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Abstract 

In this study, tungsten heavy alloys reinforced with highly uniform and dispersed 

nanosized Zr(Y)O2 particles were investigated. These alloys exhibited a high 

compressive strength and enhanced plasticity. To fabricate these alloys, we used a 

novel process involving molecular level liquid-liquid doping combined with hot 

isostatic pressing. The Zr(Y)O2 particles thus produced were smaller than 200 nm in 

size and bonded well with tungsten grains. The size of Zr(Y)O2 particles and tungsten 

grains are much smaller than those of the state-of-the-art review and the details of the 

grain refinement mechanisms were discussed. The highest ultimate tensile and 

compressive strengths of the fabricated alloys at room temperature (27°C) were 895 

and 1445 MPa, respectively, which are much higher than the values reported in the 

literature. The tensile fracture surface consists of W - W cleavage patterns and ductile 

failure of the matrix. The effect of Zr(Y)O2 particles and strain rate on the 

compressive properties of the alloys was investigated in detail and the corresponding 

compressive deformation mechanisms were elucidated. 

 

Keywords: Tungsten heavy alloys; oxide particle strengthening; zirconia; liquid-liquid 

doping; compressive strength; hot isostatic pressing 

 

Nomenclature 

α-HATB Hexagonal ammonium tungsten bronze (NH4)0.33·WO3 

β-HATB Hexagonal ammonium tungsten bronze (NH4)0.42·WO3 

AMT Ammonium metatungstate 

APT Ammonium paratungstate 

DUAs Depleted uranium alloys 

EDS Energy dispersive X-ray spectroscopy 

HATB Hexagonal ammonium tungsten bronze, (NH4)х·WO3 

HIP Hot isostatic pressing  

HR-TEM High-resolution transmission electron microscopy 

HV Vickers hardness 



L-L Liquid-liquid 

L-S Liquid-solid 

MA Mechanical alloying 

ODS-W Oxide particle dispersion-strengthened tungsten 

ODS-WHAs Oxide particle dispersion-strengthened tungsten heavy alloys 

PSZ Partially stabilised zirconia 

RD Relative densities 

SAED Selected area electron diffraction 

SEM Scanning electron microscopy 

SPS Spark plasma sintering 

S-S Solid-solid 

UTS Ultimate tensile strength 

VD Sintering process in the vertical direction 

WHAs Tungsten heavy alloys 

WHA-Zr(Y)O2 Zr(Y)O2 particle dispersion-strengthened 93W-4.9Ni-2.1Fe alloy 

W-M Tungsten-matrix 

W-W Tungsten-tungsten 

XRD X-ray diffraction 

  



1. Introduction 

Tungsten heavy alloys (WHAs) are promising materials for kinetic energy 

penetrators, radiation shields, and rocket nozzles, owing to their moderate ductility, 

high density, and quasi-static strength [1-4]. In particular, WHAs are more suitable for 

use in kinetic energy penetrators than depleted uranium alloys (DUAs) as they pose 

no risk of radioactive contamination [5]. Furthermore, they exhibit a lower 

penetration performance (by ~20%) than DUAs at high strain rates [6,7]. 

Generally, the penetration capability of WHAs depends on their strength and 

toughness [8]. The existing WHAs obtained using conventional powder metallurgy 

are limited to anti-armour penetrators owing to the weak mechanical properties of 

coarse tungsten grains [9]. In recent years, a large number of researchers have focused 

on improving the mechanical performance of WHA penetrators by inducing 

microstructural changes [10-12] via changing the WHA composition by adding 

alloying elements or rare earth oxides (Y2O3, La2O3, ZrO2, ThO2, and CeO2) [13-16] 

or by microstructural refinement [17-20].  

Grain refinement in tungsten is known to significantly enhance its mechanical 

properties. However, the grain size of WHAs depends partially on the particle size of 

the initial powders. In the past few years, liquid-liquid (L-L) doping techniques have 

been developed for oxide particle-doped tungsten powders. Xu et al. fabricated 

La2O3-doped ultra-fine tungsten powders using Na2WO4·2H2O and La(NO3)3·6H2O 

as the raw materials [21]. Nanosized La2O3-doped tungsten powders with a particle 

size of ~700 nm were realised by hydrogen reduction. Dong et al. synthesised 

Y2O3-doped nanosized tungsten powders with an average particle size of 40–50 nm 

via a wet-chemical process [22]. Xiao et al. used the hydrothermal method coupled 

with hydrogen reduction to develop nanocrystal powders of W-Zr(Y)O2 with an 

average particle size of 30 nm [23]; these oxides were used as nucleation cores in 

tungsten for particle refinement. Rare earth elements (such as Y, Zr and La) decrease 

the number of O and P impurities aggregating at the interface and thus improve the 

performance of WHA penetrators [24]. In addition, nanosized oxide particles can lead 

to dispersion strengthening and grain refinement, thus increasing the strength and 



ductility of the alloys fabricated by L-L doping [25,26]. Therefore, L-L doping with 

nanosized oxide particles is considered to be an effective approach for improving the 

mechanical performance of WHAs. 

In this study, a novel material based on dispersion-strengthened 

93W-4.9Ni-2.1Fe alloys [WHA-Zr(Y)O2] using nanosized Zr(Y)O2 is proposed. 

WHA-Zr(Y)O2 was prepared by a hydrothermal method combined with mechanical 

alloying. Nanosized Zr(Y)O2 dispersion-strengthened WHAs were fabricated by 

conventional solid-phase sintering and hot isostatic pressing (HIP). The uniaxial 

tensile and compressive properties of WHA-Zr(Y)O2 were estimated and the effect of 

Zr(Y)O2 on the microstructure and mechanical properties of the WHAs were 

investigated. These microstructural characteristics and mechanical properties of the 

present WHA-Zr(Y)O2 alloys were compared with those of the state-of-the-art WHA 

materials to demonstrate the effectiveness of the proposed method. It indicates that 

the fabricated alloys exhibit more smaller size of tungsten grains and oxide particles, 

and higher ultimate tensile and compressive strengths. 

This article is structured as follows. In Section 2, the sample preparation and 

characterisation processes are described in detail. In Section 3, our observations on 

powder morphology, WHA microstructure, and the mechanical properties of 

WHA-Zr(Y)O2 alloys are described with reference to the relevant literature. Finally, 

our major conclusions are presented in Section 4. 

 

2. Experimental procedure 

2.1 Sample preparation 

In the present work, four W-Zr(Y)O2 powders were prepared using the process 

shown in Fig. 1. The composition of the alloy powders contained varying amounts of 

Zr(Y)O2 (0, 0.25, 0.5, and 0.75 wt.% denoted as WHA0, WHA 0.25, WHA 0.50 and 

WHA0.75, respectively, as listed in Table 1). The commercial raw materials included 

zirconium oxychloride octahydrate (ZrOCl2·8H2O; grade AR), yttrium nitrate 

[Y(NO3)3·6H2O; grade AR] and ammonium metatungstate [(NH4)6H2W12O40·5H2O; 

grade AR; AMT]. The supplier of ZrOCl2·8H2O and Y(NO3)3·6H2O powders was 



Shanghai Diyang Industrial Co., LTD. The AMT powder was provided by Wuhan 

Kabuda Chemical Co., LTD. The synthesis and reduction of W-Zr(Y)O2 powders 

were carried out according to previously described protocols [27]. After hydrothermal 

treatment, the precursor consisted of hexagonal (NH4)0.33·WO3·(α-hexagonal 

ammonium tungsten bronze, α-HATB, PDF# 42-0452), as shown in Fig. 2a). The 

reduction process included the following stages – a first reduction step at 500 °C for 

1.5 h resulting in hexagonal (NH4)0.42WO3 (β-HATB, PDF#42-0451), which is 

expected to produce high-quality doped tungsten powders and alloys [27], and a 

second reduction reaction at 800 °C for 2 h to yield W-Zr(Y)O2 powder. 

W-Zr(Y)O2 alloys were fabricated by spark plasma sintering (SPS) at 2000 °C 

for 5 min at 30 MPa. Mechanical alloying (MA) was conducted to blend elemental Ni, 

Fe, and W-Zr(Y)O2 powders at the appropriate proportions. A planetary ball mill was 

used at a milling speed of 250 rpm for 6 h. The milling media consisted of 3 mm 

diameter tungsten carbide balls with ball-to-powder ratio of 10:1. The milled powders 

were compacted into cylindrical rods by cold isostatic pressing at 250 MPa. 

Subsequently, the green compacts were sintered at 1250 °C for 1 h in a hydrogen 

atmosphere. These samples were later sintered by hot isostatic pressing at 1400 °C for 

2 h at 180 MPa. Fig. 2b) shows the X-ray diffraction (XRD) pattern of WHA0.75, 

which suggests the presence of W and γ(Fe, Ni) phases. 



 

Fig. 1 Schematic diagram of the synthesis of WHAs 

 

Table 1 Chemical composition of WHA-Zr(Y)O2 alloys (wt.%) 

Samples W Fe Ni ZrO2 Y2O3 

WHA0 93.000 2.1 4.9 0.00

0 

0.00

0 

 

 

 

WHA0.25 92.720 2.1 4.9 0.25

0 

0.03

2 WHA0.50 92.440 2.1 4.9 0.50

0 

0.06

3 WHA0.75 92.156 2.1 4.9 0.75

0 

0.09
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Fig. 2 XRD patterns of a) powder precursor and doped reduced powder and b) 

WHA0.75 
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2.2 Measurement, experimental procedures, and analysis 

The microstructure of the fabricated powders and alloys was evaluated by 

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), 

and high-resolution transmission electron microscopy (HR-TEM). XRD analysis was 

conducted on the produced powders and alloys to identify their crystalline phases. 

The absolute densities of the alloys were determined using Archimedes’ principle and 

theoretical densities were calculated based on the theoretical mass and volume. 

Relative density (RD) was calculated as the ratio of absolute and theoretical densities. 

Vickers hardness (HV) testing was conducted with a 200 g indenting load and a 

dwell time of 20 s using the HVS-1000 digital micro Vickers hardness tester. The 

obtained value represented the average of values sourced from ten random positions 

on the alloy cross-section. Grain-size data was acquired using a line intercept method 

and at least 100 identifiable grains were considered for this measurement. 

Tungsten-tungsten (W-W) contiguity (CWW), which is defined as the relative fraction 

of the W-W interfacial area, was estimated according to Eq. (1) [28], 

 𝐶WW = 2𝑁WW/(𝑁WW + 𝑁WM)                        (1) 

where NWW and NWM indicate the number of W-W grain boundaries and 

tungsten-matrix (W-M) interfaces intercepted by an arbitrary straight line per unit 

length in the SEM images, respectively. 

