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Based exclusively on the exact subdomain (SD) technique and finite-difference method (FDM), this paper proposes a two-dimensional 

(2-D) hybrid model (HAM) for the semi-analytical magnetic field calculation in electrical machines at no-/on-load conditions. It is applied 

to dual-rotor permanent-magnet (PM) synchronous machines. The magnetic field is computed by solving Laplace's and Poisson's 

equations through exact SD technique in all regions at unitary relative permeability (i.e., PMs, air-gap and slots) with a numerical model 

based on FDM in ferromagnetic regions (i.e., teeth and rotor/stator yokes). These two models are specifically coupled in both directions 

(i.e., 𝒓- and 𝜽-edges) of the (non-)periodicity direction (i.e., in the interface between teeth regions and all its adjacent regions as slots and/or 

air-gap). To provide accurate solutions, the current density distribution in slots regions is modeled by using Maxwell’s equations. Finite-

element analysis (FEA) demonstrates highly accurate results of the developed technique. The 2-D HAM is ≈ 6 times faster than 2-D FEA. 

 
Index Terms—Exact subdomain technique, finite-difference method, finite-element analysis, finite relative permeability, magnetic 

field, electrical machines.  

 

I. INTRODUCTION 

HE growing interest in the various modeling techniques 

used for the design of electrical machine has become a 

challenge to numerical approaches. However, these 

techniques remain limited by several assumptions such as the 

nonlinearity of the B(H) curve which gives overestimation and 

inaccuracy information on the magnetic field distribution 

especially in partial overlapping regions such as stator teeth and 

tooth-tips in which magnetic saturation effect is not negligible. 

A. A Review of the Existing Different Approaches 

The solution of a system of partial differential equations 

(PDEs) resulting from Maxwell’s equations applied to electrical 

machines can be performed by different methods, viz., 

i) numerical methods (e.g., FEA, FDM, …); 

ii) the magnetic equivalent circuit (MEC), i.e., reluctance 

or permeance network, which are inappropriate and 

tedious for iterative design process; 

iii) Maxwell-Fourier methods [1]-[15] (i.e., multi-layers 

models, eigenvalues model, harmonic modeling, no-

exact/exact/elementary SD technique); 

iv) Schwarz-Christoffel mapping method [16]-[18]; 

v) Hybrid method combining between: 

• Conformal mapping and MEC [19]-[21]; 

• FEA and MEC [22]-[23]; 

• Maxwell-Fourier methods and FEA [24]-[25]; 

• Maxwell-Fourier methods and MEC [26]-[33]; 

• FDM and FEA [34]-[37]; 

• FDM and analytical model [38]-[39]. 

An example for a comparative analysis of various methods has 

been made in [40]-[41]. 

In [2]-[3], Dubas and Boughrara improve the SD technique 

in Cartesian and polar coordinates by taking into account the 

finite relative permeability of iron parts. This exact SD 

technique, using the principle of superposition in both 

directions (e.g., x- and y-edges in Cartesian coordinates [2] or 

r- and 𝜃-edges in polar coordinates [3]), allows for any non-

periodic SD. This principle has been applied to various 

electromagnetic devices with excellent results, most recently on 

flat PM linear machines [14]. In [5]-[6], the authors extended 

the proposed model in [3] and [4] to elementary subdomains (E-

SDs) in the rotor and/or stator regions with(out) electrical 

conductivities for the complete prediction of the magnetic field 

in electrical machines with the local saturation effect solved by 

the Newton-Raphson iterative algorithm. However, the exact 

SD and E-SD technique by inserting ferromagnetic regions is 

inappropriate for the reduction of the computational time. 

The FDM is the most direct approach to discretizing PDEs. 

It is commonly used for various simulations because of its easy 

and flexible application on the computer. This method proceeds 

by discretizing the domain into a set of grid nodes. However, 

accuracy of results must be well controlled by means of an 

adequate number of grid nodes, an operation that is known to 

be more time consuming. 

B. Objectives of the Paper 

In this paper, a novel 2-D HAM involving Maxwell-Fourier 

method, based on the exact SD technique, and FDM is 

proposed. It is applied to dual-rotor PM synchronous machines 

to consider the local or global saturation effect on 

electromagnetic performances whatever the relative 

permeability of iron parts as well as the load conditions. The 

proposed HAM can also improve the computational time and 

save the central processing unit memory. The exact SD 

technique is performed in all regions at unitary relative 

permeability (i.e., PMs, air-gap and slots). The FDM, which 
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Fig. 1.  Dual-rotor PM synchronous machine having a radial magnetization and 

a single-layer concentrated winding. 

 

 

Fig. 2.  Uniform mesh of the Region VI discretized into several nodes. 

uses a nodal-mesh formulation, is implemented in 

ferromagnetic regions (i.e., teeth and rotor/stator yokes). The 

magnetic vector potential formulation has been used for both 

methods. The coupling between these models, which has not 

yet been realized in the literature, is performed in both 

directions (i.e., 𝑟- and 𝜃-edges). To evaluate the efficacy of the 

proposed HAM, the magnetic flux density distribution as well 

as the electromagnetic performances have been compared with 

those obtained by the 2-D FEA [42]. FEA demonstrates highly 

accurate results of the developed technique. The 2-D HAM is 

≈ 6 times faster than 2-D FEA with high accuracy. 

II. ASSUMPTIONS OF THE MODEL 

The dual-rotor PM synchronous machine, indicated in Fig. 1, 

is constituted to some orthogonal subdomains. The subdomains 

I to VIII, shown in Fig. 2, are respectively: inner PMs, inner and 

outer air-gap, outer PMs, slots and teeth, inner and outer iron 

yoke. 

The rotor topology is constituted of multi-pole PMs mounted 

on the rotor surface with a radial magnetization. Slots with 

radial sides surface is proposed in this work. The spatial 

distribution of 3-phases winding is configurated in a standard 

manner with a single-layer in the slot (i.e., non-overlapping or 

concentrated winding). 

