4 shows the thermal conductivity and heat source distribution in all parts of PMSM developed by complex Fourier series presented in (18) and (22). The distribution of these components is compared with those of FEM [see Fig. 4] and will be used for the development of the thermal analytical model.
Fig. 4. Thermal conductivity distribution in left side and heat source distribution in right side for region (a) I, (b) II, (c) III, (d) IV, (e) V and (f) VI.

C. Analytical Temperature Calculation

In steady-state, the thermal PDE of the temperature distribution are given by the following Poisson’s equation:

$$\nabla^2 T = -\frac{1}{\lambda} P$$ \hspace{1cm} (23)

where T and λ are respectively the temperature and the thermal conductivity. In terms of the complex Fourier series decomposition, the temperature distribution is given by

$$T(r, \theta) = \sum_{n=-\infty}^{\infty} \hat{T}_n(r) e^{-jnt\theta}$$ \hspace{1cm} (24)

The basic law that defines the relation between the temperature gradient ∇T and the heat-flux density q is Fourier’s law given in the next form

$$q = -\lambda \nabla T$$ \hspace{1cm} (25)

Using (25), the components of heat-flux density are obtained as follows:

$$q_r = -\lambda \frac{\partial T}{\partial r}$$ \hspace{1cm} (26)

$$q_\theta = -\frac{\lambda}{r} \frac{\partial T}{\partial \theta}$$ \hspace{1cm} (27)

In complex Fourier terms

$$q_r(r, \theta) = \sum_{n=-\infty}^{\infty} \hat{q}_{r,n}(r) e^{-jnt\theta}$$ \hspace{1cm} (28)
\[q_{\theta}(r, \theta) = \sum_{n=-\infty}^{\infty} \hat{q}_{\theta,n}(r) e^{-int\theta} \] (29)

By using the Cauchy’s product theorem and the complex Fourier series decomposition \(\text{Sprangers et al., 2016; Djelloul-Khedda et al., 2017; Djelloul-Khedda et al., 2019}\) in (26) - (27), we obtain

\[\sum_{m=-N}^{N} \hat{\lambda}_{n-m} \hat{q}_{r,m} = -\frac{\partial \tilde{T}_n}{\partial r} \] (30)
\[\sum_{m=-N}^{N} \hat{\lambda}_{n-m} \hat{q}_{\theta,m} = -\frac{1}{r} \frac{\partial \tilde{T}_n}{\partial r} \] (31)

in matrix form (31) - (32) given by

\[\mathbf{q}_r = -\lambda_e \frac{\partial \mathbf{T}}{\partial r} \] (32)
\[\mathbf{q}_{\theta} = j \frac{1}{r} \lambda_e \mathbf{N}_r \mathbf{T} \] (33)

where \(\lambda_e\) is the convolution matrices of thermal conductivity given by

\[\lambda_e = \begin{bmatrix} \hat{\lambda}_0 & \ldots & \hat{\lambda}_{2N} \\ \vdots & \ddots & \vdots \\ \hat{\lambda}_{2N} & \ldots & \hat{\lambda}_0 \end{bmatrix} \] (34)

or by

\[\lambda_e = \begin{bmatrix} \hat{\lambda}_0 & \ldots & \hat{\lambda}_{2N} \\ \vdots & \ddots & \vdots \\ \hat{\lambda}_{2N} & \ldots & \hat{\lambda}_0 \end{bmatrix} \] (35)

and \(\mathbf{N}_r\) is the diagonal matrix of \(\bar{\mathbf{N}}_r\), viz.,

\[\mathbf{N}_r = diag[\bar{\mathbf{N}}_r] \] (36)
\[\bar{\mathbf{N}}_r = \tau [\bar{-N} \cdots \bar{N}] \] (37)

In matrix form (24), (28) and (29) can be written by

\[\mathbf{T}(r, \theta) = [\mathbf{T}_r]_r^T [\mathbf{E}_r]_\theta^T \] (38)
\[\mathbf{q}_r(r, \theta) = [\mathbf{q}_r]_r^T [\mathbf{E}_r]_\theta^T \] (39)
\[\mathbf{q}_{\theta}(r, \theta) = [\mathbf{q}_{\theta}]_r^T [\mathbf{E}_r]_\theta^T \] (40)

with

\[\mathbf{T}_r = [\tilde{T}_{-N}(r) \ldots \tilde{T}_{N}(r)]^T \] (41)
\[\mathbf{q}_r = [\hat{q}_{r,-N}(r) \ldots \hat{q}_{r,N}(r)]^T \] (42)
\[\mathbf{q}_{\theta} = [\hat{q}_{\theta,-N}(r) \ldots \hat{q}_{\theta,N}(r)]^T \] (43)
\[\mathbf{E}_r = e^{-ij_k \theta} \] (44)