Tensile properties were measured on a universal testing machine (Instron-5967) 

at a constant loading rate of 0.3 mm/min at room temperature (27 °C). The average of 

three measured values is reported as the tensile strength of a given sample; specimen 

dimension is shown in Fig. 3. 

 

Fig. 3 Dimension of tensile testing specimens (all units are in mm) 

R 1.75 N6

41.5
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The compressive properties of the samples were measured on a universal material 

machine (Shimadzu AG-I250kN) at strain rates of 10–3, 10–2, 10–1, and 1 s–1. 

Cylindrical samples with a diameter and length of 6 and 10 mm, respectively, were 

used for this purpose.  

 

3. Results and discussions 

3.1 Precursor morphology and Zr(Y)O2 particle size and distribution  

The morphology of the precursors synthesised using the hydrothermal method is 

illustrated in Fig. 4. The precursor consisted of nanoplates, with a diameter of less 

than 20 nm and length of ~100 nm, as shown in Fig. 4a). The lattice fringe image 

indicated a spacing of 0.384 nm, corresponding to the (002) plane of hexagonal 

(NH4)0.33WO3·H2O and this indicates the growth of nanoplates along the c axis [29].  

Primary crystals (WO3·nH2O) precipitated from the crystal cell were initially 

formed by the hydrothermal reaction (Eq. (2)) between (H2W12O40)
6− and H+ [20]. 

Tungsten atoms in WO3·nH2O are bound to six oxygen atoms in a regular octahedral 

coordination pattern, as shown in Fig. 4d). Each oxygen atom is shared by two 

octahedrons, which are arranged in layers to form six-membered rings and then form 

numerous hexagonal and trigonal tunnels by sharing equatorial oxygen in the ab plane 

(001) [30-32]. These rings are usually stacked by sharing oxygen along the c axis 

[001] and form hexagonal prisms. At the same time, due to their high concentration, 

NH4
+ ions in the hydrothermal system occupied the hexagonal tunnels [33,34], thus 

accelerating the growth of hexagonal-prism-like WO3 in the [001] direction and the 

formation of hierarchical (NH4)0.33WO3·H2O nanoplates. The presence of NH4
+ and 

H+ can contribute to the formation of urchin-like h-WO3 microspheres, as shown in 

Fig. 4b). During the hydrothermal reaction, numerous tiny WO3 crystals nucleate and 

grow into WO3 nanoplates due to the orientation effect of NH4
+; these crystals 

self-assemble to form microspheres to reduce surface energy. The high concentration 

of NH4
+ around WO3 microspheres accelerates the oriented growth of WO3. Thus, 

numerous nanoplates grow epitaxially from the surface of a microsphere. This may be 

due to the addition of ions (Zr4+, Y3+, and Cl–) to the hydrothermal system and 



breakage of order between the positive and negative charges destroying the 

self-assembly process, which leads to the transformation of agglomerated 

microspheres into relatively disperse cotton-like precursors. 

(NH4)6H2W12O40·xH2O + 6HNO3 = 6NH4NO3 + 12WO3·nH2O+(8–x)H2O    (2) 

   

 

 

Fig. 4 Experimental observations and a schematic of α-HATB synthesis. a) TEM 

image of the undoped precursor, b) SEM image of the undoped precursor, c) SEM 

image of the doped precursor containing the (Zr, Y) phase, and d) illustration of 

morphology evolution in the (NH4)0.33WO3·H2O precursor 

 

The size of oxide particles and their distribution in tungsten powders and alloys 

were studied (Fig. 5). A SEM image of the powder reduced at the optimised 

processing parameters is shown in Fig 5a). The powder particles exhibited small 

diameter and excellent dispersion, which is beneficial for increasing the uniformity 

and density of the microstructure during sintering. Further, nanoscale white particles, 

composed of Zr(Y)O2, were scattered on the surfaces of tungsten particles, as shown 

Hydrothermal

self-assembly
Dispersing
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+
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d(002) 
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in Fig. 5a1).  

SPS was conducted to produce W-Zr(Y)O2 alloys and investigate the effect of 

Zr(Y)O2 particle size and distribution on the alloy microstructure, as shown in Fig. 5b). 

Oxde particle size was found to be uneven in the range of 100–500 nm. According to 

the magnified image of the selected area in Fig. 5b1), a large number of white particles 

were found to be distributed within the grains, which helped in enhancing material 

properties. Moreover, a large number of nanoparticles (50 nm) were found to be 

distributed within the microstructure, as observed by TEM. A strong bonding was thus 

formed between the particles and tungsten phase even though there was no phase 

coherence between tungsten and the oxide, as shown in Fig. 5c1).  

 

 

 

Fig. 5 Morphology and microstructure of W-Zr(Y)O2 powders and alloys obtained 

using the proposed approach. a and a1) SEM images of the morphology of the 

W-Zr(Y)O2 powder. b and b1) SEM images of the microstructure of the W-Zr(Y)O2 

alloy. c and c1) TEM and HR-TEM images of the W-Zr(Y)O2 alloy 

 

The microstructure and mechanical properties of oxide particle 

dispersion-strengthened tungsten alloys (ODS-W) fabricated in this study were 
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compared with those reported earlier (alloys with the same or similar composition 

obtained by different processes as shown in Table 2). Fast sintering techniques, such 

as HIP, SPS, and sintering in vertical direction (VD), eliminate oxide particle growth. 

From Table 2, it may be inferred that L-L methods are better at yielding fine oxide 

particles in ODS-W alloys than L-S and S-S methods [35-37]. However, the size of 

these particles varied widely at 3.6, 1.5, and 2.5 μm. They were still much coarser 

than the oxide particles synthesised in tungsten alloys using the approach proposed in 

the current study. A similar observation could be made for ODS-W alloys fabricated 

by L-S methods. Yar et al. [40] prepared nanosized W-Y2O3 alloy by L-S doping. 

However, these Y2O3 particles were non-uniformly distributed in the tungsten matrix 

as the reaction occurred at the surfaces of the raw material alone (ammonium 

paratungstate, APT). Nanosized oxide particles were used as raw materials in S-S 

doping (mechanical alloying), but a large adsorption effect led to particle aggregation 

even after 30 h of ball milling [43]. In current research, the oxide particles obtained in 

tungsten alloys using the current approach were 0.8–10 times smaller when compared 

to those described in previous reports. This difference indicates that the proposed L-L 

doping process is appropriate to reduce particle size in tungsten alloys. 

 

Table 2 Comparison of the microstructure and mechanical properties of ODS-W 

alloys 

Doping 

process 

Sintering 

process 
Alloy 

W grain 

size (μm) 

Oxide 

particle 

size (μm) 

Density 

(g/cm3)/Relative 

density (%) 

Microhardness 

(HV) 
Ref. 

L-L 

SPS W-6vol% Al2O3 3.64 >1.0 -/94.96 347.39 [35] 

SPS W-2.5%ZrO2 4.65 2.5 -/99.6 480 [36] 

VD W-2.5%ZrO2 40-80 1.5 -/98.7 - [37] 

L-Sa* 

VD W-La2O3 50 3 - - [38] 

SPS W-0.9wt.%La2O3 - 2 17.8/94 406 [39] 

SPS W-1.0%Y2O3 2.3 Nanosize 17.5/92 423 [40] 



(Uneven) 

S-S 

HIP W-1%La2O3 - >5 18.9/90.6 - [41] 

HIP W-Ti-0.5%Y2O3 2-5 >1.5 - - [42] 

SPS W-5%HfO2 11.6 >5 -/94.5 440 [43] 

Current 

process 
SPS W-0.5%Zr(Y)O2 4.67 ± 0.5 0.25 ± 0.05 18.44/96.7 ± 0.2 472 ± 10 Present 

a* using APT as the tungsten source. 

 

3.2 Microstructure of WHAs 

The morphology of WHA0.75 powder produced by the mechanical alloying of 

W-Zr(Y)O2 powder with Ni and Fe powders is shown in Fig. 6a). It can be observed 

that the structure of the WHA0.75 powder is much looser than that of W-Zr(Y)O2 (Fig. 

5a)). The microstructures of WHAs with different weight ratios of Zr(Y)O2 are shown 

in Fig. 6(b–d). According to Fig. 6b), spherical tungsten grains are embedded in the 

matrix phase due to liquid-phase formation during sintering at 1400 °C [44]. It could 

be confirmed that the grain size of WHA0.75 is smaller than that of WHA0 after 

comparing the average size of 100 grains. W grains in alloys with and without 

Zr(Y)O2 particles were uneven in size; the growth of W grains during liquid-phase 

sintering may be explained by Ostwald ripening [45]. In the current experimental 

conditions, smaller particles reprecipitated on larger tungsten grains during their 

dissolution in the matrix [46]. The uneven growth in tungsten grain size may be 

attributed to the low sintering temperatures and short durations, which decrease the 

mobility and effective diffusion of W atoms. 

Moreover, grain contiguity reduced slightly as the grain size decreased, similar 

to previously reported results [47]. The reason for the decrease in W-W contiguity is 

that Zr(Y)O2 particles induce the liquid phase γ(Fe0.64N0.36) to infiltrate W grain 

boundaries during sintering [48]. Thus, tungsten grains are gradually covered by the 

γ(Fe0.64N0.36) phase to enhance the mechanical properties of oxide particle 

dispersion-strengthened WHAs (ODS-WHAs). 



A magnified image of the area enclosed in red in Fig. 6c) is presented in Fig. 6d) 

to understand the microstructure of WHA0.75 in further detail. A large number of 

white particles with similar particle size of less than 200 nm could be observed. These 

Zr(Y)O2 particles were dispersed in W grains. Generally, large oxide particles induce 

stress/strain concentration for crack initiation and reduce the fracture toughness of an 

alloy [49]. Therefore, nanosized Zr(Y)O2 particles (such as those in the present alloy) 

obtained by the proposed process are expected to enhance the mechanical properties 

of WHAs.  

  

  

 

Fig. 6 SEM images of the microstructure of a) WHA0.75, b) WHA0, and c) and d) 

WHA0.75 at 500x and 5000x, respectively 

 

The microstructure of WHA0.75 after quasi-static compressive loading at room 

temperature (27 °C) was characterized by TEM. As shown in Fig. 7a)–c), oxide 

nanoparticles with prismatic and subspherical structure exhibited different particle 

sizes. In Fig. 7a), it may be observed that the prismatic particles surrounded by a 

(a) (b) 

WHA0 

(c) (d) 

WHA0.75 WHA0.75 



black phase were ~200 nm in size. In Fig. 7b) and c), it can be seen that subspherical 

particles smaller than 50 nm were embedded in shallow phases consisting of Ni, Fe, 

and W, as described by EDS. White cubic nanocrystalline Zr(Y)O2 particles were 

detected in the selected area electron diffraction (SAED) pattern in the inset of Fig. 

