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Abstract 

Purpose — Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter 

thermal networks (LPTN) depending on the desired accuracy. The analytical prediction of temperature distribution based on the 

formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is 

uncommon in electrical machines. Therefore, this paper presents a two-dimensional (2-D) analytical model of steady-state 

temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode.  

Design/methodology/approach — The proposed model is based on the multi-layer models with the convolution theorem 

(i.e., Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes 

into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power 

losses in the PMSM with the finite-element method (FEM).  

Findings — In order to validate the proposed analytical model, the analytical results are compared with those obtained by thermal 

FEM. The comparisons show good results of the proposed model. 

Originality/value — A new 2-D analytical model based on the PDE in steady-state for full prediction of temperature 

distribution in the PMSM with taken into account the heat transfer by conduction, convection and radiation. 
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I. INTRODUCTION 

HE PMSM are becoming important importance in various industries. In recent years, these types of machines are increasingly 

used in many fields including automotive, aerospace, energy production, household appliances, manufacturing and medical 

applications. Nowadays, with increasing customer demand for high-torque and high-power densities, highly efficient and small size 

PMSM, the thermal analysis becomes extremely necessary. 

The thermal stress can cause the insulation, the performance degradation and/or the failure of the electrical machine (e.g., reduced 

efficiency, winding failures or PM demagnetization), hence impact directly on the lifetime of a machine (Wang et al., 2008; Li et al., 

2017). The heat sources in electrical machines can be classified into three types: i) electrical losses (i.e., Joule losses in the windings), 

ii) mechanical losses (i.e., friction losses in bearings and in the air-gap), and iii) electromagnetic losses (i.e., iron core and PMs losses). 

To extend lifetime and protecting the different part of PMSM from high temperature, there are two different ways. The first is to 

dissipate the losses by cooling and the second is to reduce the losses by optimized electromagnetic design of the electrical machine 

(Ghahfarokhi et al., 2016). For this reason, the accurate knowledge of the temperature and heat flow distribution created by the power 

losses in each part of the machine is very important. 

Various tools can be used to analyze the temperature distribution in electrical machines. The most commonly used are numerical 

methods, such as FEM, or analytical method, such as LPTN. This latter is the most popular method used to estimate the temperature 

rise in electrical machines. It has the advantage of a fast calculation time. The steady-state thermal model is based on the 

representation of heat sources and machine materials by a heat generator and thermal resistances respectively. For the transient 

analysis, heat thermal capacitances are added to consider the temperature variation with time. However, the circuit that accurately 

models the main heat transfer paths require from the developer to invest some effort to define (Nasab et al., 2020; Zhang et al., 

2021; Boglietti et al., 2009). On the other side, FEM are also very often used for thermal analysis of electrical machines. They can 

be coupled to electromagnetic analysis or directly take the power losses as heat sources (Chang et al., 2017; Wang et al., 2020; 

Zhang et al., 2017; Jiang and Jahns 2015). The main advantage of this numerical method is that any device geometry can be 

modeled. Moreover, the distribution and the average values of temperatures in all parts of the electrical machine can be obtained 

and higher accuracy can be given compared with the results of LPTN. Nevertheless, it is very demanding in terms of computational 

time of the simulations. Indeed, FEM can only be used to model conduction heat transfer in solid components. On the basis of 

experimental correlations, the radiation and convection must be approximated as boundary conditions (BCs) (Nategh et al., 2012). 

In fact, the computational fluid dynamics (CFD) can be also used to calculate the correlation of heat transfer coefficients of each 

surface between solid and fluid domains (Nategh et al., 2013; Yang et al., 2017; Nategh et al., 2019). Furthermore, multi-physics 

technique that couples the two numerical methods (i.e., FEM and CFD) is used to take the turbulent flow properties without need 
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to use heat transfer coefficients as input data in FEM (Dong et al., 2019; Hosain et al., 2017; Chong 2019). This technique is also 

well known in the field of thermal analysis of electrical machines. It has the distinction of being able to describe the fluid flow. 

However, next to the very considerable time commitment for simulation and model formation, very powerful computer hardware 

is required (Adouni and Cardoso 2019). 

In the thermal analysis of electrical machines, except for the approaches mentioned previously, there are few attempts in previous 

researches to develop other methods based on the analytical calculation of heat transfer using the formal resolution of thermal 

PDE. Buyukdegirmenci et al., (2013a) developed a closed-form solution (viz., multi-layer model based on Poisson’s and 

Laplace’s equations) for the steady-state stator temperature distribution over one slot pitch in a radial air-gap electrical machine. 

Only two homogeneous layers have been used (i.e., stator lamination and slot/tooth region) where the slot/tooth region was modeled 

as a homogeneous body with an effective thermal conductivity. The heat source of copper losses is modeled using a heat-flux BC 

outside of slot/tooth region. In Buyukdegirmenci et al., (2013b), the simplified multi-layer model has been applied to a linear 

stator structure and has been improved by add more heat-flux BC using horizontal and vertical planar heat sources. Grobler et al., 

(2013) and Grobler et al., (2015) presents a 2-D analytical thermal model for a high-speed PMSM. The developed model only 

allows the temperature to be calculated in a single region inside the PM of the electrical machine. However, the main drawback of 

the previous approaches is that they cannot consider the different thermal conductivities of the machine parts. Therefore, the 

analytical prediction of temperature distribution based on the formal resolution of thermal PDE by the harmonic modeling 

technique (or the Fourier method) is uncommon in electrical machines. To best of the authors’ knowledge, there are only two 

references in the literature that deal with this type of modeling, viz., Boughrara et al., (2018) and Boughrara and Dubas (2021), 

where the authors developed a new 2-D exact analytical for the steady-state heat transfer prediction considering different thermal 

conductivity in all parts of electrical machines with isotropic or anisotropic materials. It is based on the new subdomain technique 

developed by Dubas and Boughrara (2017a) and Dubas and Boughrara (2017b) which was first applied in the electromagnetic 

field and can take into account the variation of material properties in both directions (e.g., the thermal conductivity in the case of 

thermal analysis or the magnetic permeability in the case of electromagnetic analysis). This capacity was not available in the 

conventional subdomain technique (Dubas and Espanet 2009; Boughrara et al., 2012). However, the model developed in Dubas 

and Boughrara (2017a) and Dubas and Boughrara (2017b) does not take into account the heat transfer by radiation and the 

losses in the stator are calculated uniformly, without calculating separately the losses in the stator teeth and yoke. The same remark 

can be made for the heat transfer by radiation in Buyukdegirmenci et al., (2013a), Buyukdegirmenci et al., (2013b), Grobler et 

al., (2013) and Grobler et al., (2015). 

