Semi-Analytical Magnetic Field Calculation for Dual-Rotor Permanent-Magnet Synchronous Machines by using Hybrid Model

Brahim Ladghem-Chikouche¹², Kamel Boughrara², Frédéric Dubas³, Lazhar Roubache¹, and Rachid Ibtiouen²

¹Department of Electrical Engineering, Faculty of Technology, University of M'sila, PB. 166, M'sila 28000, Algeria
²Département d'Electrotechnique, Laboratoire de Recherche en Electrotechnique (LRE-ENP), Ecole Nationale Polytechnique, rue des frères Oudek, Hacen Badi, BP. 182, El-Harrach 16200 Algiers, Algeria
³Département ENERGIE, FEMTO-ST, CNRS, Univ. Bourgogne Franche-Comté, F90000 Belfort, France

Based exclusively on the exact subdomain (SD) technique and finite-difference method (FDM), this paper proposes a two-dimensional (2-D) hybrid model (HAM) for the semi-analytical magnetic field calculation in electrical machines at no-/on-load conditions. It is applied to dual-rotor permanent-magnet (PM) synchronous machines. The magnetic field is computed by solving Laplace’s and Poisson’s equations through exact SD technique in all regions at unitary relative permeability (i.e., PMs, air-gap and slots) with a numerical model based on FDM in ferromagnetic regions (i.e., teeth and rotor/stator yokes). These two models are specifically coupled in both directions (i.e., r- and θ-edges) of the (non-)periodicity direction (i.e., in the interface between teeth regions and all its adjacent regions as slots and/or air-gap). To provide accurate solutions, the current density distribution in slots regions is modeled from the proposed model in [3] and [4] to elementary subdomains (E-SDs) in the rotor and/or stator regions with/out electrical conductivities for the complete prediction of the magnetic field in electrical machines with the local saturation effect solved by the Newton-Raphson iterative algorithm. However, the exact SD and E-SD technique by inserting ferromagnetic regions is inappropriate for the reduction of the computational time.

In [2]-[3], Dubas and Boughrara improve the SD technique in Cartesian and polar coordinates by taking into account the finite relative permeability of iron parts. This exact SD technique, using the principle of superposition in both directions (e.g., x- and y-edges in Cartesian coordinates [2] or r- and θ-edges in polar coordinates [3]), allows for any non-periodic SD. This principle has been applied to various electromagnetic devices with excellent results, most recently on flat PM linear machines [14]. In [5]-[6], the authors extended the proposed model in [3] and [4] to elementary subdomains (E-SDs) in the rotor and/or stator regions with/out electrical conductivities for the complete prediction of the magnetic field in electrical machines with the local saturation effect solved by the Newton-Raphson iterative algorithm. However, the exact SD and E-SD technique by inserting ferromagnetic regions is inappropriate for the reduction of the computational time.

The FDM is the most direct approach to discretizing PDEs. It is commonly used for various simulations because of its easy and flexible application on the computer. This method proceeds by discretizing the domain into a set of gri

I. INTRODUCTION

The growing interest in the various modeling techniques used for the design of electrical machine has become a challenge to numerical approaches. However, these techniques remain limited by several assumptions such as the nonlinearity of the $B(H)$ curve which gives overestimation and inaccuracy information on the magnetic field distribution especially in partial overlapping regions such as stator teeth and tooth-tips in which magnetic saturation effect is not negligible.

A. A Review of the Existing Different Approaches

The solution of a system of partial differential equations (PDEs) resulting from Maxwell’s equations applied to electrical machines can be performed by different methods, viz.,

i) numerical methods (e.g., FEA, FDM, …);

ii) the magnetic equivalent circuit (MEC), i.e., reluctance or permeance network, which are inappropriate and tedious for iterative design process;

iii) Maxwell-Fourier methods [1]-[15] (i.e., multi-layers models, eigenvalues model, harmonic modeling, no-exact/exact/elementary SD technique);

iv) Schwarz-Christoffel mapping method [16]-[18];

v) Hybrid method combining between:
 - Conformal mapping and MEC [19]-[21];
 - FEA and MEC [22]-[23];
 - Maxwell-Fourier methods and FEA [24]-[25];
 - Maxwell-Fourier methods and MEC [26]-[33];
 - FDM and FEA [34]-[37];
 - FDM and analytical model [38]-[39].