7a). Dislocation substructures are marked by white arrows in the matrix phase, as 

shown in Fig. 7c). Meanwhile, Fig. 7d) illustrates a well-bonded interface between the 

tungsten phase and Zr(Y)O2 even though there was no coherent relationship.  

  

  

 

Fig. 7 a) and b) TEM images of WHA0.75, c) TEM image of the matrix phase, and d) 

HRTEM image of the Zr(Y)O2/W interface 

 

The microstructures of several heavy tungsten alloys reinforced by ZrO2 particles 

are shown in Fig. 8. Daoush et al. [49] fabricated W-Ni-ZrO2 alloys by conventional 

sintering at 1500 °C for 1 h. The ZrO2 particles in these alloys ranged from 0.5 to 3 

μm in size, as shown in Fig. 8a), and they were almost at or close to the grain 
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W phase γ(Ni,Fe,W
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boundaries. Lee et al. [51] fabricated partially stabilised zirconia (PSZ) 

dispersion-strengthened WHAs by two-step mechanical alloying to control the 

location of oxide particles. However, the PSZ particles in the alloys still grew to be as 

large as 1.5 μm, as shown in Fig. 8b), and some adhesive oxide particles marked by 

red arrows could be observed. Xu et al. [47] studied Zr(Y)O2 dispersion-strengthened 

92.5W-4.9Ni-2.1Fe alloys using azeotropic distillation process. In these alloys, the 

Zr(Y)O2 particles were 200–1000 nm large, as shown in Fig. 8c). Wang et al. [36] 

synthesised W-ZrO2 alloys using a combination of the hydrothermal method and SPS. 

In this case, agglomerated precursors could be detected and the adhesive ZrO2 

particles grew to 3 μm, as shown in Fig. 8d). In addition, other large oxide particles 

(La2O3, Y2O3, and Al2O3) were also used to strengthen tungsten alloys (Table 2 and 3). 

Non-uniformly distributed coarse particles induce uneven stress and strain distribution 

around these reinforced particles, thus weakening the alloys.  
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Fig. 8 Microstructures of WHAs reinforced by ZrO2 particles. a) W-Ni-ZrO2 [49], b) 

W-Ni-Fe-PSZ [51], c) W-Ni-Fe-ZrO2 [47], and d) W-ZrO2 [36] 

Table 3 Microstructure and mechanical properties of ODS-WHA reported in the 

literature and in the current study 

 

Intracrystalline heavy tungsten alloys reinforced with nanosized c-Zr(Y)O2 

particles were fabricated in this study; the consequent formation and distribution of 

c-Zr(Y)O2 particles during L-L doping at the ionic level are shown in Fig. 9. The 

formation of nanosized yttria-stabilised cubic zirconia is attributed to the L-L 

incorporation of Zr4+ and Y3+ ions; Y(NO3)3 solution was added slowly to a 

ZrOCl2·8H2O solution while stirring to obtain a cluster solution [47]. Though 

ZrOCl2 ·8H2O dissolves in strong acid solutions, it undergoes hydrolysis in aqueous 

solutions and Cl– ions in the outer sphere of the ionic complex are replaced by OH– 

groups (Eq. (3)) [27]. Subsequently, [Zr4(OH)8 16H2O]8+ units react with the hydroxyl 

ions to form Zr(OH)4 sols [27]. 

{[Zr4(OH)8·16H2O]8+8Cl–} + 4H2O = {[Zr4(OH)8·16H2O]8+ 8OH–} + 8HCl↑ (3) 

However, the generated Zr(OH)4 easily decomposes in acidic conditions to yield 

Zr4+. During the hydrothermal reaction, W12O40
8– ions are introduced from the 

hydrolysis of AMT (Eq. (4)) [23] after which Zr4+ and Y3+ ions reacts with W12O40
8– 

Heavy tungsten alloy Sintering 

process 

RD (%) Grain 

size (μm) 

Particle 

size (μm) 

Hardness 

(HV) 

Ref. 

W-Ni-Fe-0.3PSZ 1480 °C (1 h) - 18 0.8 - [49] 

W-Ni-Fe-1Al2O3 1480 °C (2 h) 98.3 36.8 7 - [52] 

W-Ni-Fe-xY2O3 1850 °C (1 h) 99.1 19.5 0.6-1.3 - [10] 

W-Ni-Fe-Co-Y2O3 1450 °C (1 h) 94.1 12 >0.6 425 [44] 

94W-4.56Ni-1.14Fe-Y2O3 1485 °C (1 h) 99.0 15 0.65 - [53] 

Previous W-ODS SPS/HIP <99.9 <10 1-5 406-480 [27] 

93W-4.9Ni-2.1Fe-Zr(Y)O2 1520 °C (2.5 h) 99.2 28 0.5-1 402 [47] 

WHA0.75 1400 °C (2.5 h) 99.5 ± 0.1 25 ± 2 0.2-1 407 ± 10 Present 



ions to produce Zr(WO4)2 and Y2(WO4)3 (Eqs. (5) and (6)) [47,54]. Y2O3 penetrates 

oxygen vacancies in the zirconia lattice to form stabilized Zr(Y)O2 during sintering 

[55]. 

(NH4)6H2W12O40  = 6NH4
+ + 2H+ + W12O40

8−                              (4) 

2Zr(OH)4 + 8H+ +W12O40
8− = 8WO3↓+ 2Zr(WO4)2↓+8H2O                 (5) 

2Y3+ +2H++ W12O40
8− = 9WO3↓ + Y2(WO4)3↓+ H2O                      (6) 

The refining effect of oxide particle size is limited to doping with nanosized 

particles due to the high adsorption capacity [44,56]. In the present investigation, 

WHA-Zr(Y)O2 powders were prepared by the mechanically alloying of ultrafine 

W-Zr(Y)O2 powders with Ni and Fe powders. In the alloys, nanosized Zr(Y)O2 

particles with size less than 200 nm were distributed on the surface of tungsten 

particles. Moreover, WHA-Zr(Y)O2 exhibited a highly uniform nanoparticle 

distribution when compared to alloys produced by other powder processing methods. 

This indicates that L-L doping and mechanical alloying, when combined together, are 

highly effective at reducing the particle size in strengthened tungsten alloys. 

Conventionally, ODS-WHA powders are prepared by doping WHA powders 

with oxide particles, which often leads to oxide particle agglomeration and growth at 

the grain boundaries. In current research, during liquid sintering, Ni and Fe powder 

particles are transformed into a liquid phase, which allows the diffusion of only a 

small amount of tungsten. Meanwhile, some of the Zr(Y)O2 particles at the grain 

boundaries of W powders are drawn into liquid phase and they are retained in the γ(Fe, 

Ni, and W) matrix. Eventually, most of the c-Zr(Y)O2 particles are distributed in W 

grains and only a small number of c-Zr(Y)O2 particles are distributed in the γ(Fe, Ni, 

and W) matrix. 



 

Fig. 9 Schematic of microstructural development during alloy fabrication 

 

3.3 Mechanism of grain refinement in WHAs 

Tungsten grain growth in ODS-WHAs is mainly dependent on oxide particle 

refinement during sintering [10,50]. However, grain refinement is complicated due to 

the retardation of grain growth and coarsening under different sintering conditions. 

Bock et al. [57] suggested that oxide particles inhibited grain growth to prevent grain 

coarsening. Kang et al. [58] indicated that secondary phase particles led to an increase 

in grain curvature. Annavarapu et al. [59] proposed that the diffusion distance of 

tungsten atoms increased in the presence of large secondary phase particles. Oxide 

particles at the tungsten-matrix (W-M) interface can block diffusion between tungsten 

and the matrix, which delays grain growth during WHA liquid phase sintering [52]. 

The doped secondary phase particles at grain boundaries affected tungsten grain size 

by preventing migration along the grain boundaries and reducing the growth rate [60]. 

This relationship can be expressed as follows (7): 

      R = 4r 3𝜑⁄                            (7) 

where R is the grain size of the tungsten phase, r is the radius of secondary phase 

particles, and φ is the volume fraction of the secondary phase particles. 

According to Eq. (7), the grain size of tungsten particles depends on the size of 

oxide particles; in other words, tungsten grain size can be reduced if the size of the 

oxide particles located at the grain boundaries decreases.  

The relationship between tungsten grain size and size of the oxide particles in 

liquid
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ODS-WHAs observed in this study as well as in previous investigations is illustrated 

in Fig. 10. In general, W grain size was proportional to oxide particle size, except in 

the WHAs described in this study and those in Ref. [47]. These two WHAs with a 

large number of Zr(Y)O2 particles uniformly dispersed in tungsten grains are shown 

in the same plot; in this case, the relationship between grain size and oxide particle 

size was not linear. This is because of the dispersion of Zr(Y)O2 particles within 

tungsten grains, leading to a not very obvious refinement of W grains. This 

observation further confirms the advantages of the L-L doping for preparing 

intragranular particle-strengthened tungsten alloys. 

Table 4 Comparison of the microstructural parameters and sintering conditions of 

WHAs reported in the literature and current study 

 



a* Maximal sintering temperature and duration time 

b* Heavy tungsten alloy reported in [64] 

c* Microstructure and properties of the heavy tungsten alloy are not known. 

 

Heavy tungsten alloy 

Sintering 

processing 

parameters a* 

RD (%) 
Grain size 

(μm) 
Contiguity 

Matrix 

volume 

fraction 

Ref. 