In this paper, the proposed machine is described in a 2-D 

polar coordinate system. The magnetic field solution can be 

obtained under the same assumptions proposed in [14]. 

Usually, the results obtained in the slotless rotor core, as 

presented in the proposed machine, can be achieved easily and 

without difficulty. For this case, it is important to focused the 

proposed HAM for the regions where the slotting effect is 

presented, such as stator core. In this paper, it can be assumed 

that the rotor core has a fixed relative permeability and only the 

relative permeability of the stator part can be modified. 

 

III. FORMULATION OF HAM 

A. Introduction 

In this work, a 2-D HAM based exclusively on the SD 

technique and FDM is presented. Each SD of the proposed 

machine is modeled under constant absolute permeability and 

expressed by a PDE in terms of 𝑨: 

𝛁𝟐𝑨 = −[𝜇 𝑱 + 𝜇0∇ ×𝑴𝒓]                          (1) 

where 𝑱 is the current density (due to supply currents) vector, 

𝑴𝒓 is the remanent magnetization vector (with 𝑴𝒓 = 0 for the 

vacuum/iron or 𝑴𝒓 ≠ 0 for the PMs according to the 

magnetization direction), and 𝜇 = 𝜇0𝜇𝑟 is the absolute 

magnetic permeability of the magnetic material in which 𝜇0 and 

𝜇𝑟   are respectively the vacuum permeability and the relative 

permeability of the magnetic material (with 𝜇𝑟 = 1  for the 

vacuum or 𝜇𝑟  ≠ 1 for the PMs/iron). 

B. Exact SD Technique 

To distinguish between results influenced by relative 

permeability values of rotor core and stator teeth, it is important 

to assumed that Region VII and VIII have infinitely permeable. 

In this situation, these regions do not contribute to the system 

being solved. It is very easy to introduce these regions into HAM. 

From (1), the general PDEs in terms of 𝑨 in Region I ~ V can 

be written as 

∇2𝑨 = −𝜇𝑜∇ ×𝑴𝒓      in Region I and IV        (2a) 

∇2𝑨 = 0                          in Region II and III      (2b) 

∇2𝑨 = −𝜇0𝑱                   in Region V                    (2c) 

The field vectors 𝑩 = {𝐵𝑟; 𝐵𝜃; 0} and 𝑯 = {𝐻𝑟; 𝐻𝜃; 0} are 

coupled by 

𝑩 = 𝜇𝑚𝑯+ 𝜇𝑜𝑴𝒓       in Region I and IV       (3a) 

𝑩 = 𝜇0𝑯                         in other regions          (3b) 

Using 𝑩 = ∇ × 𝑨, the components of 𝑩 can be deduced by 

𝐵𝑟 =
1

𝑟

𝜕𝐴𝑧
𝜕𝜃

      and      𝐵𝜃 = −
𝜕𝐴𝑧
𝜕𝑟

                  (4) 

To obtain the solution of magnetic field in different regions, 

the separation of variables method and the Dubas’ 
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superposition technique can be used to solve the PDEs. All 

regions of the proposed machine are described by Fourier series 

expression in both directions (i.e., 𝑟- and 𝜃-edges). Hence, the 

general solution of 𝐴𝑧, in subdomains is the superposition of 

two components in 𝑟- and 𝜃-directions [3]. 

In polar coordinates (𝑟, 𝜃), (2) in terms of 𝑨 = {0; 0; 𝐴𝑧} can 

be rewritten as 

• in Region I and IV (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝐼,𝐼𝑉

𝜕𝑟2
+
1

𝑟

𝜕𝐴𝑧
𝐼,𝐼𝑉

𝜕𝑟
+
1

𝑟2
𝜕2𝐴𝑧

𝐼,𝐼𝑉

𝜕𝜃2
= −

𝜇0
𝑟
(𝑀𝑟𝜃 −

𝜕𝑀𝑟𝑟
𝜕𝜃

)   (5) 

The general solution of 𝐴𝑧 is given as follows: 

𝐴𝑧
𝐼,𝐼𝑉 =∑(𝐶3𝑛

𝐼,𝐼𝑉𝑟𝑛𝑝 + 𝐶4𝑛
𝐼,𝐼𝑉𝑟−𝑛𝑝 + Υ𝑠) sin(𝑛𝑝𝜃)

𝑛

 

+∑(𝐶5𝑛
𝐼,𝐼𝑉𝑟𝑛𝑝 + 𝐶6𝑛

𝐼,𝐼𝑉𝑟−𝑛𝑝 + Υ𝑐) cos(𝑛𝑝𝜃)

𝑛

           (6) 

where Υ𝑠 and Υ𝑐  are the particular solutions of (5). 

• in Region II and III (i.e., Laplace’s equation): 

𝜕2𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼

𝜕𝑟2
+
1

𝑟

𝜕𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼

𝜕𝑟
+
1

𝑟2
𝜕2𝐴𝑧

𝐼𝐼,𝐼𝐼𝐼

𝜕𝜃2
= 0                (7) 

In these regions, the general solution of 𝐴𝑧 is: 

𝐴𝑧
𝐼𝐼,𝐼𝐼𝐼 =∑(𝐶3𝑛

𝐼𝐼,𝐼𝐼𝐼𝑟𝑛𝑝 + 𝐶4𝑛
𝐼𝐼,𝐼𝐼𝐼𝑟−𝑛𝑝) sin(𝑛𝑝𝜃) 

𝑛

 

+∑(𝐶5𝑛
𝐼𝐼,𝐼𝐼𝐼𝑟𝑛𝑝 + 𝐶6𝑛

𝐼𝐼,𝐼𝐼𝐼𝑟−𝑛𝑝) cos(𝑛𝑝𝜃)

𝑛

               (8) 

• in Region V (i.e., Poisson’s equation): 