In this paper, we present a new 2-D thermal analytical model based on the formal resolution of thermal PDE in steady-state for 

PMSM operating in generator mode. It is based on the multi-layer models with the convolution theorem (i.e., Cauchy’s product 

theorem) by the harmonic modeling technique (or the Fourier method) by applying complex Fourier’s series and the separation of 

variables method (Sprangers et al., 2016; Djelloul-Khedda et al., 2017; Djelloul-Khedda et al., 2019). The developed model 

takes into account the variation of thermal conductivity in different parts of the electrical machine. In addition to the heat transfer 

by conductive and convective in the electrical machine, the heat transfer by radiation is also taken into account. It is worthy to 

point out that the presented method has not been used to develop any thermal model in the literature. The loss determination is 

carried out by FEM in different parts of the studied machine, where the iron losses are calculated for different parts separately as 

rotor yoke, stator yoke and teeth. This allows the value and location of heat sources to be well determined. The temperature 

distribution in all regions of PMSM is predicted with and without the air-gap cooling. Finally, a parametric study was performed 

to see the temperature change for different parameters. All the results of the proposed analytical model are verified and validated 

by the thermal FEM (Meeker, 2010). 

II. MOTOR CONFIGURATION 

The PMSM operating in generator mode is shown in Fig. 1. It consists of an outer stator with 𝑄𝑠  =  36 slots and 𝑞 =  3 phases 

overlapping winding (viz., the single layer distributed winding), and an inner rotor PM surface-mounted by radially magnetized 

patterns with 2𝑝 = 12 poles where 𝑝 is the number of pole pairs. The main dimensions and parameters of the studied machine are 

given in Table I.  
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Fig. 1.  Studied PMSM (1/4 of the machine). 

 

 

 

TABLE I 

PARAMETERS OF PMSM. 

 
 

 
Fig. 2. Single-phase electrical equivalent circuit. 

 

 
 

 

Fig. 3.  Single-phase phasor diagram.
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III. ELECTROMAGNETIC PERFORMANCES 

The prediction of the integral quantities allows the electromagnetic performance evaluation of PMSM. Moreover, this 

performance is affected and simultaneously affects the temperature in electrical machines. 

A. Electric Power Calculation 

The electric power generated by the PMSM is calculated as 

 𝑃𝑒 =
1

𝑇
∫𝑅𝐿[𝑖𝑎

2(𝑡) + 𝑖𝑏
2(𝑡) + 𝑖𝑐

2(𝑡)]𝑑𝑡
 

𝑇

 (1) 

where 𝑅𝐿 is the load resistance, 𝑇 is the electrical period, and  {𝑖𝑎 , 𝑖𝑏 , 𝑖𝑐} are the phase currents. 

B. Electromagnetic Torque Calculation 

According to the Maxwell stress tensor, the electromagnetic torque 𝑇𝑒𝑚 is computed by 

 𝑇𝑒𝑚(𝑡) =
𝐿𝑢 𝑅𝑔

2

𝜇0
∫ 𝐵𝑟

𝑎𝑖𝑟𝑔(𝑅𝑔, 𝜃, 𝑡)𝐵𝜃
𝑎𝑖𝑟𝑔(𝑅𝑔, 𝜃, 𝑡)𝑑𝜃

2𝜋

0

 (2) 

where 𝜇0 is the vacuum permeability, 𝐿𝑢 is the axial length of the electrical machine, 𝑅𝑔 = (𝑅3 + 𝑅4)/2 is the average radius in 

the air-gap, and 𝐵𝑟
𝑎𝑖𝑟𝑔

 & 𝐵𝜃
𝑎𝑖𝑟𝑔

 are respectively the radial and tangential components of the magnetic flux density in the air-gap. 

C. Mechanical Power Calculation 

The PMSM mechanical power is calculated by 

 𝑃𝑚𝑒(𝑡) =
2𝜋Ω𝑚𝑒
60

|𝑇𝑒𝑚(𝑡)| (3) 

where Ω𝑚𝑒 is the mechanical speed. 

D. Back Electromotive Force (EMF) Calculation 

The single-phase back EMF, i.e., 𝐸𝑎, can be computed as 

 𝐸𝑎 = −
𝑁𝑐𝐿𝑢
𝑆

(∬
𝜕𝐴

𝜕𝑡

 

Ω+
𝑑Ω −∬

𝜕𝐴

𝜕𝑡

 

Ω−
𝑑Ω) (4) 

where 𝑁𝑐 is the number of conductors of slot coil, 𝑆 is the conductor area of each turn of phase winding, 𝐴 is the magnetic vector 

potential component along the 𝑧-axis, and Ω+ & Ω− are respectively the cross-sectional areas of 'go' and 'return' conductor of the 

coil. 

E. Voltages and Currents Calculation 

The stator phase circuit equation can be obtained from the single-phase electrical equivalent circuit shown in Fig. 2 by 

 𝑈𝑎 = 𝐸𝑎 − 𝑅𝑠𝑖𝑎 − 𝐿𝑠
𝑑𝑖𝑎
𝑑𝑡

= 𝑅𝐿𝑖𝑎 + 𝐿𝐿
𝑑𝑖𝑎
𝑑𝑡

 (5) 

where 𝑅𝑠 is the stator resistance, 𝐿𝑠 and 𝐿𝐿 are respectively the stator and load inductance, and 𝑈𝑎 is the voltage of one phase. 

According to single-phase phasor diagram shown in Fig. 3, (5) can be given by 

 𝑈𝑎(𝑡) ≈ 𝐸𝑎 − 𝑅𝑠𝑖𝑎 − 𝑗𝑋𝑠𝑖𝑎 = 𝑅𝐿𝑖𝑎 + 𝑗𝑋𝐿𝑖𝑎 (6) 

where 𝑋𝑠 and 𝑋𝐿 are respectively the stator and the load impedance given by 

 𝑋𝑠 = 𝑝𝜔𝑟𝐿𝑠 (7) 

 𝑋𝐿 = 𝑝𝜔𝑟𝐿𝐿  (8) 

where 𝜔𝑟 is the rotor speed in (rad/s). 

From (6), we can obtain the currents of one phase by 

 𝑖𝑎 =
𝐸𝑎

𝑅𝑠 + 𝑅𝐿 + 𝑗(𝑋𝑠 + 𝑋𝐿)
 (9) 
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IV. LOSS CALCULATION 

Losses in electrical machines are an important part of the electromagnetic performance evaluation. Moreover, these losses directly 

affect the efficiency and are the main source of heat generation in these machines. However, in our case, because the low-speed of 

rotor, the friction losses in the air-gap is neglected. 

A. Iron Core Loss Calculation 

For a no-sinusoidal excitation and according to Bertotti’s (1988) model, the iron core loss calculation, i.e., 𝑃𝑖𝑟𝑜𝑛, in the PMSM 

can be expressed by 

 𝑃𝑖𝑟𝑜𝑛 = 𝑃ℎ𝑦𝑠 + 𝑃𝑒𝑑𝑑 + 𝑃𝑒𝑥  

 = 𝑘ℎ
1

𝑇
𝐵𝑚
2 𝐶𝑓 + 𝑘𝑒𝑑

1

𝑇
∫ (

𝑑𝐵

𝑑𝑡
)
2

𝑑𝑡
 

𝑇

+ 𝑘𝑒𝑥
1

𝑇
∫ |

𝑑𝐵

𝑑𝑡
|
1.5

𝑑𝑡
 

𝑇

 (10) 

where 𝑃ℎ𝑦𝑠, 𝑃𝑒𝑑𝑑, and 𝑃𝑒𝑥 are respectively the hysteresis, eddy-current and excess losses; 𝐵 is the iron core magnetic density; 𝐵𝑚 

is the peak value of the magnetic flux density in the iron core; 𝑇 is the iron core magnetic flux density period; 𝑘ℎ, 𝑘𝑒𝑑, and 𝑘𝑒𝑥   
are respectively the coefficient of hysteresis, eddy-current and excess losses. The eddy-current losses coefficient and the correction 

factor 𝐶𝑓 used to take the total loss depend on the magnitude of every local minor loops are given by 

 𝑘𝑒𝑑 =
𝜎𝑖𝑟𝑜𝑛𝑑

2

12
 (11) 

 𝐶𝑓 = 1 +
0.65

𝐵𝑚
 ∑∆𝐵𝑖

𝑁𝑖

𝑖=1

 (12) 

where 𝜎𝑖𝑟𝑜𝑛 is the electrical conductivity; 𝑑 is the lamination thickness; 𝑁𝑖 is the number of hysteresis loops, and ∆𝐵𝑖 is the 

magnitude of ith hysteresis loop. 