An example for a comparative analysis of various methods has been made in [40]-[41].
In this paper, the proposed machine is described in a 2-D polar coordinate system. The magnetic field solution can be obtained under the same assumptions proposed in [14].

Usually, the results obtained in the slotless rotor core, as presented in the proposed machine, can be achieved easily and without difficulty. For this case, it is important to focused the proposed HAM for the regions where the slotting effect is presented, such as stator core. In this paper, it can be assumed that the rotor core has a fixed relative permeability and only the relative permeability of the stator part can be modified.

III. FORMULATION OF HAM

A. Introduction

In this work, a 2-D HAM based exclusively on the SD technique and FDM is presented. Each SD of the proposed machine is modeled under constant absolute permeability and expressed by a PDE in terms of A:

$$\nabla^2 A = -[\mu J + \mu_0 \nabla \times M r]$$

(1)

where J is the current density (due to supply currents) vector, $M r$ is the remanent magnetization vector (with $M r = 0$ for the vacuum/iron or $M r \neq 0$ for the PMs according to the magnetization direction), and $\mu = \mu_0 \mu_r$ is the absolute magnetic permeability of the magnetic material in which μ_0 and μ_r are respectively the vacuum permeability and the relative permeability of the magnetic material (with $\mu_r = 1$ for the vacuum or $\mu_r \neq 1$ for the PMs/iron).

B. Exact SD Technique

To distinguish between results influenced by relative permeability values of rotor core and stator teeth, it is important to assumed that Region VII and VIII have infinitely permeable. In this situation, these regions do not contribute to the system being solved. It is very easy to introduce these regions into HAM.

From (1), the general PDEs in terms of A in Region I – V can be written as

$$\nabla^2 A = -\mu_0 \nabla \times M r \quad \text{in Region I and IV}$$

(2a)

$$\nabla^2 A = 0 \quad \text{in Region II and III}$$

(2b)

$$\nabla^2 A = -\mu_0 J \quad \text{in Region V}$$

(2c)

The field vectors $B = \{B_r, B_\theta; 0\}$ and $H = \{H_r, H_\theta; 0\}$ are coupled by

$$B = \mu_m H + \mu_0 M r \quad \text{in Region I and IV}$$

(3a)

$$B = \mu_0 H \quad \text{in other regions}$$

(3b)

Using $B = \nabla \times A$, the components of B can be deduced by

$$B_r = \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} \quad \text{and} \quad B_\theta = -\frac{\partial A_r}{\partial r}$$

(4)

To obtain the solution of magnetic field in different regions, the separation of variables method and the Dubas’
superposition technique can be used to solve the PDEs. All regions of the proposed machine are described by Fourier series expression in both directions (i.e., r- and θ-edges). Hence, the general solution of A_x, in subdomains is the superposition of two components in r- and θ-directions [3].

In polar coordinates (r, θ), (2) in terms of $A = \{0; 0; A_x\}$ can be rewritten as:

- in Region I and IV (i.e., Poisson’s equation):

$$\frac{\partial^2 A_{x}^{IV}}{\partial r^2} + \frac{1}{r} \frac{\partial A_{x}^{IV}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_{x}^{IV}}{\partial \theta^2} = -\frac{\mu_0}{r} (M_{r\theta} - \frac{\partial M_{r\theta}}{\partial \theta})$$ \hspace{1cm} (5)

The general solution of A_x is given as follows:

$$A_{x}^{IV} = \sum_n \left(c_{3n}^{I} r^{n} + c_{4n}^{I} r^{-n} + Y_{s} \right) \sin(n \pi \theta)$$
$$+ \sum_n \left(c_{5n}^{IV} r^{n} + c_{6n}^{IV} r^{-n} + Y_{s} \right) \cos(n \pi \theta)$$ \hspace{1cm} (6)

where Y_{s} and Y_{s} are the particular solutions of (5).