D. Thermal PDE in each Region

The temperature distribution in all regions is calculated from (23) by solving the following Poisson’s matrix equations:

\[\frac{\partial^2 \mathbf{T}^K}{\partial r^2} + \frac{1}{r} \frac{\partial \mathbf{T}^K}{\partial r} - \left(\frac{\mathbf{V}^K}{r} \right)^2 \mathbf{T}^K = -[\lambda_r^K]^{-1} \mathbf{p}^K \] (45)

with \(\mathbf{V}^K = ([\lambda_r^K]^{-1} \mathbf{N}_r \lambda_c^K \mathbf{N}_r)^{\frac{1}{2}}\) where \(K\) is the index of regions in the lettering \((sym^K: K = I, II, \ldots VI)\).
Using the separation of variables method in \((r, \theta)\), the general solution of (45) is formulated as

\[
T^K|_r = W^K \left(\frac{r}{R_{k+1}} \right)^{LK} a^K + W^K \left(\frac{R_k}{r} \right)^{LK} b^K + r^2 F^K
\]

(46)

The index \(k\) represent the radius of different machine parts, in the lettering \((sym_k; k = 1, 2, \ldots, 7)\), where \(R_k; \{R_1 \text{ to } R_7\}\) are given in \textbf{Appendix B}. The matrices \(L^K\) and \(W^K\) are respectively the diagonal eigenvalue and the eigenvector matrix of \(V^K\), the vectors \(a^K\) & \(b^K\) are the column vectors of the constant’s unknown coefficients, and the term \(r^2 F^K\) represents the particular solution of (45) with

\[
F^K = ([V^K]^2 - 4I)^{-1} [\lambda^K]^{-1} p^K
\]

(47)

where \(I\) is a diagonal identity matrix with same size as \(N_r\).

From (32), (33) and (46), the matrix equation of heat-flux density \(\{q_r; q_\theta\}\) in the different regions are given by

\[
q^K_r|_r = -\frac{1}{r} \left[\frac{\lambda^K W^K L^K \left(\frac{r}{R_{k+1}} \right)^{LK}}{R_k} - \frac{\lambda^K W^K L^K \left(\frac{R_k}{r} \right)^{LK}}{R_k} \right] a^K + 2r^2 \lambda^K_{sym} F^K
\]

(48)

\[
q^K_\theta|_r = \frac{j}{r} \left[\frac{\lambda^K N_r W^K \left(\frac{r}{R_{k+1}} \right)^{LK}}{R_k} + \lambda^K_{sym} N_r W^K \left(\frac{R_k}{r} \right)^{LK} \right] b^K + r^2 \lambda^K_{sym} N_r F^K
\]

(49)

\textbf{E. Definition of BCs}

When considering heat transfer inside the machine by conduction, the BCs between two adjacent media are given as follows

\[
T^K|_r = T^K|_{r=R_k} = 0
\]

(50)

\[
q^K_r|_r = q^K_\theta|_r = 0
\]

(51)

where \(K \in [II, VI]\) and \(k \in [2,6]\).

Inside the rotor and outside the stator, the BCs due to the heat transfer by convection and radiation can be mathematically written as

\[
q^I_r|_{r=R_7} = -h_r (T^I|_{r=R_7} - T_{int}) - \bar{\varepsilon}_r \sigma (T^{int}|_{r=R_7} - T_{int})
\]

(52)

\[
q^I_\theta|_{r=R_7} = h_s (T^{VI}|_{r=R_7} - T_{ext}) + \bar{\varepsilon}_g \sigma (T^{VI}|_{r=R_7} - T_{ext})
\]

(53)

where \(\{h; h_s\}\) and \(\{\varepsilon; \varepsilon_g\}\) are respectively the convection and the emissivity coefficient inside the rotor and outside the stator, \(\sigma\) is Boltzmann’s constant, \(\{T_{int}; T_{ext}\}\) are the temperature column vectors of vacuum in the rotor shaft and outside the machine given in \textbf{Appendix C}.