B. PMs Loss Calculation 

In general, the 3-D PMs eddy-current losses can be expressed by Benlamine et al., (2015) 

 𝑃𝑚 = ∫𝐉2/𝜎𝑚 𝑑𝑉
 

𝑉

 (13) 

where 𝐉 is the resultant eddy-current density, 𝜎𝑚 is the electrical conductivity of PMs, and 𝑉 is the PMs volume. 

C. Winding Loss Calculation 

The copper loss in the stator winding is calculated as 

 𝑃𝑠𝑙 =
1

𝑇
∫𝑅𝑠[𝑖𝑎

2(𝑡) + 𝑖𝑏
2(𝑡) + 𝑖𝑐

2(𝑡)]𝑑𝑡
 

𝑇

 (14) 

D. Principal Quantities and Power Loss Results 

The extracted parameters values of the studied machine are calculated at 𝛺𝑚𝑒 with an electric load {𝑅𝐿 = 2.22 𝛺 & 𝐿𝐿 =
3.22 𝑚𝐻} [see Fig. 2]. Using the dimensions/parameters of the studied machine and the coefficients of M800-65A (i.e., laminated 

steel core) given in Table I and II respectively. The main quantities of the machine performance are calculated based on the FEM 

and summarized in Table III. The iron core losses are calculated in different parts of the electrical machine, viz.: rotor/stator yoke 

and teeth losses. The results of different type of power losses will be used as input data for the developed analytical thermal model. 
 

TABLE II 

IRON LOSS COEFFICIENTS OF M800-65A. 
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TABLE III 

EXTRACTED PARAMETERS OF PMSM. 

 

V. THERMAL ANALYTICAL MODELING 

A. Problem Formulation and Assumptions 

The model is formulated in a 2-D polar coordinate system. The problem can be divided into 𝜏 = 2𝑝, then, the periodicity of the 

problem is 2𝜋/𝜏 with six regions (i.e., layers) as shown in Fig. 1, viz., 

• Regions I and VI: the rotor and stator yoke; 

• Region II: the PMs and the air-space between PMs; 

• Region III: the air-gap; 

• Region IV: the stator isthmus-opening and tooth-tips; 

• Region V: the stator slots and teeth. 

The angular position of the 𝑖th stator slot-opening and 𝑙th PMs are defined respectively by 

 𝛼𝑖 =
2𝜋

𝑄𝑠
𝑖 −

𝜋

𝑄𝑠
 (15) 

 𝛾𝑙 =
𝜋

𝑝
𝑙 −

𝜋

𝑝
 (16) 

with  1 ≤ 𝑖 ≤ 𝑄𝑠 and 1 ≤ 𝑙 ≤ 2𝑝 . 

The model is formulated with the following assumptions: 

• Interfaces between regions are assumed to be perfect; 

• Heat sources are uniform and constant; 

• Materials are considered isotropic having constant thermal conductivities without any variation with temperature; 

• Stator and rotor slots/teeth have radial sides; 

• The axial length of the machine is considered infinite and invariant (i.e., the end-effects are neglected); 

• The thermal conductivity in regions is spatially invariant in the radial direction, but can be spatially variant in the 

tangential direction. 

B. Heat Source and Thermal Conductivity Distribution 

The heat power source density 𝑃 can be cc by 

 𝑃(𝜃) = ∑ �̂�𝑛

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃 (17) 

where 𝑗 = √−1, 𝑛 ∈ ]−∞,+∞[ is spatial harmonic orders. Practically, we develop (17) and the all following expressions which 

will be presented in complex Fourier series expansion to a certain rank harmonic 𝑁 where 𝑛 ∈ [−𝑁,+𝑁]. �̂�𝑛 is the complex Fourier 

coefficient defined by 
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�̂�𝑛 =

{
 
 

 
 
∑

1

2𝜋𝑗𝑛
[𝑃𝑇𝑒

−𝑗𝑛𝜏
𝜃𝑆
2 (1 − 𝑒−𝑗𝑛𝜏𝜃𝑇) + 2𝑗𝑃𝑆 sin (

𝑛𝜏𝜃𝑆
2
)]𝑒𝑗𝑛𝜏𝛼𝑖 , 𝑛 ≠ 0

𝑄/𝜏

𝑖=1

𝑄

2𝜋
(𝑃𝑇𝜃𝑇 + 𝑃𝑆𝜃𝑆),                                                                                         𝑛 = 0

 (18) 

where {𝑄, 𝑃𝑇 , 𝑃𝑆, 𝜃𝑇 , 𝜃𝑆, 𝛼𝑖 , 𝑖} are replaced by region according to Table IV. In this table, {𝑉𝑟𝑦, 𝑉𝑚 , 𝑉𝑎 , 𝑉𝑡 , 𝑉𝑠𝑙 , 𝑉𝑠𝑦} are the volumes 

of different parts of source heat given in Appendix A. All coefficients of �̂�𝑛 are grouped together in one column vector 𝐏 as 

 𝐏 = [�̂�−𝑁 ⋯ �̂�𝑁]
𝑇 (19) 

The thermal conductivity distribution is given in terms of the complex Fourier series decomposition by 

 𝜆(𝜃) = ∑ �̂�𝑛

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃  (20) 

 𝜆𝑖𝑛𝑣(𝜃) = ∑ �̂�𝑛
𝑖𝑛𝑣

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃 (21) 

where �̂�𝑛 is the complex Fourier coefficient defined by 

 

 

�̂�𝑛 =

{
 
 

 
 
∑

1

2𝜋𝑗𝑛
[𝜆𝑇𝑒

−𝑗𝑛𝜏
𝜃𝑆
2 (1 − 𝑒−𝑗𝑛𝜏𝜃𝑇) + 2𝑗𝜆𝑆 sin (

𝑛𝜏𝜃𝑆
2
)] 𝑒𝑗𝑛𝜏𝛼𝑖 , 𝑛 ≠ 0

𝑄/𝜏

𝑖=1

𝑄

2𝜋
(𝜆𝑇𝜃𝑇 + 𝜆𝑆𝜃𝑆),                                                                                         𝑛 = 0

 (22) 

 

where  { 𝜆𝑇 , 𝜆𝑆} are given to Table IV according to the region. To calculate �̂�𝑛
𝑖𝑛𝑣, we replaced  {𝜆𝑇  &  𝜆𝑆} by  {1/𝜆𝑇, 1/𝜆𝑆} in (22). 