𝜕2𝐴𝑧
𝑉

𝜕𝑟2
+
1

𝑟

𝜕𝐴𝑧
𝑉

𝜕𝑟
+
1

𝑟2
𝜕2𝐴𝑧

𝑉

𝜕𝜃2
= −𝜇0𝐽𝑧                   (9) 

in which 

𝐴𝑧𝑠
𝑉 =

𝐶𝑠1
𝑉 + 𝐶𝑠2

𝑉 ln(𝑟) −
1

4
𝜇0𝐽𝑧𝑠𝑟

2            

+∑𝐺𝑠𝑚
𝜃 cos [𝛽𝑚 (𝜃 − 𝛼𝑠 +

𝑤

2
)]

𝑚

+∑𝐺𝑠𝑣
𝑟 sin [𝜆𝑣ln (

𝑟

𝑅3
)]

𝑣

               

        (10a) 

{
 
 
 
 

 
 
 
 𝐺𝑠𝑚

𝜃 = 𝐶𝑠3𝑚
𝑉 (

𝑟

𝑅4
)
𝛽𝑚

+ 𝐶𝑠4𝑚
𝑉 (

𝑟

𝑅3
)
−𝛽𝑚

𝐺𝑠𝑣
𝑟 =

𝐶𝑠5𝑣
𝑉
sinh [𝜆𝑣 (𝜃 − 𝛼𝑠 +

𝑤
2
)]

sinh(𝜆𝑣𝑤)

+𝐶𝑠6𝑣
𝑉
sinh [𝜆𝑣 (𝜃 − 𝛼𝑠 −

𝑤
2
)]

sinh(𝜆𝑣𝑤)

          (10b) 

with 

𝐽𝑧𝑠 = 𝐽𝑚[1  1  0  − 1  − 1  0  1  1  0  − 1  − 1  0]        (11) 

where 𝐽𝑚 is the current density peak, 𝛼𝑠 is the position of sth 

coils with s = 1,⋯ , 𝑄 in which 𝑄 is the number of stator slots, 

𝑚 and 𝑣 are the spatial harmonic orders, 𝛽𝑚 and 𝜆𝑣 are the 

spatial frequency (or periodicity) in both directions defined by 

𝛽𝑚 =
𝑚𝜋

𝑤
     &     𝜆𝑣 =

𝑣𝜋

ln(𝑅4 𝑅3⁄ )
                (12) 

where 𝑤 is the slot-opening. 

C. 2-D FDM 

The solution of the magnetic potential vector distribution in 

Region VI can be achieved by Maxwell’s equations using 

numerical finite-difference approximations. In Fig. 2, the 

regular discretization of nodes is presented with each node 

connected to four neighboring nodes. From (1), the distribution 

of 𝐴𝑧 in Region VI can be expressed as: 

∆2𝐴𝑧
𝑉𝐼

∆𝑟2
+
1

𝑟

∆𝐴𝑧
𝑉𝐼

∆𝑟
+
1

𝑟2
∆2𝐴𝑧

𝑉𝐼

∆𝜃2
= 0                  (13) 

Based on (4), the distribution of 𝑩 can be written as: 

𝐵𝑟 = lim
∆𝜃→0

(
1

𝑟

∆𝐴𝑧
𝑉𝐼

∆𝜃
)    &   𝐵𝜃 = lim

∆𝑟→0
(−

∆𝐴𝑧
𝑉𝐼

∆𝑟
)    (14a) 

The difference quotient 𝐵𝑟  and 𝐵𝜃  is a derivative 

approximation. This improves as ∆r and ∆𝜃 become smaller. ∆r 
and ∆𝜃 are the spacing between two adjacent nodes in the 𝑟- 

and 𝜃-direction, respectively 

∆𝜃 = 𝜃𝑠,𝑗+1 − 𝜃𝑠,𝑗                             (14b) 

∆𝑟 = 𝑅3,𝑖+1 − 𝑅3,𝑖                             (14c) 

According to (13) and Fig. 2, each term of the PDE at the 

particular node is replaced by a finite-difference approximation. 

The distribution of 𝐴𝑧 in Region VI can be rewritten as: 

𝐴𝑧𝑠,𝑖+1,𝑗
𝑉𝐼 − 2𝐴𝑧𝑠,𝑖,𝑗

𝑉𝐼 + 𝐴𝑧𝑠,𝑖−1,𝑗
𝑉𝐼

∆𝑟2
+
1

𝑅𝑖

𝐴𝑧𝑠,𝑖+1,𝑗
𝑉𝐼 − 𝐴𝑧𝑠,𝑖−1,𝑗

𝑉𝐼

2∆𝑟
 

+
1

𝑅𝑖
2

𝐴𝑧𝑠,𝑖,𝑗+1
𝑉𝐼 − 2𝐴𝑧𝑠,𝑖,𝑗

𝑉𝐼 + 𝐴𝑧𝑠,𝑖,𝑗−1
𝑉𝐼

∆𝜃2
= 0    (15) 

This remains valid except for black nodes [see Fig. 2], 

however, for red and blue nodes, this equation must respect the 

distance between two adjacent nodes. 

The Fourier’s constants of (6), (8) and (10) must to be 

determined by applying boundary conditions (BCs). These BCs 

must satisfy the continuity of ⊥ component of 𝑩 (or the continuity 

of 𝑨) and the continuity of the ∥ component of 𝑯. The detail 

equations set for these coefficients is given in Appendix B. 

IV. COMPARISON OF HAM AND NUMERICAL CALCULATIONS 

The model is tested on the machine given in Table I. In the 

middle of Region II (i.e., the inner air-gap), the magnetic flux 

density distribution for no-load, armature reaction current and 

on-load conditions are illustrated in Fig. 3, Fig. 4 and Fig. 5, 

respectively. In the middle of Region V and VI (i.e., the teeth 

and slots), the magnetic flux density distribution is illustrated in 

Fig. 6 and Fig. 7. 



DOI: 10.1109/TMAG.2021.3127359, IEEE TRANSACTIONS ON MAGNETICS 

 

 

To give excellent results, finite number of spatial harmonics 

is supposed equal to 140. The 2-D FDM mesh should also have 

an appropriate node number to avoid time-cost, viz., 𝑁𝑐 = 25 

and 𝑁𝑙 = 25. Highly accurate results are achieved between 

HAM approach and FEA whatever the relative permeability 

values of stator teeth. 