Both (52) and (53) are fourth degree equations and cannot be applied in the presented modeling, then we have to change them by applying the following equality \textbf{Ghahfarokhi et al., (2016) and 0}

\[
\bar{\varepsilon}_r \sigma (T^{int}|_{r=R_7} - T_{int}) = h_r, ra (T^I|_{r=R_7} - T_{int})
\]

(54)

\[
\bar{\varepsilon}_g \sigma (T^{VI}|_{r=R_7} - T_{ext}) = h_s, ra (T^{VI}|_{r=R_7} - T_{ext})
\]

(55)

where \(\{h_r, ra; h_s, ra\}\) are the radiation coefficient inside the rotor and outside the stator respectively. From (54) and (55), we have

\[
h_r, ra = \text{mean} [\bar{\varepsilon}_r \sigma (T^{I}(R_7, \theta)^2 + T_{int}^2)(T^I(R_1, \theta) + T_{int})]
\]

(56)

\[
h_s, ra = \text{mean} [\bar{\varepsilon}_g \sigma (T^{VI}(R_7, \theta)^2 + T_{ext}^2)(T^{VI}(R_7, \theta) + T_{ext})]
\]

(57)

In fact, \(\{h_r, ra; h_s, ra\}\) are varied depending on the \(\theta\)-direction, because the temperature inside the rotor and outside the stator is almost constant. We take the mean values as indicated in (56) and (57). Then, (52) and (53) will be

\[
q^I_r|_{r=R_1} = -h_r, eq (T^I|_{r=R_1} - T_{int})
\]

(58)
\[q_{r|\Gamma=R_7}^{VI} = h_{s,eq}(T_{r|\Gamma=R_7}^{VI} - T_{ext}) \] \hspace{1cm} (59)

where \(\{h_{r,eq} & h_{s,eq}\} \) are the equivalent convection-radiation coefficient inside the rotor and outside the stator given by

\[h_{r,eq} = h_r + h_{r,ra} \] \hspace{1cm} (60)

\[h_{s,eq} = h_s + h_{s,ra} \] \hspace{1cm} (61)

At \(r = R_k \) where \(k \in [2,6] \) and \(K \in [VI, VI], (46), (48), (50), \) and (51) give

\[W^{K-1}a^{K-1} + W^{K-1}\left(\frac{R_{k-1}}{R_k}\right)^{L^{K-1}}b^{K-1} - W^K\left(\frac{R_k}{R_{k+1}}\right)^L a^K - W^Kb^K = (-F^{K-1} + F^K)R_k^2 \] \hspace{1cm} (62)

\[\lambda_c^{K-1}W^{K-1}L^{K-1}a^{K-1} - \lambda_c^{K-1}W^{K-1}L^{K-1}\left(\frac{R_{k-1}}{R_k}\right)^{L^{K-1}}b^{K-1} - \lambda_c^{K-1}W^{K}L^{K}\left(\frac{R_k}{R_{k+1}}\right)^L a^K + \lambda_c^{K-1}W^{K}L^{K}b^K = 2(-\lambda_c^{K-1}F^{K-1} + \lambda_c^{K}F^K)R_k^2 \] \hspace{1cm} (63)

At \(r = R_1, (46), (48) \) and (58) give

\[\left(h_{r,eq}W^l - \left(\frac{1}{R_1}\right)\lambda_c^l W^l W^l W^l\right)R_1^l a^l + \left(h_{r,eq}W^l + \left(\frac{1}{R_1}\right)\lambda_c^l W^l W^l W^l\right)R_1^l b^l = (2\lambda_c^l - h_{r,eq}R_1)R_1^l a + h_{r,eq}T_{int} \] \hspace{1cm} (64)

At \(r = R_7, (46), (48) \) and (59) give

\[\left(-h_{s,eq}W^{VI} - \left(\frac{1}{R_7}\right)\lambda_c^{VI} W^{VI} W^{VI}\right)a^{VI} + \left(-h_{s,eq}W^{VI} + \left(\frac{1}{R_7}\right)\lambda_c^{VI} W^{VI} W^{VI}\right)R_7^{VI} b^{VI} = (2\lambda_c^{VI} + h_{s,eq}R_1)R_7^{VI} b - h_{s,eq}T_{ext} \] \hspace{1cm} (65)

The system of 12 BCs matrix equations (62) ~ (65) permits to determine the coefficients of temperature in the all regions of PMSM. All coefficients and BCs matrix equations are collected in matrix under the form \(\mathbf{X} = \mathbf{A}^{-1} \mathbf{Y} \) where \(\mathbf{X}, \mathbf{A}, \) and \(\mathbf{Y} \) represent respectively the column vectors of unknown coefficients, the coefficient factor matrix and the column vectors of the constant values in the BCs equations.