 

 

TABLE IV 

COMPLEX FOURIER COEFFICIENTS PARAMETERS  

OF HEAT SOURCE AND THERMAL CONDUCTIVITY. 

 
 

 

Fig. 4 shows the thermal conductivity and heat source distribution in all parts of PMSM developed by complex Fourier series 

presented in (18) and (22). The distribution of these components is compared with those of FEM [see Fig. 4] and will be used for 

the development of the thermal analytical model. 
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(a) 

 

(b) 

 

(c) 
 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 4.  Thermal conductivity distribution in left side and heat source distribution in right side for region (a) I, (b) II, (c) III, (d) IV, (e) V and (f) VI. 

 

C. Analytical Temperature Calculation 

In steady-state, the thermal PDE of the temperature distribution are given by the following Poisson’s equation: 

 𝛻2𝑇 =  −
1

𝜆
𝑃  (23) 

where 𝑇 and 𝜆 are respectively the temperature and the thermal conductivity. In terms of the complex Fourier series decomposition, 

the temperature distribution is given by 

 𝑇(𝑟, 𝜃) = ∑ �̂�𝑛(𝑟)

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃 (24) 

The basic law that defines the relation between the temperature gradient 𝛻𝑇 and the heat-flux density  𝑞 is Fourier’s law given 

in the next form 

 𝑞 = −𝜆. 𝛻𝑇 (25) 

Using (25), the components of heat-flux density are obtained as follows: 

 𝑞𝑟 = −𝜆
𝜕𝑇

𝜕𝑟
 (26) 

 𝑞𝜃 = −
𝜆

𝑟
 
𝜕𝑇

𝜕𝜃
 (27) 

In complex Fourier terms 

 𝑞𝑟(𝑟, 𝜃) = ∑ �̂�𝑟,𝑛(𝑟)

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃 (28) 
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 𝑞𝜃(𝑟, 𝜃) = ∑ �̂�𝜃,𝑛(𝑟)

∞

𝑛=−∞

𝑒−𝑗𝑛𝜏𝜃 (29) 

By using the Cauchy’s product theorem and the complex Fourier series decomposition (Sprangers et al., 2016; Djelloul-Khedda 

et al., 2017; Djelloul-Khedda et al., 2019) in (26) - (27), we obtain 

 ∑ �̂�𝑛−𝑚
𝑖𝑛𝑣  �̂�𝑟,𝑚

𝑁

𝑚=−𝑁

= −
𝜕�̂�𝑛
𝜕𝑟
  (30) 

 ∑ �̂�𝑛−𝑚
𝑖𝑛𝑣  �̂�𝜃,𝑚

𝑁

𝑚=−𝑁

= −
1

𝑟

𝜕�̂�𝑛
𝜕𝑟

 (31) 

in matrix form (31) - (32) given by 

 𝐪𝑟 = −𝛌𝑐
𝜕𝐓

𝜕𝑟
  (32) 

 𝐪𝜃 = 𝑗
1

𝑟
𝛌𝑐  𝐍𝜏𝐓 (33) 

where 𝛌𝑐   is the convolution matrices of thermal conductivity given by 

     𝛌𝑐 = [
�̂�0
𝑖𝑛𝑣 ⋯ �̂�−2𝑁

𝑖𝑛𝑣

⋮ ⋱ ⋮
�̂�2𝑁
𝑖𝑛𝑣 ⋯ �̂�0

𝑖𝑛𝑣

]

−1

 (34) 

or by 

 𝛌𝑐 = [
�̂�0 ⋯ �̂�−2𝑁
⋮ ⋱ ⋮
�̂�2𝑁 ⋯ �̂�0

] (35) 

and 𝐍𝜏 is the diagonal matrix of �̅�𝝉, viz., 

 𝐍𝜏 = 𝑑𝑖𝑎𝑔[�̅�𝝉] (36) 

 �̅�𝝉 = 𝜏. [−𝑁⋯𝑁] (37) 

In matrix form (24), (28) and (29) can be written by  

 𝑇(𝑟, 𝜃) = [𝐓|𝑟]
𝑇 . [𝐄𝝉|𝜃]

𝑇 (38) 

 𝑞𝑟(𝑟, 𝜃) = [𝐪𝑟|𝑟]
𝑇 . [𝐄𝝉|𝜃]

𝑇 (39) 

 𝑞𝜃(𝑟, 𝜃) = [𝐪𝜃|𝑟]
𝑇. [𝐄𝝉|𝜃]

𝑇 (40) 

with 

 𝐓|𝑟 = [�̂�−𝑁(𝑟) ⋯ �̂�𝑁(𝑟)]
𝑇 (41) 

 𝐪𝑟|𝑟 = [�̂�𝑟−𝑁(𝑟) ⋯ �̂�𝑟𝑁(𝑟)]
𝑇
 (42) 

 𝐪𝜃|𝑟 = [�̂�𝜃−𝑁(𝑟) ⋯ �̂�𝜃𝑁(𝑟)]
𝑇

 (43) 

 𝐄𝝉|𝜃 = 𝑒
−𝑗�̅�𝝉𝜃  (44) 

D. Thermal PDE in each Region 

The temperature distribution in all regions is calculated from (23) by solving the following Poisson’s matrix equations: 

 
𝜕2𝐓𝐾|𝑟
𝜕𝑟2

+ 
1

𝑟

𝜕𝐓𝐾|𝑟
𝜕𝑟

− (
𝐕𝐾

𝑟
)

2

𝐓𝐾|𝑟  = −[𝛌𝑐
𝐾]−1𝐩𝐾 (45) 

with  𝐕𝐾 = ([𝛌𝑐
𝐾]−1𝐍𝝉 𝛌𝑐

𝐾𝐍𝝉)
1

2 where 𝐾 is the index of regions in the lettering (𝒔𝒚𝒎𝐾: 𝐾 = I, II, . . .  VI). 
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Using the separation of variables method in (𝑟, 𝜃), the general solution of (45) is formulated as 

 𝐓𝐾|𝑟 = 𝐖
𝐾 (

𝑟

𝑅𝑘+1
)
𝐋𝐾

𝐚𝐾 +𝐖𝐾 (
𝑅𝑘
𝑟
)
𝐋𝐾

𝐛𝐾 + 𝑟2𝐅𝐾  (46) 

The index 𝑘 represent the radius of different machine parts, in the lettering (𝒔𝒚𝒎𝑘: 𝑘 = 1, 2, . . .  7), where 𝑅𝑘: {𝑅1 to 𝑅7} are given 

in Appendix B. The matrices  𝐋𝐾  and  𝐖𝐾 are respectively the diagonal eigenvalue and the eigenvector matrix of 𝐕𝐾 , the vectors 

𝐚𝐾  & 𝐛𝐾  are the column vectors of the constant's unknown coefficients, and the term 𝑟2𝐅𝐾  represents the particular solution of 

(45) with 

 𝐅𝐾 = ([𝐕𝐾]2 − 4𝐈)−1[𝛌𝑐
𝐾]−1𝐩𝐾 (47) 

where I is a diagonal identity matrix with same size as 𝐍𝝉. 