 

  
                                                                        a)                                                                                                                 b) 

Fig. 3.  The 𝑟- and 𝜃-component of 𝑩 in the middle of Region II at no-load condition calculated by HAM and verified by FEA for: (a) 𝜇𝑟 = 1,000 and (b) 𝜇𝑟 = 2. 

  
                                                                        a)                                                                                                                 b) 

Fig. 4.  The 𝑟- and 𝜃-component of 𝑩 in the middle of Region II under armature reaction current with a single-layer winding calculated by HAM and verified by 

FEA for: (a) 𝜇𝑟 = 1,000 and (b) 𝜇𝑟 = 2. 

  
                                                                        a)                                                                                                                 b) 

Fig. 5.  The 𝑟- and 𝜃-component of 𝑩 in the middle of Region II at on-load condition calculated by HAM and verified by FEA for: (a) 𝜇𝑟 = 1,000 and (b) 𝜇𝑟 = 2. 
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Fig. 6.  The 𝑟- and 𝜃-component of 𝑩 in the middle of slots and teeth calculated by HAM and verified by FEA for 𝜇𝑟 = 1,000. 

 

    

 
 

 
 

Fig. 7.  The 𝑟- and 𝜃-component of 𝑩 in the middle of slots and teeth calculated by HAM and verified by FEA for 𝜇𝑟 = 2. 

 

TABLE .1 

MACHINE CHARACTERISTICS 

Symbol Parameter (unit) Value 

𝐵𝑟𝑚 Remanent flux density of PMs (T) 1.25 

𝑝
 

Number of pole pairs 2 

- Magnetization type Radial 

𝑄 Number of stator slots 12 

𝑅0 Inner radius (mm) 30.00 

𝑅1 Inner PM radius (mm) 57.50 

𝑅2 Outer PM radius (mm) 64.00 

𝑅3 Inner slot radius (mm) 64.65 

𝑅4 Outer slot radius (mm) 79.65 

𝑅5 Inner PM radius (mm) 80.30 

𝑅6 Outer PM radius (mm) 86.80 

𝑅7 Outer radius (mm) 102.00 

𝛽 PM pole-arc to pole-pitch ratio 61/90 

𝑤 Slot opening (deg) 15.00 

𝐽𝑚 Armature current density (A/mm2) 10 

𝐿 Axial length (mm) 150 

𝑁𝑠 Conductors number per slot 50 

𝑛ℎ Harmonics number in other regions 140 

V. ELECTROMAGNETIC PERFORMANCES CALCULATION 

A. Cogging Torque 

The cogging torque calculation in the proposed machine can 

be affected by the PM installed on the mobile core with the 

stator teeth. It is calculated from Maxwell stress method as: 

𝐶𝑡 =
𝐿𝑅2

𝜇0
∫ 𝐵𝑟

𝐼𝐼𝐵𝜃
𝐼𝐼𝑑𝜃

2𝜋

0

                           (16) 

where 𝐿 is the axial length of the machine, 𝑅 is the radius circle 

placed at the middle of Region II, and 𝐵𝑟
𝐼𝐼  & 𝐵𝜃

𝐼𝐼  are respectively 

the r- and 𝜃-component of 𝑩 calculated under no-load condition 

in the middle of Region II. 

B. Flux Linkage and Back Electromotive Force (EMF) 

Based on the Stokes’ theorem, the flux linkage can be 

calculated from the distribution of 𝐴𝑧 in Region V as: 

𝜑𝑠 =
𝐿𝑁𝑠
𝑆

∫ ∫ 𝐴𝑧𝑠
𝑉

𝑅4

𝑅3

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

𝑟𝑑𝑟𝑑𝜃                    (17) 

where 𝑆 = 𝑤(𝑅4
2 − 𝑅3

2) 2⁄  is the area of stator slot, and 𝑁𝑠 is 

the conductors’ number. 

The phase flux vector is given by: 

[

𝜓𝑎
𝜓𝑏
𝜓𝑐

] = 𝐶[𝜑1 𝜑2… 𝜑𝑄]
𝑇
                         (18) 

where C is the winding connection matrix of the q-phases 
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current and the stator slots which can be expressed by 

𝐶 = [
1
0
0
   
   0
   0
−1
   
0
1
0
   
−1
   0
   0
   
0
0
1
   
   0
−1
   0
   
1
0
0
   
   0
   0
−1
   
0
1
0
   
−1
   0
   0
   
0
0
1
   
   0
−1
   0
]   (19) 

The 3-phases back EMF can be derived as: 

[

𝐸𝑎
𝐸𝑏
𝐸𝑐

] = Ω
𝑑

𝑑𝜃
[

𝜓𝑎
𝜓𝑏
𝜓𝑐

]                               (20) 

where Ω is the rotor angular speed. 

The total harmonic distortion can be calculated by: 

𝑇𝐻𝐷 =
√∑ ℎ(𝑛)220

𝑛=2

ℎ(1)
× 100%                    (21) 

where ℎ(1) is the fundamental harmonic. 

Fig. 8 shows the cogging torque waveform and its harmonics 

spectra calculated under two relative permeability values (viz., 

2 and 1,000) for one period which is equal to 30°. The rotation 

step of the moving armature is assumed to be equal to 0.25°. 

Fig. 9 and Fig. 10 show respectively the flux linkage per phase 

and back EMF waveform and its harmonics spectra calculated 

under two relative permeability values (viz., 2 and 1,000). The 

rotation step of the moving armature is proposed equal to 1°. 

For harmonics, the fundamental is assumed to be 1 per-unit 

(P.U) regardless of the cogging torque or back EMF. Excellent 

agreement between HAM and FEA. 