- in Region II and III (i.e., Laplace’s equation):

$$\frac{\partial^2 A_{x}^{III}}{\partial r^2} + \frac{1}{r} \frac{\partial A_{x}^{III}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_{x}^{III}}{\partial \theta^2} = 0$$ \hspace{1cm} (7)

In these regions, the general solution of A_x is:

$$A_{x}^{III} = \sum_n \left(c_{3n}^{III} r^{n} + c_{4n}^{III} r^{-n} \right) \sin(n \pi \theta)$$
$$+ \sum_n \left(c_{5n}^{III} r^{n} + c_{6n}^{III} r^{-n} \right) \cos(n \pi \theta)$$ \hspace{1cm} (8)

- in Region V (i.e., Poisson’s equation):

$$\frac{\partial^2 A_{x}^{V}}{\partial r^2} + \frac{1}{r} \frac{\partial A_{x}^{V}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 A_{x}^{V}}{\partial \theta^2} = -\frac{\mu_0 I_{s}}{r}$$ \hspace{1cm} (9)

in which

$$c_{m}^{V} = \frac{1}{\beta_{m}} \left[\frac{r^2}{4} \mu_0 J_{s} r^2 \right]$$

$$A_{x}^{V} = \sum_m G_{m}^{\theta} \cos \left[\beta_{m} \left(\theta - \alpha_s + \frac{W}{2} \right) \right]$$
$$+ \sum_v G_{v}^{\theta} \sin \left[\lambda_{v} \left(\frac{r}{R_{s}} \right) \right]$$ \hspace{1cm} (10a)

$$c_{m}^{\theta} = \frac{c_{3m}^{V}}{R_{s}} + \frac{c_{4m}^{V}}{R_{s}} - \beta_{m}$$

$$G_{m}^{\theta} = \frac{c_{3m}^{V} \left(\beta_{m} \left(\theta - \alpha_s + \frac{W}{2} \right) \right)}{\sin \left(\lambda_{m} w \right)}$$
$$+ c_{5m}^{V} \frac{\sin \left[\lambda_{v} \left(\theta - \alpha_s - \frac{W}{2} \right) \right]}{\sin \left(\lambda_{v} w \right)}$$ \hspace{1cm} (10b)

with

$$J_{m} = J_{m}[1 \ 1 \ 0 \ -1 \ -1 \ 0 \ 1 \ 1 \ 0 \ -1 \ -1 \ 0]$$ \hspace{1cm} (11)

where J_{m} is the current density peak, α_s is the position of s^{th} coils with $s = 1, \ldots, Q$ in which Q is the number of stator slots, m and n are the spatial harmonic orders, β_{m} and λ_{v} are the spatial frequency (or periodicity) in both directions defined by

$$\beta_{m} = \frac{mn\pi}{w} \quad \text{and} \quad \lambda_{v} = \frac{\pi(v)}{\ln(R_{s}/R_{t})}$$ \hspace{1cm} (12)

where w is the slot-opening.

C. 2-D FDM

The solution of the magnetic potential vector distribution in Region VI can be achieved by Maxwell’s equations using numerical finite-difference approximations. In Fig. 2, the regular discretization of nodes is presented with each node connected to four neighboring nodes. From (1), the distribution of A_x in Region VI can be expressed as:

$$\frac{\Delta^2 A_{x}^{VI}}{\Delta r^2} + \frac{1}{\Delta r} \frac{\Delta A_{x}^{VI}}{\Delta \theta} + \frac{1}{\Delta \theta^2} A_{x}^{VI} = 0$$ \hspace{1cm} (13)

Based on (4), the distribution of B can be written as:

$$B_{r} = \lim_{\Delta \theta \to 0} \left(\frac{1}{\Delta \theta} \frac{\Delta A_{x}^{VI}}{\Delta \theta} \right) \quad \text{and} \quad B_{\theta} = \lim_{\Delta r \to 0} \left(\frac{\Delta A_{x}^{VI}}{\Delta r} \right)$$ \hspace{1cm} (14a)

The difference quotient B_{r} and B_{θ} is a derivative approximation. This improves as Δr and $\Delta \theta$ become smaller. Δr and $\Delta \theta$ are the spacing between two adjacent nodes in the r- and θ-direction, respectively

$$\Delta \theta = \theta_{s,i+1} - \theta_{s,i} \quad \text{and} \quad \Delta r = R_{s,i+1} - R_{s,i}$$ \hspace{1cm} (14b)

According to (13) and Fig. 2, each term of the PDE at the particular node is replaced by a finite-difference approximation. The distribution of A_x in Region VI can be rewritten as:

$$\frac{A_{x}^{VI}_{s,i+1,1} - 2A_{x}^{VI}_{s,i,j} + A_{x}^{VI}_{s,i-1,1}}{\Delta r^2} + \frac{1}{R_{i}} \frac{A_{x}^{VI}_{s,i+1,j} - A_{x}^{VI}_{s,i-1,j}}{2\Delta r}$$
$$+ \frac{1}{R_{i}^2} \frac{A_{x}^{VI}_{s,i-1,j+1} - 2A_{x}^{VI}_{s,i,j} + A_{x}^{VI}_{s,i+1,j-1}}{\Delta \theta^2} = 0$$ \hspace{1cm} (15)

This remains valid except for black nodes [see Fig. 2], however, for red and blue nodes, this equation must respect the distance between two adjacent nodes.