 

From (32), (33) and (46), the matrix equation of heat-flux density {𝐪𝑟;  𝐪𝜃} in the different regions are given by 

 𝐪𝑟
𝐾|𝑟 = −

1

𝑟
[𝛌𝑐

𝐾𝐖𝐾𝐋𝑘 (
𝑟

𝑅𝑘+1
)
𝐋𝐾

𝐚𝐾 − 𝛌𝑐
𝐾𝐖𝐾𝐋𝐾 (

𝑅𝑘
𝑟
)
𝐋𝐾

𝐛𝐾 + 2𝑟2𝛌𝑐
𝐾𝐅𝐾] (48) 

 𝐪𝜃
𝐾|𝑟 =

𝑗

𝑟
[𝛌𝑐

𝐾𝐍𝜏𝐖
𝐾 (

𝑟

𝑅𝑘+1
)
𝐋𝐾

𝐚𝐾 + 𝛌𝑐
𝐾𝐍𝜏𝐖

𝐾 (
𝑅𝑘
𝑟
)
𝐋𝐾

𝐛𝐾 + 𝑟2𝛌𝑐
𝐾𝐍𝜏𝐅

𝐾] (49) 

E. Definition of BCs 

When considering heat transfer inside the machine by conduction, the BCs between two adjacent media are given as follows 

 𝐓𝐾−1|𝑟=𝑅𝑘 − 𝐓
𝐾|𝑟=𝑅𝑘  = 0 (50) 

 𝐪𝑟
𝐾−1|𝑟=𝑅𝑘 − 𝐪𝑟

𝐾|𝑟=𝑅𝑘   = 0  (51) 

where 𝐾 ∈ [𝐈𝐈, 𝐕𝐈] and 𝑘 ∈ [2,6]. 

Inside the rotor and outside the stator, the BCs due to the heat transfer by convection and radiation can be mathematically written as 

 𝐪𝑟
𝐼 |𝑟=𝑅1 = −ℎ𝑟(𝐓

𝐼|𝑟=𝑅1 − 𝐓𝑖𝑛𝑡) − 𝜀𝑟𝜎 (𝐓
𝐼4|

𝑟=𝑅1
− 𝐓𝑖𝑛𝑡

4) (52) 

 𝐪𝑟
𝑉𝐼|𝑟=𝑅7 = ℎ𝑠(𝐓

𝑉𝐼|𝑟=𝑅7 − 𝐓𝑒𝑥𝑡) + 𝜀𝑠𝜎 (𝐓
𝑉𝐼4|

𝑟=𝑅7
− 𝐓𝑒𝑥𝑡

4) (53) 

where {ℎ𝑟;  ℎ𝑠} and {𝜀𝑟;  𝜀𝑠} are respectively the convection and the emissivity coefficient inside the rotor and outside the stator, 𝜎 

is Boltzmann’s constant, {𝐓𝑖𝑛𝑡;  𝐓𝑒𝑥𝑡} are the temperature column vectors of vacuum in the rotor shaft and outside the machine 

given in Appendix C. 

Both (52) and (53) are fourth degree equations and cannot be applied in the presented modeling, then we have to change them by 

applying the following equality Ghahfarokhi et al., (2016) and 0) 

 𝜀𝑟𝜎 (𝐓
𝐼4|

𝑟=𝑅1
− 𝐓𝑖𝑛𝑡

4) = ℎ𝑟,𝑟𝑎(𝐓
𝐼|𝑟=𝑅1 − 𝐓𝑖𝑛𝑡) (54) 

 𝜀𝑠𝜎 (𝐓
𝑉𝐼4|

𝑟=𝑅7
− 𝐓𝑒𝑥𝑡

4) = ℎ𝑠,𝑟𝑎(𝐓
𝑉𝐼|𝑟=𝑅7 − 𝐓𝑒𝑥𝑡) (55) 

where {ℎ𝑟,𝑟𝑎& ℎ𝑠,𝑟𝑎} are the radiation coefficient inside the rotor and outside the stator respectively. From (54) and (55), we have 

 ℎ𝑟,𝑟𝑎 = 𝐦𝐞𝐚𝐧[𝜀𝑟𝜎(𝑇
𝐼(𝑅1, 𝜃)

2 + 𝑇𝑖𝑛𝑡
2)(𝑇𝐼(𝑅1, 𝜃) + 𝑇𝑖𝑛𝑡)]  (56) 

 ℎ𝑠,𝑟𝑎 = 𝐦𝐞𝐚𝐧[𝜀𝑠𝜎(𝑇
𝑉𝐼(𝑅7, 𝜃)

2 + 𝑇𝑒𝑥𝑡
2)(𝑇𝑉𝐼(𝑅7, 𝜃) + 𝑇𝑒𝑥𝑡)] (57) 

In fact, {ℎ𝑟,𝑟𝑎& ℎ𝑠,𝑟𝑎} are varied depending on the 𝜃-direction, because the temperature inside the rotor and outside the stator is 

almost constant. We take the mean values as indicated in (56) and (57). Then, (52) and (53) will be 

 𝐪𝑟
𝐼 |𝑟=𝑅1 = −ℎ𝑟,𝑒𝑞(𝐓

𝐼|𝑟=𝑅1 − 𝐓𝑖𝑛𝑡) (58) 
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 𝐪𝑟
𝑉𝐼|𝑟=𝑅7 = ℎ𝑠,𝑒𝑞(𝐓

𝑉𝐼|𝑟=𝑅7 − 𝐓𝑒𝑥𝑡) (59) 

where {ℎ𝑟,𝑒𝑞& ℎ𝑠,𝑒𝑞} are the equivalent convection-radiation coefficient inside the rotor and outside the stator given by 

 ℎ𝑟,𝑒𝑞 = ℎ𝑟 + ℎ𝑟,𝑟𝑎 (60) 

 ℎ𝑠,𝑒𝑞 = ℎ𝑠 + ℎ𝑠,𝑟𝑎 (61) 

At 𝑟 = 𝑅𝑘 where 𝑘 ∈ [2,6] and 𝐾 ∈ [𝐈𝐈, 𝐕𝐈], (46), (48), (50), and (51) give 

 𝐖𝐾−1𝐚𝐾−1 +𝐖𝐾−1 (
𝑅𝑘−1
𝑅𝑘

)
𝐋𝐾−1

𝐛𝐾−1 −𝐖𝐾 (
𝑅𝑘
𝑅𝑘+1

)
𝐋𝐾

𝐚𝐾 −𝐖𝐾𝐛𝐾    = (−𝐅𝐾−1 + 𝐅𝐾)𝑅𝑘
2
 (62) 