Table II shown the computation time for the magnetic flux 

density and electromagnetic performances calculation by 

different methods such as HAM, SD technique and FEA. The 

2-D HAM is ≈ 6 times faster than 2-D FEA with high accuracy. 

 

TABLE II. 

2-D COMPUTATIONAL TIME FOR VARIOUS METHODS 

Method 

HAM SD technique FEA 

𝑛ℎ = 140 

𝑁𝑐 = 25,𝑁𝑙 = 25 
𝑛ℎ = 140 

Whole machine 
107,961 nodes 

Time (sec) ~4 ~1.5 ~25 

 

 

   

                                             a)                                                                                                                           b) 

Fig. 8.  Cogging torque calculated by HAM and verified by FEA for 𝜇𝑟 = 1,000 and 𝜇𝑟 = 2: a) waveform, and b) harmonic spectrum. 

 

   
                                             a)                                                                                                                           b) 

Fig. 9.  Flux linkage per phase calculated by HAM and verified by FEA for 𝜇𝑟 = 1,000 and 𝜇𝑟 = 2: a) waveform, and b) harmonic spectrum. 

 

   
                                             a)                                                                                                                           b) 

Fig. 10.  Back EMF per phase calculated by HAM and verified by FEA for 𝜇𝑟 = 1,000 and 𝜇𝑟 = 2: a) waveform, and b) harmonic spectrum. 
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VI. CONCLUSION 

In this paper, a novel 2-D HAM in polar coordinates has been 

proposed for the dual-rotor PM synchronous machines having 

a radial magnetization and a single-layer concentrated winding. 

The developed approach is based on the exact SD technique and 

the FDM. These two models have been coupled in both 

directions (i.e., r- and θ-edges) of the (non-)periodicity 

direction (i.e., in the interface between teeth regions and all its 

adjacent regions as slots and/or air-gap). The magnetic flux 

density distribution has been calculated in all regions under two 

relative permeability values of iron core whatever the load 

conditions. Moreover, the electromagnetic performances have 

been studied. Highly accurate results have been obtained 

between the proposed HAM and FEA. The computational time 

is ≈ 6 times smaller than 2-D FEA with high accuracy. 

The high impact contributions of this approach can now 

focus our attention on the optimization of the machine 

performances, in particular with the local saturation effect 

through E-SD technique by inserting the B(H) curve which will 

be proposed in a future contribution. 

APPENDIX A 

The remanent magnetization vector of PMs can be written as: 

𝑴𝒓 = 𝑀𝑟𝑟  𝒖𝒓 +𝑀𝑟𝜃  𝒖𝜽                         (A1) 

with 

𝑀𝑟𝑟 =∑𝑀𝑟𝑟𝑠𝑛 sin(𝑛𝑝𝜃) + 𝑀𝑟𝑟𝑐𝑛 cos(𝑛𝑝𝜃)

𝑛

     (A2a) 

𝑀𝑟𝜃 =∑𝑀𝑟𝜃𝑠𝑛 sin(𝑛𝑝𝜃) + 𝑀𝑟𝜃𝑐𝑛 cos(𝑛𝑝𝜃)

𝑛

    (A2b) 

For a radial magnetization, we have 

𝑀𝑟𝑟𝑠𝑛 = 𝑚𝑟𝑛

𝐵𝑟𝑚
𝜇𝑜

sin (
𝑛𝜋

2
) cos(𝑛𝑝𝜏)             (A3a) 

𝑀𝑟𝑟𝑐𝑛 = 𝑚𝑟𝑛

𝐵𝑟𝑚
𝜇𝑜

sin (
𝑛𝜋

2
) sin(𝑛𝑝𝜏)              (A3b) 

𝑀𝑟𝜃𝑠𝑛 = 𝑀𝑟𝜃𝑐𝑛 = 0                           (A3c) 

where 𝐵𝑟𝑚 is the remanent flux density of PMs, 𝜏 is the angular 

position of PMs, and 

𝑚𝑟𝑛 =
4

𝜋
∫ cos(𝑛𝜃)𝑑𝜃

𝛿𝜋 2⁄

0

                        (A4) 

with 𝛿 is the PM pole-arc to pole-pitch ratio. 

APPENDIX B 

The BCs allow to determine the Fourier’s constants of (6), 

(8) and (10). 

On the 𝜃-direction: 

• At 𝑟 = 𝑅1 and ∀𝜃: 

𝐻𝜃
𝐼 (𝑅1, 𝜃) = 0                                (B1a) 

which gives: 

𝑛𝑝 (
𝐶3𝑛
𝐼 𝑅1

𝑛𝑝−1

−𝐶4𝑛
𝐼 𝑅1

−𝑛𝑝−1) = −
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅1

+
1

𝜇0
𝑀𝜃𝑠𝑛       (B1b) 

𝑛𝑝 (
𝐶5𝑛
𝐼 𝑅1

𝑛𝑝−1

−𝐶6𝑛
𝐼 𝑅1

−𝑛𝑝−1) = −
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅1

+
1

𝜇0
𝑀𝜃𝑐𝑛      (B1c) 

• At 𝑟 = 𝑅2 and ∀𝜃: 

𝐴𝑧
𝐼 (𝑅2, 𝜃) = 𝐴𝑧

𝐼𝐼(𝑅2, 𝜃)                         (B2a) 

which gives: 

            (
𝐶3𝑛
𝐼 𝑅2

𝑛𝑝

+𝐶4𝑛
𝐼 𝑅2

−𝑛𝑝) − (
𝐶3𝑛
𝐼𝐼 𝑅2

𝑛𝑝

+𝐶4𝑛
𝐼𝐼 𝑅2

−𝑛𝑝) = −𝛤𝑠|𝑟=𝑅2        (B2b) 

            (
𝐶5𝑛
𝐼 𝑅2

𝑛𝑝

+𝐶6𝑛
𝐼 𝑅2

−𝑛𝑝) − (
𝐶5𝑛
𝐼𝐼 𝑅2

𝑛𝑝

+𝐶6𝑛
𝐼𝐼 𝑅2

−𝑛𝑝) = −𝛤𝑐|𝑟=𝑅2        (B2c) 