90W-7Ni-2Fe-1Co 1460 °C (2 h) - 36 0.42 0.34 
[62] 

 
93W-4.9Ni-1.4Fe-0.7Co 1460 °C (2 h) - 47 0.55 0.22 

95W-3.5Ni-1Fe-0.5Co 1460 °C (2 h) - 59 0.73 0.16 

90W-7Ni-3Fe 1460 °C (2 h) - 32 0.51 ± 0.2 14.3 ± 3.3 [46] 

 90W-6Ni-2Fe-Co 1470 °C (2 h) - 47 0.62 ± 0.2 15.2 ± 2.1 

W-5.6Ni-1.4Fe 1485 °C (1 h) 99.9 34.5 - - [10] 

W-Ni-Fe 

1480 °C (2 h) 

 56 0.53 ± 0.05 0.14 

[63] W-Ni-Fe-Co - 54 0.43 ± 0.01 0.17 

W-Ni-Fe-Re - 49 0.48 ± 0.06 0.16 

93W-4.9Ni-2.1Fe 
1520 °C (1.5h) 

99.1 45.5 0.32 ± 0.04 - 
[52] 

95W-2.8Ni-1.2Fe-Al2O3 98.2 36.8 0.60 ± 0.06 - 

INERMET® IT180b* - - 100 - - [64] 

95W-3.5Ni-1.5Cu 1510 °C (1.5 h) 98.4 60 0.60 - 
[65] 

96W-3Ni- 1Cu 1510 °C (1.5 h) 98.4 70 0.70 - 

90W-4xNi-xCo 1600 °C (1 h) 99.2 34 - - [45] 

Conventional WHAc* - - 40-60 - - [9] 

94W-4.56Ni-1.14Fe-Y2O3 1485 °C (1 h) 99% 15 0.75 0.112 [53] 

WHA0 1400 °C (2 h) 99.5% ± 0.1 41 ± 2 0.53 ± 0.03 0.37 ± 0.015 Current 

study WHA0.75 1400 °C (2 h) 99.3% ± 0.1 37 ± 2 0.47 ± 0.03 0.42 ± 0.023 
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Fig. 10 Relationship between tungsten grain size and oxide particle size in 

ODS-WHAs reported in the current and past studies 

 

The grain size of Zr(Y)O2 particle-dispersion-strengthened WHAs described in 

this study was also compared with that in WHAs sintered using different methods 

(Table 4). The factors responsible for a fine original tungsten grain size (G0) also 

contributed to grain refinement; the relationship between G0 and refined grain size is 

as follows [61], 

G3 = G0
3 + Kt                             (8) 

where G is the mean W grain size at time t, G0 is the original average W grain size at 

the onset of coarsening, and K is the rate constant. 

In this study, mechanical alloying was conducted to produce small W particles. 

Internal defects caused by the significant strain on these particles due to the high 

impact forces generated during ball milling serve as additional nucleation sites for 

strain-free grains and homogenise the grain size [66]. Fan et al. [67] indicated that 

mechanical alloying powders affected the mechanism of sintering and contributed to 

fine tungsten grains in heavy alloys.  

The alloys listed in Table 4 exhibited large and coarse grains as the sintering 

temperature increased (>1400 °C). As sintering is a diffusion-controlled process, 

alloys sintered at higher temperatures exhibit higher sintering and coarsening rates 

[68]. Moreover, high-temperature sintering results in a constant flow of the binder 



phase through pores between W grains [48] and increases the final relative sintering 

density. The alloys described in this study exhibit a high RD comparable with the RD 

of alloys reported in the literature (Table 4). This is because the high pressure applied 

during sintering accelerates W atom diffusion [69,70]. In addition, the oxide particles 

also enhance the densifications process and decrease the porosity by capturing the 

oxygen in the matrix. 

 

3.4 Mechanical properties of WHA-Zr(Y)O2 alloys 

Uniaxial tensile tests were conducted to measure the ultimate tensile strength 

(UTS) of WHA-Zr(Y)O2 at room temperature (27 °C). The strengths of WHA0 and 

WHA0.5 were compared with those reported in literature, as shown in Fig. 11a). The 

ultimate tensile strengths of WHA0 and WHA0.50 were 937 and 895 MPa, respectively, 

which exhibit higher strengths compared to state of the art. 

Fig. 11b)–d) show the fracture surfaces of the failed tensile samples of 

90W-7Ni-3Fe (90WHA) [9], 90W-7Ni-3Fe-0.04Y2O3 (90WHA-0.04Y2O3) [9], and 

WHA0.50, respectively. As shown in Fig. 11b) and c), W-W intergranular rupture is 

the dominant mode of fracture in 90WHA. However, a few W grain transgranular 

fractures and pore surfaces are still observed in 90WHA-0.04Y2O3. Although the 

strength of present WHA0.50 alloy is lower than that of the 90WHA-0.04Y2O3 alloy, 

WHA0.50 shows visual evidence of W-W cleavage patterns and the ductile failure 

behaviour of the matrix. This contradictory situation would be researched in 

follow-up studies. 

From these results, it may be inferred that oxide particles have a significant 

effect on the mechanical properties of the tested alloys. Too low or too high content of 

rare earth oxide additions would result in its different strengthening effect on tensile 

properties. Fan et al. [9] reported that WHAs with 0.4 wt.% oxide particles exhibited a 

tensile strength of 1124 MPa. In contrast, the additions of 0.1 wt.%, 0.8 wt.%Y2O3 

into alloy decreased the maximal strength value of the alloy compared to WHA 

without Y2O3 (923 MPa). Lee et al. fabricated PSZ (0–0.3wt.%) 

dispersion-strengthened WHAs [51]; the ultimate tensile strengths of these alloys 



decreased with the addition of PSZ particles (as indicated by the red symbols in Fig. 

11a)). A similar phenomenon occurred with the addition of 1% Al2O3 and 0.1% Y2O3 

[10,52]. In these two alloys, the additions of oxide particles both decrease the strength 

values of WHAs. This indicates that a non-optimal oxide content deteriorates the 

tensile properties of alloys. 

 In addition to the oxide content, the mechanical properties of alloys depend on 

oxide particle distribution. In case oxide particles are agglomerated, fracture initiation 

might occur from these areas during tensile tests. Cracks are generated at these spots 

and later propagate, leading to fracture [78,79]. Moreover, rare earth oxide aggregates 

in the matrix or at the W-M interface restrain matrix deformation, which decreases the 

strength and elongation of WHAs.  
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Fig. 11 Tensile properties and fracture surfaces of WHAs and ODS-WHAs described 

in the present work and literature. a) ultimate tensile strengths of WHAs and 
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ODS-WHAs vs. their sintering temperature, b) fracture surfaces of 90WHA [9], c) 

90WHA-0.04Y2O3 [9], and d) WHA0.50 

The compressive properties of WHAs reinforced with different amounts of 

Zr(Y)O2 particles were investigated and compared as shown in Fig. 12. The 

engineering stress-strain curves and the corresponding true stress-strain curves of 

WHA-Zr(Y)O2 were plotted at room temperature (27 °C) (Fig. 12a) and b), 

respectively). During compressive testing, elastic deformation occurs initially with a 

linear relationship between stress and strain, followed by plastic deformation in the 

alloy. Beyond an engineering strain of 0.813, stress increased while the strain 

remained constant, as shown in Fig. 12a). This indicates the high plasticity of WHAs. 

The matrix phase of WHAs is softer than the tungsten phase, which determines 

the plastic deformation capacity of the alloys during quasi-static compression. In the 

alloys described in the present study, the matrix phase containing a solid Zr(Y)O2 

phase exhibited good plasticity. This is due to the fact that some nanosized Zr(Y)O2 

particles were uniformly distributed in the matrix with a good interface. These 

ultrafine oxide particles reduced stress and strain concentration during compressive 

deformation [80]. 

Based on the true stress-strain curves in Fig. 12b), the WHA containing 0.5% 

Zr(Y)O2 exhibited the best strengthening behaviour among all the tested alloys. The 

ultimate compressive strength of WHA0.50 was 1445 MPa, which was higher than that 

of the other three alloys. Furthermore, we observed that the ultimate compressive 

strength obtained during plastic deformation is affected by the strain rate; to illustrate 

this phenomenon, we tested the alloy samples at strain rates of 10–3, 10–2, 10–1, and 1 

s–1, as shown in Fig. 13. 

Fig. 13a) indicates that WHA-Zr(Y)O2 exhibited excellent plasticity at different 

strain rates. The ultimate stress increased with an increase in the strain rate, as shown 

in Fig. 13b). An ultimate stress of 1445 MPa was achieved at 10–3 s–1. The 

compressive strength of WHA0.50 was higher than that of several previously reported 

alloys, as shown in Fig. 13c). This higher value of strength may be due to the proper 

amount of Zr(Y)O2 particles and higher dispersed nanoparticles distribution. When the 



strain rate increases to 1 s-1, the peak stress increases to 1560 MPa. On the one hand, a 

high strain rate enhances dislocation density and work hardening. On the other hand, 

the change of phase’ deformation behaviors may be another main reason. The 

deformed microstructures produced at different strain rates are shown to illustrate the 

plastic deformation behaviour of WHA-Zr(Y)O2 (Fig. 14a)–d)).  

During compression, the matrix phase is the first to deform. When tests are 

conducted at low strain rates, the matrix phase has sufficient time to deform and flow 

between tungsten particles, as confirmed by the slightly elongated microstructure of 

tungsten grains in Fig. 14a). With the further increasing of plastic deformation, the 

matrix phase causes work hardening by plastic deformation, which induces a 

simultaneous deformation in some tungsten particles. The deformation resistance of 

the matrix phase depends on the oxide particles used to reinforce it. When the strain 

rate during compression increases, there is not enough time for the matrix phase to 

flow between W particles, owing to which it gradually transmits stress to W grains, 

leading to their deformation. Beyond a critical strain rate, the deformation resistance 

of the alloy mainly depends on the tungsten phase. Therefore, W particles were 

seriously elongated at 1 s–1, as shown in Fig. 14d).  
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Fig. 12 a) Room temperature (27 °C) engineering stress-strain curves and b) true 

stress-strain curves of WHAs with different mass fractions of Zr(Y)O2. Compression 

tests were conducted at a constant strain rate of 10–3 s–1. 
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Fig. 13 a) Room temperature (27 °C) engineering stress-strain curves and b) true 

stress-strain curves of WHA0.50generated during compression tests at different strain 

rates. c) Comparison of the compressive true stress-strain curve of WHA0.50 with 

those of previously reported alloys

(a) (b) 

(c) 



 

Fig. 14 Microstructure of WHA0.75 after compression tests at room temperature (27 °C) 

at strain rates of a) 10−3, b) 10−2, c) 10−1, and d) 1 s−1 

 

4. Conclusion 

(1) WHAs strengthened by highly uniform nanosized Zr(Y)O2 particles were 

fabricated by hydrothermal processing followed by mechanical alloying and 

hot isostatic pressing. 

(2) Zr(Y)O2 particles bonded well with the tungsten phase; they were smaller than 

200 nm in size and were distributed uniformly in tungsten grains and the 

matrix. TEM analysis indicated the presence of a large number of nanosized 

oxide particles smaller than 50 nm in the alloy microstructure. 