\section*{F. Dissipative Heat Power Calculation}

The dissipative heat power (i.e., total heat flux) outside the stator \(P_{ext} \) and inside the rotor \(P_{int} \) are calculated by

\[P_{ext} = L_uR_7 \int_0^{2\pi} q^{VI}(R_7, \theta) \, d\theta \] \hspace{1cm} (66)

\[P_{int} = L_uR_1 \int_0^{2\pi} q^l(R_1, \theta) \, d\theta \] \hspace{1cm} (67)

where

\[q^{VI}(R_7, \theta) = \frac{q_r^{VI}(R_7, \theta)^2 + q_0^{VI}(R_7, \theta)^2}{2} \] \hspace{1cm} (68)

\[q^l(R_1, \theta) = \frac{q_r^l(R_1, \theta)^2 + q_0^l(R_1, \theta)^2}{2} \] \hspace{1cm} (69)

\section*{G. Algorithmic Solution}

Fig. 5 shows the steps to obtain the temperature distribution in the PMSM by an iterative procedure. In the first step, the temperature distribution is calculated without considering the heat transfer by radiation. Then, the radiation coefficients are calculated from the inside and outside (i.e., ambient) temperature of PMSM by using (56) to (57). In the next step, the calculation of temperature distribution is performed taking into account the heat transfer by radiation. In the algorithmic, the term \(\xi \) represents the maximum allowable error to achieve convergence of solution.
VI. RESULTS AND VALIDATION

The main dimensions and parameters of PMSM are given in Table I. The power losses, used as sources for the thermal model, are given in Table III. The thermal conductivities, ambient temperatures, convection and emissivity coefficients used in the thermal model are listed in Table V where forced air cooling is applied to the outside of the stator.

The computation time requirements for the temperature calculation in the PMSM and the root-mean-square (RMS) error of the temperature in the middle of the air gap are shown in Table VI. In the developed model, for \(N = 120 \), which represent the optimal value with an acceptable RMS error and a small calculation time, the resulting system of equations has \(2 \times [(2N + 1) \times 6_{\text{regions}}] = 2,892 \) unknown coefficients with \(\xi = 0.1 \). For the FEM, we have 26,750 domain elements and 2,748 boundary elements. The RMS error is calculated with \(M_S = 500 \) points as

\[
\text{RMS error} = \frac{1}{M_S} \sum_{m=1}^{M_S} [T_{m}^{FEM} - T_{m}^{AM}]
\]

(70)

where \(T_{m}^{FEM} \) and \(T_{m}^{AM} \) are the temperatures of a point on the air-gap by FEM and the developed analytical model respectively.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Parameters</th>
<th>Values (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_v)</td>
<td>Vacuum thermal conductivity</td>
<td>2.9E-2 (W/m/K)</td>
</tr>
<tr>
<td>(\lambda_a)</td>
<td>Air-gap thermal conductivity</td>
<td>2.93E-2 (W/m/K)</td>
</tr>
<tr>
<td>(\lambda_p)</td>
<td>PMs thermal conductivity</td>
<td>9 (W/m/K)</td>
</tr>
<tr>
<td>(\lambda_{\text{M800}})</td>
<td>M800-65A thermal conductivity</td>
<td>35 (W/m/K)</td>
</tr>
<tr>
<td>(\lambda_e)</td>
<td>Stator iron thermal conductivity</td>
<td>(\lambda_{\text{M800}})</td>
</tr>
<tr>
<td>(\lambda_r)</td>
<td>Rotor iron thermal conductivity</td>
<td>(\lambda_{\text{M800}})</td>
</tr>
<tr>
<td>(\lambda_{sl})</td>
<td>Stator slot thermal conductivity</td>
<td>1 (W/m/K)</td>
</tr>
<tr>
<td>(h_r)</td>
<td>Convection coefficient inside the rotor</td>
<td>3 (W/m²/K)</td>
</tr>
<tr>
<td>(h_x)</td>
<td>Convection coefficient outside the stator</td>
<td>105 (W/m²/K)</td>
</tr>
<tr>
<td>(\varepsilon_r)</td>
<td>Emissivity coefficient inside the rotor</td>
<td>0.2</td>
</tr>
<tr>
<td>(\varepsilon_x)</td>
<td>Emissivity coefficient outside the stator</td>
<td>0.8</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Stefan–Boltzmann constant</td>
<td>5.670367E-8</td>
</tr>
<tr>
<td>(T_{\text{int}})</td>
<td>Temperature inside the rotor</td>
<td>25 (°C)</td>
</tr>
<tr>
<td>(T_{\text{ext}})</td>
<td>Temperature outside the stator</td>
<td>20 (°C)</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Air kinematic viscosity</td>
<td>20.96E-6 (m²/s)</td>
</tr>
</tbody>
</table>
TABLE VI
COMPUTATION TIMES AND RMS ERROR.