𝐻𝜃
𝐼 (𝑅2, 𝜃) = 𝐻𝜃

𝐼𝐼(𝑅2, 𝜃)                        (B3a) 

which gives: 

𝑛𝑝 [(
𝐶3𝑛
𝐼 𝑅2

𝑛𝑝−1

−𝐶4𝑛
𝐼 𝑅2

−𝑛𝑝−1) − (
𝐶3𝑛
𝐼𝐼 𝑅2

𝑛𝑝−1

−𝐶4𝑛
𝐼𝐼 𝑅2

−𝑛𝑝−1)] = 

−
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅2

+
1

𝜇0
𝑀𝑟𝜃𝑠𝑛   (B3b) 

𝑛𝑝 [(
𝐶5𝑛
𝐼 𝑅2

𝑛𝑝−1

−𝐶6𝑛
𝐼 𝑅2

−𝑛𝑝−1) − (
𝐶5𝑛
𝐼𝐼 𝑅2

𝑛𝑝−1

−𝐶6𝑛
𝐼𝐼 𝑅2

−𝑛𝑝−1)] = 

−
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅2

+
1

𝜇0
𝑀𝑟𝜃𝑐𝑛    (B3c) 

• At 𝑟 = 𝑅3 and for the index s = 1,⋯ , 𝑄: 

𝐴𝑧𝑠,1,𝑗
𝑉𝐼  =

1

∆𝜃
∫ 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃)𝑑𝜃
𝜃𝑠,𝑗+1

𝜃𝑠,𝑗

                 (B4) 

(𝐴𝑧𝑠
𝑉 (𝑅3, 𝜃) = 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃))|
𝛼𝑠−

𝑤
2
≤𝜃≤𝛼𝑠+

𝑤
2          (B5a) 

which gives: 

𝐶𝑠1
𝑉 + 𝐶𝑠2

𝑉 ln(𝑅3) −
1

4
𝜇𝑜𝐽𝑧𝑠𝑅3

2 =
1

𝑤
∫ 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

𝑑𝜃   (B5b) 

𝐶𝑠3𝑚
𝑉 (

𝑅3
𝑅4
)
𝛽𝑚

+ 𝐶𝑠4𝑚
𝑉 = 

2

𝑤
∫ 𝐴𝑧

𝐼𝐼(𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

cos [𝛽𝑚 (𝜃 − 𝛼𝑠 +
𝑤

2
)] 𝑑𝜃  (B5c) 

𝐻𝜃
𝐼𝐼(𝑅3, 𝜃) =∑(

𝐻𝜃𝑠
𝑉 (𝑅3, 𝜃)|

𝛼𝑠−
𝑤
2
≤𝜃≤𝛼𝑠+

𝑤
2

+𝐻𝜃𝑠
𝑉𝐼(𝑅3, 𝜃)|

𝛼𝑠+
𝑤
2≤𝜃≤𝛼𝑠+1−

𝑤
2

)

𝑠

  (B6a) 
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In order to satisfy (B6a), the magnetic flux intensity 𝐻𝜃𝑠
𝑉𝐼(𝑅3, 𝜃) 

by applying (14a) should be written as: 

𝐻𝜃𝑠
𝑉𝐼(𝑅3, 𝜃) = −

1

𝜇0𝜇𝑟
∑ (

𝐴𝑠,2,𝑗
𝑉𝐼 − 𝐴𝑠,1,𝑗

𝑉𝐼

∆𝑟
)𝑓𝑣

𝑁𝑐−1

𝑗=2

    (B6b) 

𝑓𝑣 =∑[ℎ𝜃𝑠𝑣
𝑉𝐼 sin(𝑣𝑝𝜃) + ℎ𝜃𝑐𝑣

𝑉𝐼 cos(𝑣𝑝𝜃)]

𝑣

       (B6c) 

where ℎ𝜃𝑠𝑣
𝑉𝐼  & ℎ𝜃𝑐𝑣

𝑉𝐼  are the Fourier’s constants, and 𝑁𝑐 is the 

number of grid nodes in the 𝜃-direction. 

Development of (B6a) gives: 

−𝜇0𝑛𝑝(𝐶3𝑛
𝐼𝐼 𝑅3

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝐼 𝑅3
−𝑛𝑝−1

) = 

1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉 (𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

sin(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

+
1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉𝐼(𝑅3, 𝜃)

𝛼𝑠+1−
𝑤
2

𝛼𝑠+
𝑤
2

sin(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

     (B6d) 

−𝜇0𝑛𝑝(𝐶5𝑛
𝐼𝐼 𝑅3

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝐼 𝑅3
−𝑛𝑝−1

) = 

1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉 (𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

cos(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

+
1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉𝐼(𝑅3, 𝜃)

𝛼𝑠+1−
𝑤
2

𝛼𝑠+
𝑤
2

cos(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

     (B6e) 

where the Fourier's constants of (B6c) can be written as: 

{
 
 
 

 
 
 
ℎ𝜃𝑠𝑣
𝑉𝐼 =

2𝑝

𝜋
∫ sin(𝑣𝑝𝜃)

𝜃𝑠,𝑗+1

𝜃𝑠,𝑗

𝑑𝜃                 (B6f)

ℎ𝜃𝑐𝑣
𝑉𝐼 =

2𝑝

𝜋
∫ cos(𝑣𝑝𝜃)

𝜃𝑠,𝑗+1

𝜃𝑠,𝑗

𝑑𝜃                 (B6g)

 

• At 𝑟 = 𝑅4 and for the index s = 1,⋯ , 𝑄: 

𝐴𝑧𝑠,𝑁𝐿,𝑗
𝑉𝐼 =

1

∆𝜃 
∫ 𝐴𝑧

𝐼𝐼𝐼(𝑅4, 𝜃)𝑑𝜃
𝜃𝑠,𝑗+1

𝜃𝑠,𝑗

              (B7) 