The Fourier’s constants of (6), (8) and (10) must be determined by applying boundary conditions (BCs). These BCs must satisfy the continuity of \(1\) component of B (or the continuity of A) and the continuity of the \(\uparrow\) component of H. The detail equations set for these coefficients is given in Appendix B.

IV. COMPARISON OF HAM AND NUMERICAL CALCULATIONS

The model is tested on the machine given in Table I. In the middle of Region II (i.e., the inner air-gap), the magnetic flux density distribution for no-load, armature reaction current and on-load conditions are illustrated in Fig. 3, Fig. 4 and Fig. 5, respectively. In the middle of Region V and VI (i.e., the teeth and slots), the magnetic flux density distribution is illustrated in Fig. 6 and Fig. 7.
To give excellent results, finite number of spatial harmonics is supposed equal to 140. The 2-D FDM mesh should also have an appropriate node number to avoid time-cost, viz., \(N_c = 25 \) and \(N_l = 25 \). Highly accurate results are achieved between HAM approach and FEA whatever the relative permeability values of stator teeth.

Fig. 3. The \(r \)- and \(\theta \)-component of \(B \) in the middle of Region II at no-load condition calculated by HAM and verified by FEA for: (a) \(\mu_r = 1,000 \) and (b) \(\mu_r = 2 \).

Fig. 4. The \(r \)- and \(\theta \)-component of \(B \) in the middle of Region II under armature reaction current with a single-layer winding calculated by HAM and verified by FEA for: (a) \(\mu_r = 1,000 \) and (b) \(\mu_r = 2 \).

Fig. 5. The \(r \)- and \(\theta \)-component of \(B \) in the middle of Region II at on-load condition calculated by HAM and verified by FEA for: (a) \(\mu_r = 1,000 \) and (b) \(\mu_r = 2 \).
Fig. 6. The r- and θ-component of B in the middle of slots and teeth calculated by HAM and verified by FEA for $\mu_r = 1,000$.

Fig. 7. The r- and θ-component of B in the middle of slots and teeth calculated by HAM and verified by FEA for $\mu_r = 2$.

Table 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter (unit)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{rm}</td>
<td>Remanent flux density of PMs (T)</td>
<td>1.25</td>
</tr>
<tr>
<td>p</td>
<td>Number of pole pairs</td>
<td>2</td>
</tr>
<tr>
<td>Q</td>
<td>Magnetization type</td>
<td>Radial</td>
</tr>
<tr>
<td>R_0</td>
<td>Inner radius (mm)</td>
<td>30.00</td>
</tr>
<tr>
<td>R_1</td>
<td>Inner PM radius (mm)</td>
<td>57.50</td>
</tr>
<tr>
<td>R_2</td>
<td>Outer PM radius (mm)</td>
<td>64.00</td>
</tr>
<tr>
<td>R_3</td>
<td>Inner slot radius (mm)</td>
<td>64.65</td>
</tr>
<tr>
<td>R_4</td>
<td>Outer slot radius (mm)</td>
<td>79.65</td>
</tr>
<tr>
<td>R_5</td>
<td>Inner PM radius (mm)</td>
<td>80.30</td>
</tr>
<tr>
<td>R_6</td>
<td>Outer PM radius (mm)</td>
<td>86.80</td>
</tr>
<tr>
<td>R_7</td>
<td>Outer radius (mm)</td>
<td>102.00</td>
</tr>
<tr>
<td>β</td>
<td>PM pole-arc to pole-pitch ratio</td>
<td>61/90</td>
</tr>
<tr>
<td>w</td>
<td>Slot opening (deg)</td>
<td>15.00</td>
</tr>
<tr>
<td>J_m</td>
<td>Armature current density (A/mm²)</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>Axial length (mm)</td>
<td>150</td>
</tr>
<tr>
<td>N_s</td>
<td>Conductors number per slot</td>
<td>50</td>
</tr>
<tr>
<td>n_h</td>
<td>Harmonics number in other regions</td>
<td>140</td>
</tr>
</tbody>
</table>