<table>
<thead>
<tr>
<th>N</th>
<th>Analytical Model</th>
<th>FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [sec]</td>
<td>0.41</td>
<td>1.01</td>
</tr>
<tr>
<td>RMS error [°C]</td>
<td>141.16</td>
<td>64.01</td>
</tr>
</tbody>
</table>
Fig. 7. Temperature and heat flux component distribution in the middle of air-gap: (a) Temperature, (b) Radial flux, and (c) Tangential flux.

The level of temperature distribution in the PMSM obtained by the developed analytical model and FEM is shown in Fig. 6. It can be observed that most of the heat is located in the stator slots. In the rotor yoke, PMs and air-gap, the temperature is approximately equal in each region. The area of lowest temperature in the PMSM is the stator yoke. This result is very reasonable, because most of the losses are located in the stator slots. The convection coefficient inside the rotor is very low, equal to 3 W/(m².K) (i.e., without cooling on this side), so the heat is trapped in the rotor although the losses in this part are low. For the stator yoke, the cooling effect is obvious because the convection coefficient outside the stator is very high. Moreover, the analytical results are very similar to those obtained by FEM.

The temperature and heat flux component distribution in the middle of air-gap is shown in Fig. 7. The analytical results are very similar to those from the FEM. The temperature is very stable in the air-gap [see Fig. 7(a)], varying by 0.4°C in the \(\theta \)-direction. This result is confirmed by the tangential heat flux component [see Fig. 7(c)], where this value of \(q_\theta \) is very small and reaches at \(\pm 2 \) W/m² (i.e., without cooling on this side). In Fig. 7(b), the small error of 0.5 W/m² appears at \(\theta = \{0, \pi/6, \pi/3\} \). This is not significant because the value of \(q_r \) is very small, which may exceed its value in some case to \(10^4 \) W/m². The positive value of \(q_r \) means that the temperature in the air-gap is increasing in the \(r \)-direction, the reverse in the other case where \(q_r \) is negative. In the cases of small value of \(q_r \), this means that the temperature is stable in the \(r \)-direction and the change is almost negligible. This corresponds perfectly to the case shown in Fig. 7(b).

Fig. 8. Temperature in the middle of the 1st PM in the: (a) \(\theta \)-, and (b) \(r \)-direction.

Fig. 9. Temperature in the middle of the 1st stator slot-opening in the: (a) \(\theta \)-, and (b) \(r \)-direction.