(𝐴𝑧𝑠
𝑉 (𝑅4, 𝜃) = 𝐴𝑧

𝐼𝐼𝐼(𝑅4, 𝜃))|
𝛼𝑠−

𝑤
2
≤𝜃≤𝛼𝑠+

𝑤
2         (B8a) 

which gives: 

𝐶𝑠1
𝑉 + 𝐶𝑠2

𝑉 ln(𝑅4) −
1

4
𝜇𝑜𝐽𝑧𝑠𝑅4

2 =
1

𝑤
∫ 𝐴𝑧

𝐼𝐼𝐼(𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

𝑑𝜃 (B8b) 

𝐶𝑥3𝑚
𝑉 + 𝐶𝑥4𝑚

𝑉 (
𝑅4
𝑅3
)
−𝛽𝑚

= 

2

𝑤
∫ 𝐴𝑧

𝐼𝐼𝐼(𝑅3, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

cos [𝛽𝑚 (𝜃 − 𝛼𝑠 +
𝑤

2
)] 𝑑𝜃   (B8c) 

𝐻𝜃
𝐼𝐼𝐼(𝑅4, 𝜃) =∑(

𝐻𝜃𝑠
𝑉 (𝑅4, 𝜃)|

𝛼𝑠−
𝑤
2
≤𝜃≤𝛼𝑠+

𝑤
2

+𝐻𝜃𝑠
𝑉𝐼(𝑅4, 𝜃)|

𝛼𝑠+
𝑤
2≤𝜃≤𝛼𝑠+1−

𝑤
2

)

𝑠

        (B9a) 

In order to satisfy (B9a), the magnetic flux intensity 𝐻𝜃𝑠
𝑉𝐼(𝑅4, 𝜃) 

by applying (14a) should be written as: 

𝐻𝜃𝑠
𝑉𝐼(𝑅4, 𝜃) = −

1

𝜇0𝜇𝑟
∑ (

𝐴𝑠,𝑁𝑙,𝑗
𝑉𝐼 − 𝐴𝑠,𝑁𝑙−1,𝑗

𝑉𝐼

∆𝑟
) 𝑓𝑣

𝑁𝑐−1

𝑗=2

  (B9b) 

Development of (B9a) gives: 

−𝜇0𝑛𝑝(𝐶3𝑛
𝐼𝐼𝐼𝑅4

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝐼𝐼𝑅4
−𝑛𝑝−1

) = 

1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉 (𝑅4, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

sin(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

                

+
1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉𝐼(𝑅4, 𝜃)

𝛼𝑠+1−
𝑤
2

𝛼𝑠+
𝑤
2

sin(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

         (B9c) 

−𝜇0𝑛𝑝(𝐶5𝑛
𝐼𝐼𝐼𝑅4

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝐼𝐼𝑅4
−𝑛𝑝−1

) = 

1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉 (𝑅4, 𝜃)

𝛼𝑠+
𝑤
2

𝛼𝑠−
𝑤
2

cos(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

+
1

𝜋
∑ ∫ 𝐻𝜃𝑠

𝑉𝐼(𝑅4, 𝜃)

𝛼𝑠+1−
𝑤
2

𝛼𝑠+
𝑤
2

cos(𝑛𝑝𝜃) 𝑑𝜃

𝑄

𝑠=1

     (B9d) 

• At 𝑟 = 𝑅5 and ∀𝜃: 

𝐴𝑧
𝐼𝐼𝐼(𝑅5, 𝜃) = 𝐴𝑧

𝐼𝑉(𝑅5, 𝜃)                     (B10a) 

which gives: 

(
𝐶3𝑛
𝐼𝑉𝑅5

𝑛𝑝

+𝐶4𝑛
𝐼𝑉𝑅5

−𝑛𝑝) − (
𝐶3𝑛
𝐼𝐼𝐼𝑅5

𝑛𝑝

+𝐶4𝑛
𝐼𝐼𝐼𝑅5

−𝑛𝑝) = −𝛤𝑠|𝑟=𝑅5     (B10b) 

(
𝐶5𝑛
𝐼𝑉𝑅5

𝑛𝑝

+𝐶6𝑛
𝐼𝑉𝑅5

−𝑛𝑝) − (
𝐶5𝑛
𝐼𝐼𝐼𝑅5

𝑛𝑝

+𝐶6𝑛
𝐼𝐼𝐼𝑅5

−𝑛𝑝) = −𝛤𝑐|𝑟=𝑅5     (B10c) 

𝐻𝜃
𝐼𝐼𝐼(𝑅5, 𝜃) = 𝐻𝜃

𝐼𝑉(𝑅5, 𝜃)                    (B11a) 

which gives: 

𝑛𝑝 [(
𝐶3𝑛
𝐼𝑉𝑅5

𝑛𝑝−1

−𝐶4𝑛
𝐼𝑉𝑅5

−𝑛𝑝−1) − (
𝐶3𝑛
𝐼𝐼𝐼𝑅5

𝑛𝑝−1

−𝐶4𝑛
𝐼𝐼𝐼𝑅5

−𝑛𝑝−1)] = 

−
𝑑𝛤𝑠
𝑑𝑟
|
𝑟=𝑅5

+
1

𝜇0
𝑀𝑟𝜃𝑠𝑛   (B11b) 

𝑛𝑝 [(
𝐶5𝑛
𝐼𝑉𝑅5

𝑛𝑝−1

−𝐶6𝑛
𝐼𝑉𝑅5

−𝑛𝑝−1) − (
𝐶5𝑛
𝐼𝐼𝐼𝑅5

𝑛𝑝−1

−𝐶6𝑛
𝐼𝐼𝐼𝑅5

−𝑛𝑝−1)] = 

https://context.reverso.net/traduction/anglais-francais/to+satisfy
https://context.reverso.net/traduction/anglais-francais/to+satisfy
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−
𝑑𝛤𝑐
𝑑𝑟
|
𝑟=𝑅5

+
1

𝜇0
𝑀𝑟𝜃𝑐𝑛   (B11c) 