(3) The size of Zr(Y)O2 particles synthesised using combined hydrothermal and 

mechanical alloying methods is much smaller than that in alloys previously 

reported; this small size also helped in tungsten grain refinement. 

 

 

 

(a) (b) 

(c) (d) 

(a) (b) 



(4) The ultimate tensile and maximal compressive strengths of the fabricated alloys 

under quasi-static deformation at room temperature (27 °C) were 895 and 

1420 MPa, respectively, which are much higher than the values reported in 

literature. The effect of Zr(Y)O2 particles and strain rate on the compressive 

properties of the alloys were investigated in detail and the corresponding 

compressive deformation mechanisms were discussed. 
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Highlights 

1. Highly uniform nanosized Zr(Y)O2 particles were fabricated by liquid doping. 

2. W alloys were fabricated by a combined hydrothermal and mechanical alloying 

method. 

3. Zr(Y)O2 particles (< 200 nm), are much smaller than those reported in literature. 

4. W alloys containing nanosized Zr(Y)O2 exhibited excellent mechanical properties.  
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Abstract 

In this study, tungsten heavy alloys reinforced with highly uniform and dispersed 

nanosized Zr(Y)O2 particles were investigated. These alloys exhibited a high 

compressive strength and enhanced plasticity. To fabricate these alloys, we used a 

novel process involving molecular level liquid-liquid doping combined with hot 

isostatic pressing. The Zr(Y)O2 particles thus produced were smaller than 200 nm in 

size and bonded well with tungsten grains. The size of Zr(Y)O2 particles and tungsten 

grains are much smaller than those of the state-of-the-art review and the details of the 

grain refinement mechanisms were discussed. The effect of Zr(Y)O2 particles and 

strain rate on the compressive properties of the alloys was investigated in detail and 

the corresponding compressive deformation mechanisms were elucidated. The highest 

ultimate tensile and compressive strengths of the fabricated alloys at room 

temperature (27°C) were 906 and 1445 MPa, respectively, which are higher than most 

of reported values in the literature. The ultimate tensile strength and fracture strain of 

WHAs decrease with the mass fraction of Zr(Y)O2 (from 0 to 0.75%). The alloys 

exhibit the brittle material behaviour in tension, compared to the pure tungsten with 

ductile material behaviour. The tensile fracture surface consists of W - W cleavage 

patterns and ductile failure of the matrix. The results obtained in this research will act 

as basic guidelines for the fabrication of ODS-W alloys by liquid-liquid doping 

process. 

 

Keywords: Tungsten heavy alloys; oxide particle strengthening; zirconia; liquid-liquid 

doping; compressive strength; hot isostatic pressing 

 

Nomenclature 

α-HATB Hexagonal ammonium tungsten bronze (NH4)0.33·WO3 

β-HATB Hexagonal ammonium tungsten bronze (NH4)0.42·WO3 

AMT Ammonium metatungstate 

APT Ammonium paratungstate 

DUAs Depleted uranium alloys 
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EDS Energy dispersive X-ray spectroscopy 

HATB Hexagonal ammonium tungsten bronze, (NH4)х·WO3 

HIP Hot isostatic pressing  

HR-TEM High-resolution transmission electron microscopy 

HV Vickers hardness 

L-L Liquid-liquid 

L-S Liquid-solid 

MA Mechanical alloying 

ODS-W Oxide particle dispersion-strengthened tungsten 

ODS-WHAs Oxide particle dispersion-strengthened tungsten heavy alloys 

PSZ Partially stabilised zirconia 

RD Relative densities 

SAED Selected area electron diffraction 

SEM Scanning electron microscopy 

SPS Spark plasma sintering 

S-S Solid-solid 

UTS Ultimate tensile strength 

VD Sintering process in the vertical direction 

WHAs Tungsten heavy alloys 

WHA-Zr(Y)O2 Zr(Y)O2 particle dispersion-strengthened 93W-4.9Ni-2.1Fe alloy 

W-M Tungsten-matrix 

W-W Tungsten-tungsten 

XRD X-ray diffraction 
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1. Introduction 

Tungsten heavy alloys (WHAs) are promising materials for kinetic energy 

penetrators, radiation shields, and rocket nozzles, owing to their moderate ductility, 

high density, and quasi-static strength [1-4]. In particular, WHAs are more suitable for 

use in kinetic energy penetrators than depleted uranium alloys (DUAs) as they pose 

no risk of radioactive contamination [5]. Furthermore, they exhibit a lower 

penetration performance (by ~20%) than DUAs at high strain rates [6,7]. 

Generally, the penetration capability of WHAs depends on their strength and 

toughness [8]. The existing WHAs obtained using conventional powder metallurgy 

are limited to anti-armour penetrators owing to the weak mechanical properties of 

coarse tungsten grains [9]. In recent years, a large number of researchers have focused 

on improving the mechanical performance of WHA penetrators by inducing 

microstructural changes [10-12] via changing the WHA composition by adding 

alloying elements or rare earth oxides (Y2O3, La2O3, ZrO2, ThO2, and CeO2) [13-16] 

or by microstructural refinement [17-20].  

Grain refinement in tungsten is known to significantly enhance its mechanical 

properties. However, the grain size of WHAs depends partially on the particle size of 

the initial powders. In the past few years, liquid-liquid (L-L) doping techniques have 

been developed for oxide particle-doped tungsten powders. Xu et al. fabricated 

La2O3-doped ultra-fine tungsten powders using Na2WO4·2H2O and La(NO3)3·6H2O 

as the raw materials [21]. Nanosized La2O3-doped tungsten powders with a particle 

size of ~700 nm were realised by hydrogen reduction. Dong et al. synthesised 

Y2O3-doped nanosized tungsten powders with an average particle size of 40–50 nm 

via a wet-chemical process [22]. Xiao et al. used the hydrothermal method coupled 

with hydrogen reduction to develop nanocrystal powders of W-Zr(Y)O2 with an 

average particle size of 30 nm [23]; these oxides were used as nucleation cores in 

tungsten for particle refinement. Rare earth elements (such as Y, Zr and La) decrease 

the number of O and P impurities aggregating at the interface and thus improve the 

performance of WHA penetrators [24]. In addition, nanosized oxide particles can lead 

to dispersion strengthening and grain refinement, thus increasing the strength and 
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ductility of the alloys fabricated by L-L doping [25,26]. Therefore, L-L doping with 

nanosized oxide particles is considered to be an effective approach for improving the 

mechanical performance of WHAs. 

In this study, a novel material based on dispersion-strengthened 

93W-4.9Ni-2.1Fe alloys [WHA-Zr(Y)O2] using nanosized Zr(Y)O2 is proposed. 

WHA-Zr(Y)O2 was prepared by a hydrothermal method combined with mechanical 

alloying (MA). Nanosized Zr(Y)O2 dispersion-strengthened WHAs were fabricated 

by conventional solid-phase sintering and hot isostatic pressing (HIP). The uniaxial 

tensile and compressive properties of WHA-Zr(Y)O2 were estimated and the effect of 

Zr(Y)O2 on the microstructure and mechanical properties of the WHAs were 

investigated. These microstructural characteristics and mechanical properties (tensile 

and compressive) of the present WHA-Zr(Y)O2 alloys under various solicitations 

were compared with those of the state-of-the-art WHA materials to demonstrate the 

effectiveness of the proposed method. It indicates that the fabricated alloys exhibit 

smaller size of tungsten grains and oxide particles, and higher ultimate tensile and 

compressive strengths. 

This article is structured as follows. In Section 2, the sample preparation and 

characterisation processes are described in detail. In Section 3, our observations on 

powder morphology, WHA microstructure, and the mechanical properties of 

WHA-Zr(Y)O2 alloys are described with reference to the relevant literature. Finally, 

our major conclusions are presented in Section 4. 

 

2. Experimental procedure 

2.1 Sample preparation 

In the present work, four W-Zr(Y)O2 powders were prepared using the process 

shown in Fig. 1. The composition of the alloy powders contained varying amounts of 

Zr(Y)O2 (0, 0.25, 0.5, and 0.75 wt.% denoted as WHA0, WHA 0.25, WHA 0.50 and 

WHA0.75, respectively, as listed in Table 1). The commercial raw materials included 

zirconium oxychloride octahydrate (ZrOCl2·8H2O; grade AR), yttrium nitrate 

[Y(NO3)3·6H2O; grade AR] and ammonium metatungstate [(NH4)6H2W12O40·5H2O; 
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grade AR; AMT]. The supplier of ZrOCl2·8H2O and Y(NO3)3·6H2O powders was 

Shanghai Diyang Industrial Co., LTD. The AMT powder was provided by Wuhan 

Kabuda Chemical Co., LTD. The synthesis and reduction of W-Zr(Y)O2 powders 

were carried out according to previously described protocols [27]. After hydrothermal 

treatment, the precursor consisted of hexagonal (NH4)0.33·WO3·(α-hexagonal 

ammonium tungsten bronze, α-HATB, PDF# 42-0452), as shown in Fig. 2a). The 

reduction process included the following stages – a first reduction step at 500 °C for 

1.5 h resulting in hexagonal (NH4)0.42WO3 (β-HATB, PDF#42-0451), which is 

expected to produce high-quality doped tungsten powders and alloys [27], and a 

second reduction reaction at 800 °C for 2 h to yield W-Zr(Y)O2 powder. After 

hydrogen reduction, the (NH4)0.42WO3 was transformed into α-W.  

W-Zr(Y)O2 alloys were fabricated by Hot isostatic pressing (HIP) at 2000 °C for 

5 min at 30 MPa. MA was conducted to blend elemental Ni, Fe, and W-Zr(Y)O2 

powders at the appropriate proportions. A planetary ball mill was used at a milling 

speed of 250 rpm for 6 h. The milling media consisted of 3 mm diameter tungsten 

carbide balls with ball-to-powder ratio of 10:1. The milled powders were compacted 

into cylindrical rods by cold isostatic pressing at 250 MPa. Subsequently, the green 

compacts were sintered at 1250 °C for 1 h in a hydrogen atmosphere. These samples 

were later sintered by hot isostatic pressing at 1400 °C for 2 h at 180 MPa. Fig. 2b) 

shows the X-ray diffraction (XRD) pattern of WHA0.75, which suggests the presence 

of W and γ(Fe, Ni) phases. 
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Fig. 1 Schematic diagram of the synthesis of WHAs 

 

Table 1 Chemical composition of WHA-Zr(Y)O2 alloys (wt.%) 

Samples W Fe Ni ZrO2 Y2O3 

WHA0 93.000 2.1 4.9 0.00

0 

0.00

0 

 

 

 

WHA0.25 92.720 2.1 4.9 0.25

0 

0.03

2 WHA0.50 92.440 2.1 4.9 0.50

0 

0.06

3 WHA0.75 92.156 2.1 4.9 0.75

0 

0.09
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Fig. 2 XRD patterns of a) powder precursor and doped reduced powder and b) 

WHA0.75 
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2.2 Measurement, experimental procedures, and analysis 

The microstructure of the fabricated powders and alloys was evaluated by 

scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), 

and high-resolution transmission electron microscopy (HR-TEM). XRD analysis was 

conducted on the produced powders and alloys to identify their crystalline phases. 