The temperature curves obtained analytically in the 1st PM and 1st stator slot-opening presented in the \(\theta \)- and \(r \)-direction are given in Figs. 8-9 and compared with FEM. The results are in very good agreement between the analytical model and FEM. In Fig. 8, the temperature distribution in the PM is stable with a small change in the \(r \)-direction where it increases in this direction. The reason is that the heat source in the PMSM comes from the stator. The PM eddy-current losses are very low due to the distribution winding type. In the stator slot [see Fig. 9], the heat is concentrated in the middle and decreases in the \(r \)-direction, because there is cooling in that direction outside the stator.
In Fig. 10, the heat flux inside the rotor and outside the stator of PMSM is represented by arrows. The level of heat flux is presented by the color and size of the arrows. The maximum value of the heat flux outside the stator reaches $q = 4,553$ W/m² and inside the rotor is equal to $q = 190$ W/m². It can be seen that the direction of heat flux is directly out of PMSM in both the rotor and stator parts. The most of heat is extracted from the stator part due to the presence of cooling system on this side and the high value of losses in the stator, where this dissipative heat power is equal to 1665.6 W [see Table. VII], which represent 99% of the extracted power from the PMSM. In Table. VII, it can be observed that the total extracted power from the PMSM, viz., $P_{\text{int}} + P_{\text{ext}}$, is almost equal to the total losses in the PMSM, viz., P_{loss}. Both results in Fig. 10 and Table. VII of the analytical model and FEM are in good agreement.
In addition to cooling outside stator, the air-gap cooling can also be applied. This type of cooling can be modeled by applying a negative power in the air-gap. Fig. 11 represent the level of temperature distribution where, in addition to the cooling applied to the outside of the stator, the power absorbed by cooling applied in the air-gap is equal to 200 W (i.e., $\pm 0.3 \text{ MW/m}^3$). This value is added in (18) (i.e., $p_{c0} = -200W$ in Table. IV). A good cooling of PMSM can be seen in Fig. 11, especially in the critical parts of the electrical machine. Fig. 12(a) represents the temperature in the air-gap which is lower than 41°C, where by comparison with Fig. 7(a), a difference of 26.6°C can be observed. Fig. 12(b) gives the results of q_r in the air-gap where its value is negative. This means that the temperature in the air-gap increases in the r-direction. Fig. 13 provides more details on the temperature change caused by the air-gap cooling. The temperature is decreased by 33°C in the PM and 5.5°C in the stator slot from 0 to 200 W of the power absorbed by cooling. All results of the numerical and analytical method are identical. This makes the developed model able to predict the temperature in electrical machines with different cooling condition.

Fig. 12. Temperature and heat flux component distribution with cooling in the middle of air-gap. (a) Temperature, (b) Radial flux, and (c) Tangential flux.

Fig. 13. Temperature with varying the absorbed power by cooling at the center of the 1st (a) PM and (b) stator slot.
In Figs. 14 - 19, a parametric study has been performed. It can be observed that the effect mode of the temperature variation in the elements of stator and rotor parts is different. This means that the air-gap separates them. The cooling outside the stator affects all parts of PMSM [see Fig. 14], where the temperature decreases by about 191°C from $h_s = 5$ W/(m²·K) without cooling to $h_s = 105$ W/(m²·K) with cooling. However, the application of cooling inside the rotor [see Fig. 15] cannot give a good result compared to the result of cooling outside the stator, because the two things, which have already been mentioned before, the majority of heat source are concentrated in the stator part and the role of the air-gap which represents a thermal insulator between the stator and the rotor parts. In Fig. 16 and 17, the emissivity variation does not significantly affect, however, their effect is important. The emissivity outside the stator decreases the temperature in all parts of PMSM with linearly, contrary with the emissivity inside the rotor where the influence on the temperature is affected only in the rotor parts [see Fig. 17]. The influence of temperature by the variation of absorbed power by cooling applied in the air-gap is presented in Fig. 18. A linearly variation form of temperature can be seen in all parts of PMSM and the heat trapped in the rotor has also been released. However, the cooling in the stator parts is good including the stator slots. Finally, Fig. 19 represents the influence of the air-gap thermal conductivity on the temperature of PMSM. There is a very small change in the temperature of the PM and the rotor yoke. However, there are no significant differences between a good thermal conductor or a good thermal insulator in the air-gap (i.e., 30 and 0.03 W/(m·K)). The comparison of the parametric study results by analytical method and those obtained by FEM confirms the validity of the proposed analytical method to analyze and/or to predict the temperature distribution in the PMSM with a very good accuracy.
VII. CONCLUSION

In this paper, the authors proposed a 2-D analytical model of steady-state temperature and heat flux components in PMSM. It is based on the multi-layer models with the convolution theorem (i.e., Cauchy’s product theorem) by using the separation of variables method. Six regions are established. All the Laplace’s and Poisson’s equations are solved analytically where these equations are completely defined in terms of complex Fourier’s series. The BCs inside the electrical machine are obtained from the continuity of temperature and radial heat-flux density at the interface. Then, the heat transfer by convection and radiation outside the electrical machine are applied where any iterative method solves efficiently and takes into account the heat transfer by radiation. The model is validated by FEM for different conditions with excellent accuracy. It can be used for an optimization process that includes the effect of different cooling type or a parametric study by varying different important parameters such as the heat source or thermal conductivities of different parts of PMSM. Whereas, the analytical method has the advantage of a fast calculation time compared to FEM. In the same time, the analytical method has the disadvantage of not being able to model complex geometries. Although there is a way to solve this problem by adding more layers in the developed model.