 𝛌𝑐
𝐾−1𝐖𝐾−𝟏𝐋𝐾−1𝐚𝐾−1 − 𝛌𝑐

𝐾−1𝐖𝐾−1𝐋𝐾−𝟏 (
𝑅𝑘−1
𝑅𝑘

)
𝐋𝐾−𝟏

𝐛𝐾−1 − 𝛌𝑐
𝐾𝐖𝐾𝐋𝐾 (

𝑅𝑘
𝑅𝑘+1

)
𝐋𝐾

𝐚𝐾 + 𝛌𝑐
𝐾𝐖𝐾𝐋𝐾𝐛𝐾   

 = 2(−𝛌𝑐
𝐾−1𝐅𝐾−1 + 𝛌𝑐

𝐾𝐅𝐾)𝑅𝑘
2
 (63) 

At 𝑟 = 𝑅1, (46), (48) and (58) give 

 (ℎ𝑟,𝑒𝑞𝐖
𝐼 − (

1

𝑅1
) 𝛌𝑐

𝐼𝐖𝐼𝐋𝐼) (
𝑅1
𝑅2
)
𝐋𝐼

𝐚𝐼 + (ℎ𝑟,𝑒𝑞𝐖
𝐼 + (

1

𝑅1
) 𝛌𝑐

𝐼𝐖𝐼𝐋𝐼) 𝐛𝐼 = (2𝛌𝑐
𝐼 − ℎ𝑟,𝑒𝑞𝑅1𝐈)𝑅1𝐅

𝐼 + ℎ𝑟,𝑒𝑞𝐓𝑖𝑛𝑡 (64) 

At 𝑟 = 𝑅7, (46), (48) and (59) give 

(−ℎ𝑠,𝑒𝑞𝐖
𝑉𝐼 − (

1

𝑅7
) 𝛌𝑐

𝑉𝐼𝐖𝐼𝐋𝑉𝐼) 𝐚𝑉𝐼 + (−ℎ𝑠,𝑒𝑞𝐖
𝑉𝐼 + (

1

𝑅7
) 𝛌𝑐

𝑉𝐼𝐖𝑉𝐼𝐋𝑉𝐼)(
𝑅6
𝑅7
)
𝐋𝑉𝐼

𝐛𝑉𝐼 = (2𝛌𝑐
𝑉𝐼 + ℎ𝑠,𝑒𝑞𝑅1𝐈)𝑅7𝐅

𝑉𝐼 − ℎ𝑠,𝑒𝑞𝐓𝑒𝑥𝑡 

  (65) 

The system of 12 BCs matrix equations (62) ~ (65) permits to determine the coefficients of temperature in the all regions of 

PMSM. All coefficients and BCs matrix equations are collected in matrix under the form 𝐗 = 𝐀−𝟏 . 𝐘 where 𝐗, 𝐀, and 𝐘 represent 

respectively the column vectors of unknown coefficients, the coefficient factor matrix and the column vectors of the constant 

values in the BCs equations. 

F. Dissipative Heat Power Calculation 

The dissipative heat power (i.e., total heat flux) outside the stator 𝑃𝑒𝑥𝑡 and inside the rotor 𝑃𝑖𝑛𝑡 are calculated by 

 𝑃𝑒𝑥𝑡 = 𝐿𝑢𝑅7∫ 𝑞𝑉𝐼(𝑅7, θ) 𝑑𝜃
2𝜋

0

 (66) 

 𝑃𝑖𝑛𝑡 = 𝐿𝑢𝑅1∫ 𝑞𝐼(𝑅1, θ) 𝑑𝜃
2𝜋

0

 (67) 

where 

 𝑞𝑉𝐼(𝑅7, θ) = √𝑞𝑟𝑉𝐼(𝑅7, θ)2 + 𝑞𝜃
𝑉𝐼(𝑅7, θ)2 (68) 

 𝑞𝐼(𝑅1, θ) = √𝑞𝑟𝐼(𝑅1, θ)2 + 𝑞𝜃
𝐼 (𝑅1, θ)2 (69) 

G. Algorithmic Solution 

Fig. 5 shows the steps to obtain the temperature distribution in the PMSM by an iterative procedure. In the first step, the temperature 

distribution is calculated without considering the heat transfer by radiation. Then, the radiation coefficients are calculated from the 

inside and outside (i.e., ambient) temperature of PMSM by using (56) to (57). In the next step, the calculation of temperature 

distribution is performed taking into account the heat transfer by radiation. In the algorithmic, the term 𝜉 represents the maximum 

allowable error to achieve convergence of solution. 
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Fig. 5.  Algorithmic solution. 

 

VI. RESULTS AND VALIDATION 

The main dimensions and parameters of PMSM are given in Table I. The power losses, used as sources for the thermal model, 

are given in Table III. The thermal conductivities, ambient temperatures, convection and emissivity coefficients used in the 

thermal model are listed in Table V where forced air cooling is applied to the outside of the stator. 

The computation time requirements for the temperature calculation in the PMSM and the root-mean-square (RMS) error of the 

temperateure in the middle of the air gap are shown in Table VI. In the developed model, for 𝑁 =  120, which represent the optimal 

value with an acceptable RMS error and a small calculation time, the the resulting system of equations has 2. [(2𝑁 +  1). 6𝑟𝑒𝑔𝑖𝑜𝑛𝑠] =

2,892 unknown coefficients with 𝜉 = 0.1. For the FEM, we have 26,750 domain elements and 2,748 boundary elements.The RMS 

error is calculated with 𝑀𝑠 =  500 points as 

 

 RMS error =
1

𝑀𝑠
∑|𝑇𝑚

𝐹𝐸𝑀 − 𝑇𝑚
𝐴𝑀|

𝑀𝑠

𝑚=1

 (70) 

 

where 𝑇𝑚
𝐹𝐸𝑀 and 𝑇𝑚

𝐴𝑀 are the temperatures of a point on the air-gap by FEM and the devloped analytical model respectivly. 
 

TABLE V 

PARAMETERS OF THE THERMAL MODEL. 
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TABLE VI 

COMPUTATION TIMES AND RMS ERROR. 

 

 

 
(a)                                                                                                  (b) 

Fig. 6.  The level of temperature distribution in the PMSM: (a) Analytical, and (b) FEM. 
 

 

 

 
(a)                                                                                                           (b) 
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(c) 

Fig. 7.  Temperature and heat flux component distribution in the middle of air-gap: (a) Temperature, (b) Radial flux, and (c) Tangential flux. 
 

The level of temperature distribution in the PMSM obtained by the developed analytical model and FEM is shown in Fig. 6. It 

can be observed that most of the heat is located in the stator slots. In the rotor yoke, PMs and air-gap, the temperature is 

approximately equal in each region. The area of lowest temperature in the PMSM is the stator yoke. This result is very reasonable, 

because most of the losses are located in the stator slots. The convection coefficient inside the rotor is very low, equal to 3 W/(m².K) 

(i.e., without cooling on this side), so the heat is trapped in the rotor although the losses in this part are low. For the stator yoke, 

the cooling effect is obvious because the convection coefficient outside the stator is very high. Moreover, the analytical results are 

very similar to those obtained by FEM.  

The temperature and heat flux component distribution in the middle of air-gap is shown in Fig. 7. The analytical results are very 

similar to those from the FEM. The temperature is very stable in the air-gap [see Fig. 7(a)], varying by 0.4°C in the 𝜃-direction. 