V. ELECTROMAGNETIC PERFORMANCES CALCULATION

A. Cogging Torque

The cogging torque calculation in the proposed machine can be affected by the PM installed on the mobile core with the stator teeth. It is calculated from Maxwell stress method as:

$$ C_t = L R^2 \frac{2\pi}{\mu_0} \int_0^{2\pi} B_r^{II} B_\theta^{II} d\theta $$ \hspace{1cm} (16)

where L is the axial length of the machine, R is the radius circle placed at the middle of Region II, and B_r^{II} & B_θ^{II} are respectively the r- and θ-component of B calculated under no-load condition in the middle of Region II.

B. Flux Linkage and Back Electromotive Force (EMF)

Based on the Stokes’ theorem, the flux linkage can be calculated from the distribution of A_z in Region V as:

$$ \varphi_s = \frac{L N_s}{S} \int_{\alpha_s}^{\alpha_s+\frac{\pi}{2}} \int_{\frac{R_4}{R_3}}^{R_5} A_z^{V} r dr d\theta $$ \hspace{1cm} (17)

where $S = w(R_4^2 - R_3^2)/2$ is the area of stator slot, and N_s is the conductors’ number.

The phase flux vector is given by:

$$ \begin{bmatrix} \psi_a \\ \psi_b \\ \psi_c \end{bmatrix} = C [\varphi_1 \varphi_2 \ldots \varphi_Q]^T $$ \hspace{1cm} (18)

where C is the winding connection matrix of the q-phases.
current and the stator slots which can be expressed by
\[
C = \begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\tag{19}
\]

The 3-phases back EMF can be derived as:
\[
\begin{bmatrix}
E_a \\
E_b \\
E_c \\
\end{bmatrix} = \Omega \frac{d}{d\theta} \begin{bmatrix}
\psi_a \\
\psi_b \\
\psi_c \\
\end{bmatrix}
\tag{20}
\]

where \(\Omega \) is the rotor angular speed.

The total harmonic distortion can be calculated by:
\[
THD = \frac{\sqrt{\sum_{n=2}^{\infty} h(n)^2}}{h(1)} \times 100\%
\tag{21}
\]

where \(h(1) \) is the fundamental harmonic.

Fig. 8 shows the cogging torque waveform and its harmonics spectra calculated under two relative permeability values (viz., 2 and 1,000) for one period which is equal to 30°. The rotation step of the moving armature is assumed to be equal to 0.25°.

Table II shown the computation time for the magnetic flux density and electromagnetic performances calculation by different methods such as HAM, SD technique and FEA. The 2-D HAM is \(\approx \) 6 times faster than 2-D FEA with high accuracy.

![Fig. 8. Cogging torque calculated by HAM and verified by FEA for \(\mu_r = 1,000 \) and \(\mu_r = 2 \): a) waveform, and b) harmonic spectrum.](image1)

![Fig. 9. Flux linkage per phase calculated by HAM and verified by FEA for \(\mu_r = 1,000 \) and \(\mu_r = 2 \): a) waveform, and b) harmonic spectrum.](image2)

![Fig. 10. Back EMF per phase calculated by HAM and verified by FEA for \(\mu_r = 1,000 \) and \(\mu_r = 2 \): a) waveform, and b) harmonic spectrum.](image3)
VI. CONCLUSION

In this paper, a novel 2-D HAM in polar coordinates has been proposed for the dual-rotor PM synchronous machines having a radial magnetization and a single-layer concentrated winding. The developed approach is based on the exact SD technique and the FDM. These two models have been coupled in both directions (i.e., r- and θ-edges) of the (non)-periodicity direction (i.e., in the interface between teeth regions and all its adjacent regions as slots and/or air-gap). The magnetic flux density distribution has been calculated in all regions under two relative permeability values of iron core whatever the load conditions. Moreover, the electromagnetic performances have been studied. Highly accurate results have been obtained between the proposed HAM and FEA. The computational time is ≈ 6 times smaller than 2-D FEA with high accuracy.

The high impact contributions of this approach can now focus our attention on the optimization of the machine performances, in particular with the local saturation effect through E-SD technique by inserting the $B(H)$ curve which will be proposed in a future contribution.