The absolute densities of the alloys were determined using Archimedes’ principle and 

theoretical densities were calculated based on the theoretical mass and volume. 

Relative density (RD) was calculated as the ratio of absolute and theoretical densities. 

Vickers hardness (HV) testing was conducted with a 200 g indenting load and a 

dwell time of 20 s using the HVS-1000 digital micro Vickers hardness tester. The 

obtained value represented the average of values sourced from ten random positions 

on the alloy cross-section. Grain-size data was acquired using a line intercept method 

and at least 100 identifiable grains were considered for this measurement. 

Tungsten-tungsten (W-W) contiguity (CWW), which is defined as the relative fraction 

of the W-W interfacial area, was estimated according to Eq. (1) [28], 

 𝐶WW = 2𝑁WW/(𝑁WW + 𝑁WM)                        (1) 

where NWW and NWM indicate the number of W-W grain boundaries and 

tungsten-matrix (W-M) interfaces intercepted by an arbitrary straight line per unit 

length in the SEM images, respectively. 

Tensile properties were measured on a universal testing machine (Instron-5967) 

at a constant loading rate of 0.3 mm/min at room temperature (27 °C). The average of 

three measured values is reported as the tensile strength of a given sample; specimen 

dimension is shown in Fig. 3. 

 

Fig. 3 Dimension of tensile testing specimens (all units are in mm) 
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The compressive properties of the samples were measured on a universal material 

machine (Shimadzu AG-I250kN) at strain rates of 10–3, 10–2, 10–1, and 1 s–1. 

Cylindrical samples with a diameter and length of 6 and 10 mm, respectively, were 

used for this purpose.  

 

3. Results and discussions 

3.1 Precursor morphology and Zr(Y)O2 particle size and distribution  

The morphology of the precursors synthesised using the hydrothermal method is 

illustrated in Fig. 4. The precursor consisted of nanoplates, with a diameter of less 

than 20 nm and length of ~100 nm, as shown in Fig. 4a). The lattice fringe image 

indicated a spacing of 0.384 nm, corresponding to the (002) plane of hexagonal 

(NH4)0.33WO3·H2O and this indicates the growth of nanoplates along the c axis [29].  

Primary crystals (WO3·nH2O) precipitated from the crystal cell were initially 

formed by the hydrothermal reaction (Eq. (2)) between (H2W12O40)
6− and H+ [23]. 

Tungsten atoms in WO3·nH2O are bound to six oxygen atoms in a regular octahedral 

coordination pattern, as shown in Fig. 4d). Each oxygen atom is shared by two 

octahedrons, which are arranged in layers to form six-membered rings and then form 

numerous hexagonal and trigonal tunnels by sharing equatorial oxygen in the ab plane 

(001) [30-32]. These rings are usually stacked by sharing oxygen along the c axis 

[001] and form hexagonal prisms. At the same time, due to their high concentration, 

NH4
+ ions in the hydrothermal system occupied the hexagonal tunnels [33,34], thus 

accelerating the growth of hexagonal-prism-like WO3 in the [001] direction and the 

formation of hierarchical (NH4)0.33WO3·H2O nanoplates. The presence of NH4
+ and 

H+ can contribute to the formation of urchin-like h-WO3 microspheres, as shown in 

Fig. 4b). During the hydrothermal reaction, numerous tiny WO3 crystals nucleate and 

grow into WO3 nanoplates due to the orientation effect of NH4
+; these crystals 

self-assemble to form microspheres to reduce surface energy. The high concentration 

of NH4
+ around WO3 microspheres accelerates the oriented growth of WO3. Thus, 

numerous nanoplates grow epitaxially from the surface of a microsphere. This may be 

due to the addition of ions (Zr4+, Y3+, and Cl–) to the hydrothermal system and 
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breakage of order between the positive and negative charges destroying the 

self-assembly process, which leads to the transformation of agglomerated 

microspheres into relatively disperse cotton-like precursors. 

(NH4)6H2W12O40·xH2O + 6HNO3 = 6NH4NO3 + 12WO3·nH2O + (8–x)H2O    (2) 

   

 

 

Fig. 4 Experimental observations and a schematic of α-HATB synthesis. a) TEM 

image of the undoped precursor, b) SEM image of the undoped precursor, c) SEM 

image of the doped precursor containing the (Zr, Y) phase, and d) illustration of 

morphology evolution in the (NH4)0.33WO3·H2O precursor 

 

The size of oxide particles and their distribution in tungsten powders and alloys 

were studied (Fig. 5). A SEM image of the powder reduced at the optimised 

processing parameters is shown in Fig 5a). The powder particles exhibited small 

diameter and excellent dispersion, which is beneficial for increasing the uniformity 

and density of the microstructure during sintering. Further, nanoscale white particles, 

composed of Zr(Y)O2, were scattered on the surfaces of tungsten particles, as shown 
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in Fig. 5a1).  

SPS was conducted to produce W-Zr(Y)O2 alloys and investigate the effect of 

Zr(Y)O2 particle size and distribution on the alloy microstructure, as shown in Fig. 5b). 

Oxide particle size was found to be uneven in the range of 100–500 nm. According to 

the magnified image of the selected area in Fig. 5b1), a large number of white particles 

were found to be distributed within the grains, which helped in enhancing material 

properties. Moreover, a large number of nanoparticles (50 nm) were found to be 

distributed within the microstructure, as observed by TEM. A strong bonding was thus 

formed between the particles and tungsten phase even though there was no phase 

coherence between tungsten and the oxide, as shown in Fig. 5c1).  

 

 

 

Fig. 5 Morphology and microstructure of W-Zr(Y)O2 powders and alloys obtained 

using the proposed approach. a and a1) SEM images of the morphology of the 

W-Zr(Y)O2 powder. b and b1) SEM images of the microstructure of the W-Zr(Y)O2 

alloy. c and c1) TEM and HR-TEM images of the W-Zr(Y)O2 alloy 

 

The microstructure and mechanical properties of oxide particle 

dispersion-strengthened tungsten alloys (ODS-W) fabricated in this study were 
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compared with those reported earlier (alloys with the same or similar composition 

obtained by different processes as shown in Table 2). Fast sintering techniques, such 

as HIP, SPS, and sintering in vertical direction (VD), eliminate oxide particle growth. 

From Table 2, it may be inferred that L-L methods are better at yielding fine oxide 

particles in ODS-W alloys than L-S and S-S methods [35-37]. However, the size of 

these particles varied widely at 3.6, 1.5, and 2.5 μm. They were still much coarser 

than the oxide particles synthesised in tungsten alloys using the approach proposed in 

the current study. A similar observation could be made for ODS-W alloys fabricated 

by L-S methods. Yar et al. [40] prepared nanosized W-Y2O3 alloy by L-S doping. 

However, these Y2O3 particles were non-uniformly distributed in the tungsten matrix 

as the reaction occurred at the surfaces of the raw material alone (ammonium 

paratungstate, APT). Nanosized oxide particles were used as raw materials in S-S 

doping, but a large adsorption effect led to particle aggregation even after 30 h of ball 

milling [43]. In current research, the oxide particles obtained in tungsten alloys using 

the current approach were 0.8–10 times smaller when compared to those described in 

previous reports. This difference indicates that the proposed L-L doping process is 

appropriate to reduce particle size in tungsten alloys. 

 

Table 2 Comparison of the microstructure and mechanical properties of ODS-W 

alloys 

Doping 

process 

Sintering 

process 
Alloy 

W grain 

size (μm) 

Oxide 

particle 

size (μm) 

Density 

(g/cm3)/Relative 

density (%) 

Microhardness 

(HV) 
Ref. 

L-L 

SPS W-6vol% Al2O3 3.64 >1.0 -/94.96 347.39 [35] 

SPS W-2.5%ZrO2 4.65 2.5 -/99.6 480 [36] 

VD W-2.5%ZrO2 40-80 1.5 -/98.7 - [37] 

L-Sa* 

VD W-La2O3 50 3 - - [38] 

SPS W-0.9wt.%La2O3 - 2 17.8/94 406 [39] 

SPS W-1.0%Y2O3 2.3 Nanosize 17.5/92 423 [40] 
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(Uneven) 

S-S 

HIP W-1%La2O3 - >5 18.9/90.6 - [41] 

SPS W-0.5%Y2O3 2-5 >1.5 - - [42] 

SPS W-5%HfO2 11.6 >5 -/94.5 440 [43] 

Current 

process 
SPS W-0.5%Zr(Y)O2 4.67 ± 0.5 0.25 ± 0.05 18.44/96.7 ± 0.2 472 ± 10 Present 

a* using APT as the tungsten source. 

 

3.2 Microstructure of WHAs 

The morphology of WHA0.75 powder produced by MA of W-Zr(Y)O2 powder 

with Ni and Fe powders is shown in Fig. 6a). It can be observed that the structure of 

the WHA0.75 powder is much looser than that of W-Zr(Y)O2 (Fig. 5a)). The 

microstructures of WHAs with different weight ratios of Zr(Y)O2 are shown in Fig. 

6(b–d). According to Fig. 6b), spherical tungsten grains are embedded in the matrix 

phase due to liquid-phase formation during sintering at 1400 °C [44]. It could be 

confirmed that the grain size of WHA0.75 is smaller than that of WHA0 after 

comparing the average size of 100 grains. W grains in alloys with and without 

Zr(Y)O2 particles were uneven in size; the growth of W grains during liquid-phase 

sintering may be explained by Ostwald ripening [45]. In the current experimental 

conditions, smaller particles reprecipitated on larger tungsten grains during their 

dissolution in the matrix [46]. 

Moreover, grain contiguity reduced slightly as the grain size decreased, similar 

to previously reported results [47]. The reason for the decrease in W-W contiguity is 

that Zr(Y)O2 particles induce the liquid phase γ(Fe0.64N0.36) to infiltrate W grain 

boundaries during sintering [48]. Thus, tungsten grains are gradually covered by the 

γ(Fe0.64N0.36) phase to enhance the mechanical properties of oxide particle 

dispersion-strengthened WHAs (ODS-WHAs). 