This result is confirmed by the tangential heat flux component [see Fig. 7(c)], where this value of 𝑞𝜃 is very small and reaches at 

±2 W/m² (i.e., the tangential heat flux component is obtained from the derivation of temperature versus 𝜃). In Fig. 7(b), the small 

error of 0.5 W/m² appears at 𝜃 = {0, 𝜋/6, 𝜋/3}. This is not significant because the value of 𝑞𝑟 is very small, which may exceed its 

value in some case to 104 W/m². The radial heat flux component is obtained from the derivation of temperature versus  𝑟. The 

positive value of 𝑞𝑟 means that the temperature in the air-gap is decreasing in the 𝑟-direction, the reverse in the other case where 

𝑞𝑟 is negative. In the cases of small value of 𝑞𝑟, this means that the temperature is stable in the 𝑟-direction and the change is almost 

negligible. This corresponds perfectly to the case shown in Fig. 7(b). 

 

 

 

 

 
(a)                                                            (b) 

Fig. 8.  Temperature in the middle of the 1st PM in the: (a) 𝜃-, and (b) r-

direction. 
 

 
(a)                                                            (b) 

Fig. 9.  Temperature in the middle of the 1st stator slot-opening in the: (a) 𝜃-, 

and (b) r-direction. 

 

The temperature curves obtained analytically in the 1st PM and 1st stator slot-opening presented in the 𝜃- and 𝑟-direction are 

given in Figs. 8-9 and compared with FEM. The results are in very good agreement between the analytical model and FEM. In 

Fig. 8, the temperature distribution in the PM is stable with a small change in the 𝑟-direction where it increases in this direction. 

The reason is that the heat source in the PMSM comes from the stator. The PM eddy-current losses are very low due to the 

distribution winding type. In the stator slot [see Fig. 9], the heat is concentrated in the middle and decreases in the 𝑟-direction, 

because there is cooling in that direction outside the stator. 
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(a)                                                                                                                       (b) 

Fig. 10.  Heat flux inside and outside the PMSM (1/4 of the machine) represented by level and direction of arrow: (a) Analytical, and (b) FEM. 

 

TABLE VII 

DISSIPATIVE HEAT POWER FROM THE PMSM. 

 
 

In Fig. 10, the heat flux inside the rotor and outside the stator of PMSM is represented by arrows. The level of heat flux is presented 

by the color and size of the arrows. The maximum value of the heat flux outside the stator reaches 𝑞 = 4,553 W/m² and inside the 

rotor is equal to 𝑞 = 190 W/m². It can be seen that the direction of heat flux is directly out of PMSM in both the rotor and stator parts. 

The most of heat is extracted from the stator part due to the presence of cooling system on this side and the high value of losses in the 

stator, where this dissipative heat power is equal to 1665.6 W [see Table. VII], which represent 99 % of the extracted power from the 

PMSM. In Table. VII, it can be observed that the total extracted power from the PMSM, viz., 𝑃𝒊𝒏𝒕 + 𝑃𝒆𝒙𝒕, is almost equal to the total 

losses in the PMSM, viz., 𝑃𝒍𝒐𝒔𝒔. Both results in Fig. 10 and Table. VII of the analytical model and FEM are in good agreement. 

 

 
(a)                                                                                                    (b) 

Fig. 11.  The level of temperature distribution in the PMSM with air-gap cooling: (a) Analytical, and (b) FEM. 
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     (a)                                                                                      (b) 

 
(c) 

Fig. 12.  Temperature and heat flux component distribution with cooling in the middle of air-gap. (a) Temperature, (b) Radial flux, and (c) Tangential flux. 
 

In addition to cooling outside stator, the air-gap cooling can also be applied. This type of cooling can be modeled by applying a 

negative power in the air-gap. Fig. 11 represent the level of temperature distribution where, in addition to the cooling applied to 

the outside of the stator, the power absorbed by cooling applied in the air-gap is equal to 200 W (i.e., ≅0.3 MW/m3). This value is 

added in (18) (i.e., 𝑝𝑐𝑜=-200W in Table. IV). A good cooling of PMSM can be seen in Fig. 11, especially in the critical parts of 

the electrical machine. Fig. 12(a) represents the temperature in the air-gap which is lower than 41°C, where by comparison with 

Fig. 7(a), a difference of 26.6°C can be observed. Fig. 12(b) gives the results of 𝑞𝑟 in the air-gap where its value is negative. This 

means that the temperature in the air-gap increases in the 𝑟-direction. Fig. 13 provides more details on the temperature change 

caused by the air-gap cooling. The temperature is decreased by 33°C in the PM and 5.5°C in the stator slot from 0 to 200 W of the 

power absorbed by cooling. All results of the numerical and analytical method are identical. This makes the developed model able 

to predict the temperature in electrical machines with different cooling condition. 

 
  (a)                                                                                      (b) 

Fig. 13.  Temperature with varying the absorbed power by cooling at the center of the 1st (a) PM and (b) stator slot. 
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In Figs. 14 - 19, a parametric study has been performed. It can be observed that the effect mode of the temperature variation in 

the elements of stator and rotor parts is different. This means that the air-gap separates them. The cooling outside the stator affects 

all parts of PMSM [see Fig. 14], where the temperature decreases by about 191°C from ℎ𝑠= 5 W/(m².K) without cooling to ℎ𝑠= 

105 W/(m².K) with cooling. However, the application of cooling inside the rotor [see Fig. 15] cannot give a good result compared 

to the result of cooling outside the stator, because the two things, which have already been mentioned before, the majority of heat 

source are concentrated in the stator part and the role of the air-gap which represents a thermal insulator between the stator and the 

rotor parts. In Fig. 16 and 17, the emissivity variation does not significantly affect, however, their effect is important. The 

emissivity outside the stator decreases the temperature in all parts of PMSM with linearly, contrary with the emissivity inside the 

rotor where the influence on the temperature is affected only in the rotor parts [see Fig. 17]. The influence of temperature by the 

variation of absorbed power by cooling applied in the air-gap is presented in Fig. 18. A linearly variation form of temperature can 

be seen in all parts of PMSM and the heat trapped in the rotor has also been released. However, the cooling in the stator parts is 

good including the stator slots. Finally, Fig. 19 represents the influence of the air-gap thermal conductivity on the temperature of 

PMSM. There is a very small change in the temperature of the PM and the rotor yoke. However, there are no significant differences 

between a good thermal conductor or a good thermal insulator in the air-gap (i.e., 30 and 0.03 W/(m.K)). The comparison of the 

parametric study results by analytical method and those obtained by FEM confirms the validity of the proposed analytical method 

to analyze and/or to predict the temperature distribution in the PMSM with a very good accuracy. 

 
Fig. 14.  Temperature variation with varying ℎ𝑠 and ℎ𝑟 = 3 W/(m2 ·K) in a point 

at the center of different parts of PMSM. 

 

 
Fig. 15. Temperature variation with varying ℎ𝑟 and ℎ𝑠 = 5 W/(m2 ·K) in a point 

at the center of different parts of PMSM.  

 

 

 
Fig. 16.  Temperature variation with varying 𝜀𝑠 and 𝜀𝑟= 0.2 in a point at the 

center of different parts of PMSM. 