• At 𝑟 = 𝑅6 and ∀𝜃: 

𝐻𝜃
𝐼𝑉(𝑅6, 𝜃) = 0                             (B12a) 

which gives: 

𝑛𝑝(𝐶3𝑛
𝐼𝑉𝑅6

𝑛𝑝−1
− 𝐶4𝑛

𝐼𝑉𝑅6
−𝑛𝑝−1

) = −
𝑑𝛤𝑠

𝑑𝑟
|
𝑟=𝑅6

+
1

𝜇0
𝑀𝑟𝜃𝑠𝑛   (B12b) 

𝑛𝑝(𝐶5𝑛
𝐼𝑉𝑅6

𝑛𝑝−1
− 𝐶6𝑛

𝐼𝑉𝑅6
−𝑛𝑝−1

) = −
𝑑𝛤𝑐

𝑑𝑟
|
𝑟=𝑅6

+
1

𝜇0
𝑀𝑟𝜃𝑐𝑛  (B12c) 

On the 𝑟-direction, viz., on the edges of the Region V and VI 

and for the index s = 1,⋯ ,𝑄: 

• for 𝜃 = 𝛼𝑠 + 𝑤 2⁄ : 

𝐴𝑧𝑠,𝑖,1
𝑉𝐼 =

1

∆𝑟
∫ 𝐴𝑧𝑠

𝑉 (𝑟, 𝛼𝑠 +
𝑤

2
)𝑑𝑟

𝑅3,𝑖+1

𝑅3,𝑖

         (B13) 

𝐻𝑟𝑠
𝑉𝐼 (𝑟, 𝛼𝑠 +

𝑤

2
) = 𝐻𝑟𝑠

𝑉 (𝑟, 𝛼𝑠 +
𝑤

2
)          (B14a) 

where 

𝐻𝑟𝑠
𝑉𝐼 (𝑟, 𝛼𝑠 +

𝑤

2
) =

1

𝜇𝑟𝜇0
∑ ∑(

1

𝑅3,𝑖

𝐴𝑧𝑠,𝑖,2
𝑉𝐼 − 𝐴𝑧𝑠,𝑖,1

𝑉𝐼

∆𝜃
)

𝑣

𝑁𝑙−1

𝑖=2

 

∙ ℎ𝑟𝑠𝑣
𝑉𝐼 sin [𝜆𝑣ln (

𝑟

𝑅3
)]   (B14b) 

where 𝑁𝑙 is the number of grid nodes in the 𝑟-direction. 

From (B14a) and (B14b), we have: 

𝜆𝑣(𝐶𝑠5𝑣
𝑉 cosh(𝜆𝑣𝑤) + 𝐶𝑠6𝑣

𝑉 ) = 

1

𝜇𝑟
∑ (

𝐴𝑠,𝑖,2
𝑉𝐼 − 𝐴𝑠,𝑖,1

𝑉𝐼

∆𝜃
)ℎ𝑟𝑠𝑣

𝑉𝐼

𝑁𝑙−1

𝑖=2

      (B14c) 

where 

ℎ𝑟𝑠𝑣
𝑉𝐼 =

2

ln (
𝑅4
𝑅3
)
∫

1

𝑟

𝑅3,𝑖+1

𝑅3,𝑖

sin [𝜆𝑣 ln (
𝑟

𝑅3
)] 𝑑𝑟     (B14d) 

• for 𝜃 = 𝛼𝑠 −𝑤 2⁄ : 

𝐴𝑧𝑠,𝑖,𝑁𝑐
𝑉𝐼 =

1

∆𝑟
∫ 𝐴𝑧(𝑠−1)

𝑉 (𝑟, 𝛼𝑠 −
𝑤

2
) 𝑑𝑟

𝑅3,𝑖+1

𝑅3,𝑖

     (B15) 

𝐻𝑟𝑠
𝑉𝐼 (𝑟, 𝛼𝑠 −

𝑤

2
) = 𝐻𝑟(𝑠−1)

𝑉 (𝑟, 𝛼𝑠 −
𝑤

2
)      (B16a) 

where 

𝐻𝑟𝑠
𝑉𝐼 (𝑟, 𝛼𝑠 −

𝑤

2
) =

1

𝜇𝑟𝜇0
∑ ∑(

1

𝑅3,𝑖

𝐴𝑧𝑠,𝑖,𝑁𝑐
𝑉𝐼 − 𝐴𝑧𝑠,𝑖,𝑁𝑐−1

𝑉𝐼

∆𝜃
)

𝑣

𝑁𝑙−1

𝑖=2

 

∙ ℎ𝑟𝑠𝑣
𝑉𝐼 sin [𝜆𝑣ln (

𝑟

𝑅3
)]   (B16b) 

From (B16a) and (B16b), we have: 

𝜆𝑣(𝐶𝑠6𝑣
𝑉 cosh(𝜆𝑣𝑤) + 𝐶𝑠5𝑣

𝑉 ) 

=
1

𝜇𝑟
∑ (

𝐴𝑠,𝑖,𝑁𝑐
𝑉𝐼 − 𝐴𝑠,𝑖,𝑁𝑐−1

𝑉𝐼

∆𝑟
)ℎ𝑟𝑠𝑣

𝑉𝐼

𝑁𝑙−1

𝑖=2

   (B16c) 

For the sake of simplification, the proposed machine is modeled 

for one half of the period. In this case, the anti-periodic BCs are: 

𝐴𝑧𝑄𝑠,𝑖,𝑁𝑐
𝑉𝐼 = −

1

∆𝑟
∫ 𝐴𝑧1

𝑉 (𝑟, 𝛼1 −
𝑤

2
) 𝑑𝑟

𝑅3,𝑖+1

𝑅3,𝑖

    (B17) 

𝐻𝑟𝑄𝑠
𝑉𝐼 (𝑟, 𝛼1 −

𝑤

2
) = −𝐻𝑟1

𝑉 (𝑟, 𝛼1 −
𝑤

2
)         (B18) 
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