A magnified image of the area enclosed in red in Fig. 6c) is presented in Fig. 6d) 

to understand the microstructure of WHA0.75 in further detail. A large number of 
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white particles with similar particle size of less than 200 nm could be observed. These 

Zr(Y)O2 particles were dispersed in W grains. Generally, large oxide particles induce 

stress/strain concentration for crack initiation and reduce the fracture toughness of an 

alloy [49]. Therefore, nanosized Zr(Y)O2 particles (such as those in the present alloy) 

obtained by the proposed process are expected to enhance the mechanical properties 

of WHAs.  

  

  

 

Fig. 6 SEM images of the microstructure of a) WHA0.75, b) WHA0, and c) and d) 

WHA0.75 at 500x and 5000x, respectively 

 

The microstructure of WHA0.75 after quasi-static compressive loading at room 

temperature (27 °C) was characterized by TEM. As shown in Fig. 7a)–c), oxide 

nanoparticles with prismatic and subspherical structure exhibited different particle 

sizes. In Fig. 7a), it may be observed that the prismatic particles surrounded by a 

black phase were ~200 nm in size. In Fig. 7b) and c), it can be seen that subspherical 

particles smaller than 50 nm were embedded in shallow phases consisting of Ni, Fe, 

WHA0 

(c) (d) 

(a) (b) 
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and W, as described by EDS. White cubic nanocrystalline Zr(Y)O2 particles were 

detected in the selected area electron diffraction (SAED) pattern in the inset of Fig. 

7a). Dislocation substructures are marked by white arrows in the matrix phase, as 

shown in Fig. 7c). Meanwhile, Fig. 7d) illustrates a well-bonded interface between the 

tungsten phase and Zr(Y)O2 even though there was no coherent relationship.  

  

  

 

Fig. 7 a) and b) TEM images of WHA0.75, c) TEM image of the matrix phase, and d) 

HRTEM image of the Zr(Y)O2/W interface 

 

The microstructures of several heavy tungsten alloys reinforced by ZrO2 particles 

are shown in Fig. 8 and Table 3. Daoush et al. [49] fabricated W-Ni-ZrO2 alloys by 

conventional sintering at 1500 °C for 1 h. The ZrO2 particles in these alloys ranged 

from 0.5 to 3 μm in size, as shown in Fig. 8a), and they were almost at or close to the 

grain boundaries. Lee et al. [51] fabricated partially stabilised zirconia (PSZ) 

dispersion-strengthened WHAs by two-step MA to control the location of oxide 
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particles. However, the PSZ particles in the alloys still grew to be as large as 1.5 μm, 

as shown in Fig. 8b), and some adhesive oxide particles marked by red arrows could 

be observed. Xu et al. [47] studied Zr(Y)O2 dispersion-strengthened 

92.5W-4.9Ni-2.1Fe alloys using azeotropic distillation process. In these alloys, the 

Zr(Y)O2 particles were 200–1000 nm large, as shown in Fig. 8c). Wang et al. [36] 

synthesised W-ZrO2 alloys using a combination of the hydrothermal method and SPS. 

In this case, agglomerated precursors could be detected and the adhesive ZrO2 

particles grew to 3 μm, as shown in Fig. 8d). Larger oxide particles obtained by 

different powder preparation processes are observed in tungsten or heavy tungsten 

alloys, as summarised in Table 3. These oxide particles fabricated by the previous 

processes are larger than those through the developed process in the current research. 

Non-uniformly distributed coarse particles induce uneven stress and strain distribution 

around these reinforced particles, weakening the alloys. The proposed process is 

proved to be appropriate for the fabrication of the dispersion-strengthening tungsten 

alloys with ultrafine nanosized Zr(Y)O2 particles.  
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Fig. 8 Microstructures of WHAs reinforced by ZrO2 particles. a) W-Ni-ZrO2 [49], b) 

W-Ni-Fe-PSZ [51], c) W-Ni-Fe-ZrO2 [47], and d) W-ZrO2 [36] 

Table 3 Microstructure and mechanical properties of ODS-WHA reported in the 

literature and in the current study 

a* These W-ODS powders were prepared by different doping processes, seeing Table 5 in 

references [27] 

Heavy tungsten alloy 

Powder 

preparation 

process 

Sintering process RD (%) 

Grain size 

(μm) 

Particle 

size (μm) 

Hardness 

(HV) 

Ref. 

W-Ni-ZrO2 MA 1500°C (1 h) 93.5 ~25 3-5 333 [50] 

W–Ni-Fe–0.3PSZ MA 1480 °C (1 h) - 18 0.8 - [51] 

93W-4.9Ni-2.1Fe-Zr(Y)O2 L-L doping 1520 °C (2.5 h) 99.2 28 0.5-1 402 [47] 

W-2.5%ZrO2 L-L doping 

1800 °C (5 min) 

by SPS 

99.6 4.65 2.5 480 [36] 

W-Ni-Fe-1Al2O3 

Blending 

process 

1480 °C (2 h) 98.3 36.8 7 - [52] 

W-Ni-Fe-xY2O3 MA 1850 °C (1 h) 99.1 19.5 0.6-1.3 - [10] 

W-Ni-Fe-Co-Y2O3 MA 1450 °C (1 h) 94.1 12 >0.6 425 [44] 

94W-4.56Ni-1.14Fe-Y2O3 MA 1485 °C (1 h) 99.0 15 0.65 - [53] 

W-ODS alloys - a* SPS/HIP <99.9 <10 1-5 406-480 [27] 

WHA0.75 L-L doping 1400 °C (2.5 h) 99.5 ± 0.1 25 ± 2 0.25 ± 0.05 407 ± 10 Present 

W-Ni-Fe-Zr(Y)O2 

W-ZrO2 

(c) (d) 

20 μm 
20 μm 
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Intracrystalline heavy tungsten alloys reinforced with nanosized c-Zr(Y)O2 

particles were fabricated in this study; the consequent formation and distribution of 

c-Zr(Y)O2 particles during L-L doping at the ionic level are shown in Fig. 9. The 

formation of nanosized yttria-stabilised cubic zirconia is attributed to the L-L 

incorporation of Zr4+ and Y3+ ions; Y(NO3)3 solution was added slowly to a 

ZrOCl2·8H2O solution while stirring to obtain a cluster solution [47]. Though 

ZrOCl2 ·8H2O dissolves in strong acid solutions, it undergoes hydrolysis in aqueous 

solutions and Cl– ions in the outer sphere of the ionic complex are replaced by OH– 

groups (Eq. (3)) [27]. Subsequently, [Zr4(OH)8 16H2O]8+ units react with the hydroxyl 

ions to form Zr(OH)4 sols [27]. 

{[Zr4(OH)8·16H2O]8+8Cl–} + 4H2O = {[Zr4(OH)8·16H2O]8+ 8OH–} + 8HCl↑ (3) 

However, the generated Zr(OH)4 easily decomposes in acidic conditions to yield 

Zr4+. During the hydrothermal reaction, W12O40
8– ions are introduced from the 

hydrolysis of AMT (Eq. (4)) [23] after which Zr4+ and Y3+ ions reacts with W12O40
8– 

ions to produce Zr(WO4)2 and Y2(WO4)3 (Eqs. (5) and (6)) [47,54]. Y2O3 penetrates 

oxygen vacancies in the zirconia lattice to form stabilized Zr(Y)O2 during sintering 

[55]. 

(NH4)6H2W12O40  = 6NH4
+ + 2H+ + W12O40

8−                              (4) 

2Zr(OH)4 + 8H+ +W12O40
8− = 8WO3↓+ 2Zr(WO4)2↓+8H2O                   (5) 

2Y3+ +2H++ W12O40
8− = 9WO3↓ + Y2(WO4)3↓+ H2O                        (6) 

The refining effect of oxide particle size is limited to doping with nanosized 

particles due to the high adsorption capacity [44,56]. In the present investigation, 

WHA-Zr(Y)O2 powders were prepared by the mechanically alloying of ultrafine 

W-Zr(Y)O2 powders with Ni and Fe powders. In the alloys, nanosized Zr(Y)O2 

particles with size less than 200 nm were distributed on the surface of tungsten 

particles. Moreover, WHA-Zr(Y)O2 exhibited a highly uniform nanoparticle 

distribution when compared to alloys produced by other powder processing methods. 

This indicates that L-L doping and MA, when combined together, are highly effective 

at reducing the particle size in strengthened tungsten alloys. 
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Conventionally, ODS-WHA powders are prepared by doping WHA powders 

with oxide particles, which often leads to oxide particle agglomeration and growth at 

the grain boundaries. In current research, during liquid sintering, Ni and Fe powder 

particles are transformed into a liquid phase, which allows the diffusion of only a 

small amount of tungsten. Meanwhile, some of the Zr(Y)O2 particles at the grain 

boundaries of W powders are drawn into liquid phase and they are retained in the γ(Fe, 

Ni, and W) matrix. Eventually, most of the c-Zr(Y)O2 particles are distributed in W 

grains and only a small number of c-Zr(Y)O2 particles are distributed in the γ(Fe, Ni, 

and W) matrix. 

 

Fig. 9 Schematic of microstructural development during alloy fabrication 

 

3.3 Mechanism of grain refinement in WHAs 

Tungsten grain growth in ODS-WHAs is mainly dependent on oxide particle 

refinement during sintering [10,50]. However, grain refinement is complicated due to 

the retardation of grain growth and coarsening under different sintering conditions. 

Bock et al. [57] suggested that oxide particles inhibited grain growth to prevent grain 

coarsening. Kang et al. [58] indicated that secondary phase particles led to an increase 

in grain curvature. Annavarapu et al. [59] proposed that the diffusion distance of 

tungsten atoms increased in the presence of large secondary phase particles. Oxide 

particles at the tungsten-matrix (W-M) interface can block diffusion between tungsten 

and the matrix, which delays grain growth during WHA liquid phase sintering [52]. 

The doped secondary phase particles at grain boundaries affected tungsten grain size 
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by preventing migration along the grain boundaries and reducing the growth rate [60]. 

This relationship can be expressed as follows (7): 

      R = 4r 3𝜑⁄                            (7) 

where R is the grain size of the tungsten phase, r is the radius of secondary phase 

particles, and φ is the volume fraction of the secondary phase particles. 

According to Eq. (7), the grain size of tungsten particles depends on the size of 

oxide particles; in other words, tungsten grain size can be reduced if the size of the 

oxide particles located at the grain boundaries decreases.  