In addition, it should be noted that one can introduce the nonlinear characteristic of thermal conductivity, which varies with temperature $\lambda(T)$ according to 0 where is similar to the $B(H)$ curve. Moreover, to introduce the heat source directly into the proposed thermal model, the model must be coupled with an analytical model to predict the iron core losses [e.g., coupled with the model presented in Djelloul-Khedda et al., (2019)]. However, to improve the results of the proposed model in order to take into account the end effect, an axial 2D model (i.e., x-y coordinate) by using the presented method should be develop by which the temperature in the final windings can be calculated.

APPENDIX A

The volumes of different parts of source heat are given by

$$
\begin{align*}
V_{ry} &= L_u \pi (R_y^2 - R_i^2) \\
V_m &= L_u p \theta_m (R_m^2 - R_i^2) \\
V_a &= L_u \pi (R_a^2 - R_i^2) \\
V_t &= \frac{L_u Q_s}{2} [\theta_t (R_t^2 - R_i^2) + \theta_{ts} (R_{ts}^2 - R_i^2)] \\
V_{sl} &= \frac{L_u Q_s \theta_s}{2} (R_{sl}^2 - R_i^2) \\
V_{sy} &= L_u \pi (R_y^2 - R_i^2)
\end{align*}
$$

(A.1)

where $V_{ry}, V_m, V_a, V_t, V_{sl}$ and V_{sy} are respectively the volume of the rotor yoke, all PMs, the air-gap, all teeth including tooth-tips, all stator slot and the stator yoke.
APPENDIX B

The radii of different regions used in the developed analytical model can be calculated from the parameter's geometry according to Table 1 by the following formulas

\[
\begin{align*}
R_1 &= R_{sh} \\
R_2 &= R_1 + h_{ry} \\
R_3 &= R_2 + h_m \\
R_4 &= R_3 + h_g \\
R_5 &= R_4 + h_p \\
R_6 &= R_4 + h_{st} \\
R_7 &= R_6 + h_{sy} \\
\end{align*}
\] (B.1)

APPENDIX C

The external and internal column vectors of ambient temperature \(\{T_{int}; T_{ext}\} \) are given by

\[
\begin{align*}
T_{ext} &= \left[\hat{T}_{ext}^{\text{ext} - \text{N}} \cdots \hat{T}_{ext}^{\text{ext} \text{N}} \right]^T \\
T_{int} &= \left[\hat{T}_{int}^{\text{int} - \text{N}} \cdots \hat{T}_{int}^{\text{int} \text{N}} \right]^T \\
\end{align*}
\] (C.1)

\[
\hat{T}_{amb,n} = \frac{Q}{2\pi} \left(T_{amb,T} e^{-jn\theta_T} (1 - e^{-jn\theta_T}) + 2jT_{amb,S} \sin \left(\frac{n\pi\theta_S}{2} \right) \right) e^{jn\alpha}, \quad n \neq 0
\] (C.2)

\[
\hat{T}_{amb,n} = \frac{Q}{2\pi} \left(T_{amb,T} \theta_T + T_{amb,S} \theta_S \right), \quad n = 0
\] (C.3)

where \(\{\hat{T}_{amb,n}, T_{amb,T}, T_{amb,S}, \theta_T, \theta_S, \alpha_i, i\} \) are replaced by \(\{\hat{T}_{int,n}, Q, T_{int,T}, T_{int,S}, \theta_T, \theta_S, \alpha_i, i\} \) for the internal ambient temperature and by \(\{\hat{T}_{ext,n}, Q, T_{ext,T}, T_{ext,S}, \theta_T, \theta_S, \alpha_i, i\} \) for the external ambient temperature.

APPENDIX D

The equivalent thermal conductivity of air-gap \(\lambda_a \) is calculated corresponding to (Ball et al., 1989) by

\[
\lambda_a = \beta \eta^{-29.094} R_e^{0.4614} \ln(3.3361\eta) \\
R_e = R_3 h_g \frac{\alpha_{th}}{v_0}
\] (D.1) (D.2)

where \(\beta \) is experience factor considering surface roughness of rotor; \(\eta = R_3/R_4 \); \(R_3 \) is rotor outer radius; \(R_4 \) is stator inner radius; \(R_e \) is Reynolds number; \(h_g \) is air-gap length; and \(v_0 \) is air kinematic viscosity.

REFERENCES