APPENDIX A

The remanent magnetization vector of PMs can be written as:

$$
\mathbf{M_r} = \mathbf{M_r} r \mathbf{u_r} + \mathbf{M_r} \theta \mathbf{u_\theta} \quad (A1)
$$

with

$$
\mathbf{M_r} = \sum_n \mathbf{M_{r sn}} \sin(n \theta) + \mathbf{M_{r cn}} \cos(n \theta) \quad (A2a)
$$

and

$$
\mathbf{M_r} \theta = \sum_n \mathbf{M_{r e sn}} \sin(n \theta) + \mathbf{M_{r e cn}} \cos(n \theta) \quad (A2b)
$$

For a radial magnetization, we have

$$
\mathbf{M_{r sn}} = m_{rn} \frac{B_{tm}}{\mu_0} \sin \left(\frac{n \pi}{2} \right) \cos(n \pi r) \quad (A3a)
$$

$$
\mathbf{M_{r cn}} = m_{rn} \frac{B_{tm}}{\mu_0} \sin \left(\frac{n \pi}{2} \right) \sin(n \pi r) \quad (A3b)
$$

$$
\mathbf{M_{r e sn}} = \mathbf{M_{r e cn}} = 0 \quad (A3c)
$$

where B_{tm} is the remanent flux density of PMs, r is the angular position of PMs, and

$$
m_{rn} = \frac{\delta \pi/2}{\pi} \int_0^{\delta \pi/2} \cos(n \theta) d \theta \quad (A4)
$$

with δ is the PM pole-arc to pole-pitch ratio.

APPENDIX B

The BCs allow to determine the Fourier’s constants of (6), (8) and (10).

On the θ-direction:

- At $r = R_1$ and $\forall \theta$:

$$
H^{l}_{\theta}(R_1, \theta) = 0 \quad (B1a)
$$

which gives:

$$
np \left(\begin{array}{c}
C_{3n, R_1}^{l, n-1} \\
- C_{4n, R_1}^{l, n-1}
\end{array} \right) = - \frac{d I_s^c}{d r} |_{r = R_1} + \frac{1}{\mu_0} M_{\theta sn} \quad (B1b)
$$

$$
np \left(\begin{array}{c}
C_{5n, R_1}^{l, n-1} \\
- C_{6n, R_1}^{l, n-1}
\end{array} \right) = - \frac{d I_s^c}{d r} |_{r = R_1} + \frac{1}{\mu_0} M_{\theta cn} \quad (B1c)
$$

- At $r = R_2$ and $\forall \theta$:

$$
A^{l}_{2}(R_2, \theta) = A_{22}^{l l}(R_2, \theta) \quad (B2a)
$$

which gives:

$$
np \left(\begin{array}{c}
C_{5n, R_2}^{l, n-1} \\
- C_{6n, R_2}^{l, n-1}
\end{array} \right) = \frac{d I_s^c}{d r} |_{r = R_2} + \frac{1}{\mu_0} M_{\theta sn} \quad (B3a)
$$

$$
np \left(\begin{array}{c}
C_{5n, R_2}^{l, n-1} \\
- C_{6n, R_2}^{l, n-1}
\end{array} \right) = \frac{d I_s^c}{d r} |_{r = R_2} + \frac{1}{\mu_0} M_{\theta cn} \quad (B3c)
$$

where B_{1b} to B_{5c} are given above.

- At $r = R_3$ and for the index $s = 1, \cdots, Q$:

$$
A_{2S,1,j}^{V l} = \frac{1}{\Delta \theta} \int_{\theta_s}^{\theta_{s+1}} A_{2S}^{l l}(R_3, \theta) d \theta \quad (B4)
$$

$$
(\mathbf{A}_{V l}^{S}(R_3, \theta) = A_{2S}^{l l}(R_3, \theta)) \frac{w}{\alpha_s - w} \frac{w}{\alpha_s + w} \quad (B5a)
$$

which gives:

$$
C_{s1}^{l} + C_{s2}^{l} \ln(R_3) - \frac{1}{w} \mu_0 J_{0} R_3^{2} = \frac{1}{w} \int_{\alpha_s - w}^{\alpha_s + w} A_{2S}^{l l}(R_3, \theta) d \theta \quad (B5b)
$$

$$
C_{s3m}^{l} \left(\frac{R_3}{R_s} \right) \beta_m^{l} + C_{s4m}^{l} = \frac{2}{w} \int_{\alpha_s - w}^{\alpha_s + w} A_{2S}^{l l}(R_3, \theta) \cos \left(\beta_m (\theta - \alpha_s + w) \right) d \theta \quad (B5c)
$$