 

 
Fig. 17.  Temperature variation with varying 𝜀𝑟  and 𝜀𝑠= 0.8 in a point at the 

center of different parts of PMSM. 
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Fig. 18.  Temperature variation with varying the absorbed power by cooling 

applied in the air-gap 𝑃𝑐𝑜 in a point at the center of different parts of PMSM. 

 

 
Fig. 19.  Temperature variation with varying 𝜆𝑎 in a point at the center of 

different parts of PMSM. 
 

VII. CONCLUSION 

In this paper, the authors proposed a 2-D analytical model of steady-state temperature and heat flux components in PMSM. It is 

based on the multi-layer models with the convolution theorem (i.e., Cauchy’s product theorem) by using the separation of variables 

method. Six regions are established. All the Laplace’s and Poisson’s equations are solved analytically where these equations are 

completely defined in terms of complex Fourier’s series. The BCs inside the electrical machine are obtained from the continuity 

of temperature and radial heat-flux density at the interface. Then, the heat transfer by convection and radiation outside the electrical 

machine are applied, where any iterative method solves efficiently and takes into account the heat transfer by radiation. The model 

is validated by FEM for different conditions with excellent accuracy. It can be used for an optimization process that includes the 

effect of different cooling type or a parametric study by varying different important parameters such as the heat source or thermal 

conductivities of different parts of PMSM. Whereas, the analytical method has the advantage of a fast calculation time compared 

to FEM. In the same time, the analytical method has the disadvantage of not being able to model complex geometries. Although 

there is a way to solve this problem by adding more layers in the developed model. 

In addition, it should be noted that one can introduce the nonlinear characteristic of thermal conductivity, which varies with 

temperature 𝜆(𝑇) according to 0) where is similar to the 𝐵(𝐻) curve. Moreover, to introduce the heat source directly into the 

proposed thermal model, the model must be coupled with an analytical model to predict the iron core losses [e.g., coupled with the 

model presented in Djelloul-Khedda et al., (2019)]. However, to improve the results of the proposed model in order to take into 

account the end effect, an axial 2D model (i.e., x-y coordinate) by using the presented method should be develop by which the 

temperature in the final windings can be calculated.  

 

APPENDIX A 

The volumes of different parts of source heat are given by 

 

 

{
 
 
 
 

 
 
 
 
𝑉𝑟𝑦 = 𝐿𝑢𝜋(𝑅2

2 − 𝑅1
2)     

𝑉𝑚 = 𝐿𝑢𝑝𝜃𝑚(𝑅3
2 − 𝑅2

2)

𝑉𝑎 = 𝐿𝑢𝜋(𝑅4
2 − 𝑅3

2)      

                                 

𝑉𝑡 =
𝐿𝑢𝑄𝑠
2

[𝜃𝑡(𝑅6
2 − 𝑅5

2) + 𝜃𝑡𝑠(𝑅5
2 − 𝑅4

2)]

𝑉𝑠𝑙 =
𝐿𝑢𝑄𝑠𝜃𝑠
2

(𝑅6
2 − 𝑅5

2)                                

𝑉𝑠𝑦 = 𝐿𝑢𝜋(𝑅7
2 − 𝑅6

2)                                      

 (A.1) 

 

where 𝑉𝑟𝑦, 𝑉𝑚, 𝑉𝑎, 𝑉𝑡, 𝑉𝑠𝑙 and 𝑉𝑠𝑦  are respectively the volume of the rotor yoke, all PMs, the air-gap, all teeth including tooth-tips, 

all stator slot and the stator yoke. 
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APPENDIX B 

The radii of different regions used in the developed analytical model can be calculated from the parameter's geometry according 

to Table I by the following formulas 

 

{
 
 
 

 
 
 
𝑅1 = 𝑅𝑠ℎ          
𝑅2 = 𝑅1 + ℎ𝑟𝑦
𝑅3 = 𝑅2 + ℎ𝑚
𝑅4 = 𝑅3 + ℎ𝑔
𝑅5 = 𝑅4 + ℎ𝑝
𝑅6 = 𝑅4 + ℎ𝑠𝑙

 

𝑅7 = 𝑅6 + ℎ𝑠𝑦

 (B.1) 

APPENDIX C 

The external and internal column vectors of ambient temperature {𝐓𝑖𝑛𝑡;  𝐓𝑒𝑥𝑡} are given by 

 𝐓𝑒𝑥𝑡 = [�̂�𝑒𝑥𝑡−𝑁 ⋯ �̂�𝑒𝑥𝑡𝑁]
𝑇

 (C.1) 

 𝐓𝑖𝑛𝑡 = [�̂�𝑖𝑛𝑡−𝑁 ⋯ �̂�𝑖𝑛𝑡𝑁]
𝑇
 (C.2) 

 

�̂�𝑎𝑚𝑏,𝑛 =

{
 
 

 
 
∑

1

2𝜋𝑗𝑛
[𝑇𝑎𝑚𝑏,𝑇𝑒

−𝑗𝑛𝜏
𝜃𝑆
2 (1 − 𝑒−𝑗𝑛𝜏𝜃𝑡𝑇) + 2𝑗𝑇𝑎𝑚𝑏,𝑆 sin (

𝑛𝜏𝜃𝑆
2
)] 𝑒𝑗𝑛𝜏𝛼𝑖 , 𝑛 ≠ 0

𝑄/𝜏

𝑖=1

𝑄

2𝜋
(𝑇𝑎𝑚𝑏,𝑇𝜃𝑇 + 𝑇𝑎𝑚𝑏,𝑆𝜃𝑆),                                                                                         𝑛 = 0

 (C.3) 

where {�̂�𝑎𝑚𝑏,𝑛 , 𝑄, 𝑇𝑎𝑚𝑏,𝑇 , 𝑇𝑎𝑚𝑏,𝑆, 𝜃𝑇 , 𝜃𝑆, 𝛼𝑖, 𝑖} are replaced by {�̂�𝑖𝑛𝑡,𝑛 , 𝑄𝑠, 𝑇𝑖𝑛𝑡, 𝑇𝑖𝑛𝑡, 𝜃𝑡 , 𝜃𝑠, 𝛼𝑖, 𝑖} for the internal ambient temperature 

and by {�̂�𝑒𝑥𝑡,𝑛 , 𝑄𝑠, 𝑇𝑒𝑥𝑡, 𝑇𝑒𝑥𝑡, 𝜃𝑡 , 𝜃𝑠, 𝛼𝑖, 𝑖} for the external ambient temperature. 

APPENDIX D 

The equivalent thermal conductivity of air-gap 𝜆𝑎 is calculated corresponding to (Ball et al., 1989) by 

 𝜆𝑎 = 𝛽 𝜂
−2.9084 𝑅𝑒

0.4614 ln(3.3361𝜂)
 (D.1) 

 𝑅𝑒 = 𝑅3ℎ𝑔
𝜔𝑟
𝜐0

 (D.2) 

 

where 𝛽 is experience factor considering surface roughness of rotor; 𝜂 = 𝑅3/𝑅4; 𝑅3 is rotor outer radius; 𝑅4  is stator inner radius; 

𝑅𝑒 is Reynolds number; ℎ𝑔 is air-gap length;  and 𝜐0 is air kinematic viscosity. 
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