$$
H_{\theta}^{l l}(R_3, \theta) = \sum_s \left(H_{\theta}^{l l}(R_3, \theta) \frac{w}{\alpha_s - w} \frac{w}{\alpha_s + w} \right) \quad (B6a)
$$
In order to satisfy (B6a), the magnetic flux intensity \(H_{\theta s}^{VI}(R_3, \theta) \) by applying (14a) should be written as:

\[
H_{\theta s}^{VI}(R_3, \theta) = -\frac{1}{\mu_0 l_r} \sum_{j=2}^{N-1} \left(\frac{A_{s+1,l}^{VI} - A_{s,l}^{VI}}{\Delta r} \right) f_v
\]

(B6b)

\[
f_v = \sum_{v} [h_{\theta sv}^{VI} \sin(v \theta) + h_{kcv}^{VI} \cos(v \theta)]
\]

(B6c)

where \(h_{\theta sv}^{VI} \) & \(h_{kcv}^{VI} \) are the Fourier's constants, and \(Nc \) is the number of grid nodes in the \(\theta \)-direction.

Development of (B6a) gives:

\[
-\mu_0 n p \left(C_{3n}^{II} R_3^{-np-1} - C_{4n}^{II} R_3^{-np-1} \right) = \frac{1}{\pi} \sum_{s=1}^{Q} \int_{a_s}^{a_{s+1}} H_{\theta s}^{VI}(R_3, \theta) \sin(n \theta) \, d\theta
\]

\[
+ \frac{1}{\pi} \sum_{s=1}^{Q} \int_{a_s}^{a_{s+1}} H_{\theta s}^{VI}(R_3, \theta) \cos(n \theta) \, d\theta
\]

(B6d)

\[
\left\{ \begin{aligned}
\theta_{s+1}^{VI} &= \frac{2p}{\pi} \int_{a_{s+1}}^{a_{s+2}} \sin(v \theta) \, d\theta \\
\theta_{s+1}^{IV} &= \frac{2p}{\pi} \int_{a_{s+1}}^{a_{s+2}} \cos(v \theta) \, d\theta
\end{aligned} \right.
\]

(B6f)

\[
h_{\theta sv}^{VI} = \frac{1}{ \Delta \theta } \int_{\theta_{s+1}^{VI}}^{\theta_{s+1}^{IV}} \sin(v \theta) \, d\theta \]

\[
h_{kcv}^{VI} = \frac{1}{ \Delta \theta } \int_{\theta_{s+1}^{IV}}^{\theta_{s+1}^{IV}} \cos(v \theta) \, d\theta
\]

(B6g)

- At \(r = R_3 \) and for the index \(s = 1, \ldots, Q \):

\[
A_{s+1}^{VI}(R_3, \theta) = A_{s}^{IV}(R_3, \theta) \frac{w}{a_s^{2+n \alpha_s + \frac{1}{2}}}
\]

(B8a)

which gives:

\[
C_{s+1}^{V} + C_{s+2}^{V} \ln(R_3) - \frac{1}{4} \mu_0 n a_{s+1} R_3^2 = \frac{1}{ W } \int_{a_s^{2+n \alpha_s + \frac{1}{2}} \theta_s}^{a_{s+1} \theta_s} A_{s}^{IV}(R_3, \theta) \, d\theta
\]

(B8b)
\[
\lambda_v(c_{66v}\cosh(\lambda_v w) + c_{sv}) \quad = \quad \frac{1}{\mu_r} \sum_{i=2}^{N-1} \left(\frac{A_{VI}^{sl,nc} - A_{VI}^{sl,nc-1}}{\Delta r} \right) h_{rsv}^{VI} \quad \text{(B16c)}
\]

For the sake of simplification, the proposed machine is modeled for one half of the period. In this case, the anti-periodic BCs are:
\[
A_{VI}^{sl,nc} \quad = \quad \frac{-1}{\Delta r} \int_{R_3}^{R_{3,i+1}} A_{VI}^{vl}(r, \alpha - \frac{w}{2}) \, dr \quad \text{(B17)}
\]
\[
H_{rsv}^{VI} \left(r, \alpha - \frac{w}{2} \right) \quad = \quad -H_{rsv}^{VI} \left(r, \alpha - \frac{w}{2} \right) \quad \text{(B18)}
\]

REFERENCES