The relationship between tungsten grain size and size of the oxide particles in 

ODS-WHAs observed in this study as well as in previous investigations is illustrated 

in Fig. 10. In general, W grain size was proportional to oxide particle size, except in 

the WHAs described in this study and those in Ref. [47]. These two WHAs with a 

large number of Zr(Y)O2 particles uniformly dispersed in tungsten grains are shown 

in the same plot; in this case, the relationship between grain size and oxide particle 

size was not linear. This is because of the dispersion of Zr(Y)O2 particles within 

tungsten grains, leading to a not obvious refinement of W grains. This observation 

further confirms the advantages of the L-L doping for preparing intragranular 

particle-strengthened tungsten alloys. 

Table 4 Comparison of the microstructural parameters and sintering conditions of 

WHAs reported in the literature and current study 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



a* Maximal sintering temperature and duration time 

b* Heavy tungsten alloy reported in [64] 

c* Microstructure and properties of the heavy tungsten alloy are not known. 

 

Heavy tungsten alloy 

Sintering 

processing 

parameters a* 

RD (%) 
Grain size 

(μm) 
Contiguity 

Matrix 

volume 

fraction 

Ref. 

90W-7Ni-2Fe-1Co 1460 °C (2 h) - 36 0.42 0.34 
[62] 

 
93W-4.9Ni-1.4Fe-0.7Co 1460 °C (2 h) - 47 0.55 0.22 

95W-3.5Ni-1Fe-0.5Co 1460 °C (2 h) - 59 0.73 0.16 

90W-7Ni-3Fe 1460 °C (2 h) - 32 0.51 ± 0.2 14.3 ± 3.3 [46] 

 90W-6Ni-2Fe-Co 1470 °C (2 h) - 47 0.62 ± 0.2 15.2 ± 2.1 

W-5.6Ni-1.4Fe 1485 °C (1 h) 99.9 34.5 - - [10] 

W-Ni-Fe 

1480 °C (2 h) 

 56 0.53 ± 0.05 0.14 

[63] W-Ni-Fe-Co - 54 0.43 ± 0.01 0.17 

W-Ni-Fe-Re - 49 0.48 ± 0.06 0.16 

93W-4.9Ni-2.1Fe 
1520 °C (1.5h) 

99.1 45.5 0.32 ± 0.04 - 
[52] 

95W-2.8Ni-1.2Fe-Al2O3 98.2 36.8 0.60 ± 0.06 - 

INERMET® IT180b* - - 100 - - [64] 

95W-3.5Ni-1.5Cu 1510 °C (1.5 h) 98.4 60 0.60 - 
[65] 

96W-3Ni- 1Cu 1510 °C (1.5 h) 98.4 70 0.70 - 

90W-4xNi-xCo 1600 °C (1 h) 99.2 34 - - [45] 

Conventional WHAc* - - 40 - 60 - - [9] 

94W-4.56Ni-1.14Fe-Y2O3 1485 °C (1 h) 99 15 0.75 0.112 [53] 

WHA0 1400 °C (2 h) 99.5 ± 0.1 41 ± 2 0.53 ± 0.03 0.37 ± 0.015 Current 

study WHA0.75 1400 °C (2 h) 99.3 ± 0.1 37 ± 2 0.47 ± 0.03 0.42 ± 0.023 
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Fig. 10 Relationship between tungsten grain size and oxide particle size in 

ODS-WHAs reported in the current and past studies 

 

The grain size of Zr(Y)O2 particle-dispersion-strengthened WHAs described in 

this study was also compared with that in WHAs sintered using different methods 

(Table 4). The factors responsible for a fine original tungsten grain size (G0) also 

contributed to grain refinement; the relationship between G0 and refined grain size is 

as follows [61], 

G3 = G0
3 + Kt                             (8) 

where G is the mean W grain size at time t, G0 is the original average W grain size at 

the onset of coarsening, and K is the rate constant. 

In this study, MA was conducted to produce small W particles. Internal defects 

caused by the significant strain on these particles due to the high impact forces 

generated during ball milling serve as additional nucleation sites for strain-free grains 

and homogenise the grain size [66]. Fan et al. [67] indicated that the powders obtained 

by MA affected the mechanism of sintering and contributed to fine tungsten grains in 

heavy alloys.  

The alloys listed in Table 4 exhibited large and coarse grains as the sintering 

temperature increased (>1400 °C). As sintering is a diffusion-controlled process, 

alloys sintered at higher temperatures exhibit higher sintering and coarsening rates 

[68]. Moreover, high-temperature sintering results in a constant flow of the binder 
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phase through pores between W grains [48] and increases the final relative sintering 

density. The alloys described in this study exhibit a high RD comparable with the RD 

of alloys reported in the literature (Table 4). This is because the high pressure applied 

during sintering accelerates W atom diffusion [69,70]. In addition, the oxide particles 

also enhance the densifications process and decrease the porosity by capturing the 

oxygen in the matrix. 

 

3.4 Mechanical properties of WHA-Zr(Y)O2 alloys 

Uniaxial tensile tests were conducted to measure the ultimate tensile strength (UTS) 

of WHA-Zr(Y)O2 at room temperature (27 °C). The engineering stress–engineering 

strain curves of the fabricated WHAs in current research were shown in Fig. 11a). 

From Fig. 11a), as the mass fraction of Zr(Y)O2 increases from 0 to 0.75%, the 

ultimate tensile strength and fracture strain of WHAs decrease linearly. The fracture 

strain of WHAs decreases from 0.221 to 0.039. WHA0 possesses the highest ultimate 

tensile strength 937 MPa. When the mass fraction of Zr(Y)O2 reaches to 0.25%, 

0.50% and 0.75%, the ultimate tensile strengths of WHA0.25, WHA0.50 and WHA0.75 

were 906 MPa, 875 MPa and 782 MPa, respectively. The alloys exhibit the brittle 

material behaviour in tension, compared to the pure tungsten with ductile material 

behaviour. The comparison of the tensile mechanical properties of heavy tungsten 

alloys with different sintering processes is summarised in Table 5. The ultimate 

tensile strengths of WHA0 and WHA0.25 exhibit higher strengths compared to state of 

the art. 

Fig. 11c)–f) show the fracture surfaces of the failed tensile samples of 

90W-7Ni-3Fe (90WHA) [9], 90W-7Ni-3Fe-0.04Y2O3 (90WHA-0.04Y2O3) [9], 

WHA0 and WHA0.25, respectively. As shown in Fig. 11c) and d), W-W intergranular 

rupture is the dominant mode of fracture in 90WHA. However, a few W grain 

transgranular fractures and pore surfaces are still observed in 90WHA-0.04Y2O3. 

Although the strength of present WHA0 and WHA0.25 alloy is lower than that of the 

90WHA-0.04Y2O3 alloy, WHA0 and WHA0.25 shows visual evidence of W-W 

cleavage patterns and the ductile failure behaviour of the matrix. This contradictory 
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situation would be researched in follow-up studies. 

From these results, it may be inferred that oxide particles have a significant 

effect on the mechanical properties of the tested alloys. Too low or too high content of 

rare earth oxide additions would result in its different strengthening effect on tensile 

properties. Fan et al. [9] reported that WHAs with 0.4 wt.% oxide particles exhibited a 

tensile strength of 1124 MPa. In contrast, the additions of 0.1 wt.%, 0.8 wt.%Y2O3 

into alloy decreased the maximal strength value of the alloy compared to WHA 

without Y2O3 (923 MPa). Lee et al. fabricated PSZ (0–0.3wt.%) 

dispersion-strengthened WHAs [51]; the ultimate tensile strengths of these alloys 

decreased with the addition of PSZ particles (as indicated by the red symbols in Fig. 

11b)). A similar phenomenon occurred with the addition of 1% Al2O3 and 0.1% Y2O3 

[10,52]. In these two alloys, the additions of oxide particles both decrease the strength 

values of WHAs. This indicates that a non-optimal oxide content deteriorates the 

tensile properties of alloys. 

In addition to the oxide content, the mechanical properties of alloys depend on 

oxide particle distribution. In case oxide particles are agglomerated, fracture initiation 

might occur from these areas during tensile tests. Cracks are generated at these spots 

and later propagate, leading to fracture [78,79]. Moreover, rare earth oxide aggregates 

in the matrix or at the W-M interface restrain matrix deformation, which decreases the 

strength and elongation of WHAs.  
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Fig. 11 Tensile properties and fracture surfaces of WHAs and ODS-WHAs described 

in the present work and literature. a) engineering stress–engineering strain curve of 

the fabricated WHAs in current research, b) ultimate tensile strengths of WHAs and 

ODS-WHAs vs. their sintering temperature, c) fracture surfaces of 90WHA [9], d) 

90WHA-0.04Y2O3 [9], e) WHA0 and f)WHA0.25. 

 

Table 5 An extensive literature review of the tensile mechanical properties of heavy 

tungsten alloys coupled with various sintering processes.  

Alloys Sintering process 
UTS 

(MPa) 

Elongation 

(%) 
Ref. 

92W-5.6Ni-2.4Fe 1400 °C (-) 975 12 [71] 

90.5W–7.1Ni–1.65Fe–0.5Co–0.25Mo 1460 °C (1.5 h) 608 2.0 [73] 

90W–7Ni–3Fe 1460 °C (2 h) 650 5 [46] 

90W–6Ni–2Fe–2Co a* 
1470 °C (2 h) 

682 4 
[46] 

90W–6Ni–2Fe–2Co b* 816 0.7 

90W–7Ni–3Fe 1480 °C (0.5 h) 923 8.0 [9] 

W-W intergranular fracture 

Pore

W grain transgranular 

fracturee 

W-W intergranular fracture 

W grain cleavage 
Matrix tearing 

(c) (d) 

W grain cleavage 

Matrix tearing 

(e) (f) 
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90W–7Ni–3Fe-0.02Y2O3 747 5.8 

90W–7Ni–3Fe-0.04Y2O3 1050 30.8 

90W–7Ni–3Fe-0.06Y2O3 788 2.6 

90W–7Ni–3Fe-0.08Y2O3 708 2.4 

93W–4.9Ni– 2.1Fe 1480 °C (2 h) 858 17 [63] 

93W–4.9Ni–2.1Fe 
1525 °C (1.5 h) 

920 4.8 
[52] 

95W–2.8Ni–1.2Fe–1Al2O3 805 2.6 

92.5W–6.4Ni–1.1Fe c* 
1500 °C (0.33 h) 

642 - 
[77] 

92.5W–6.4Ni–1.1Fe d* 805 - 

92.6W–4.98Ni–2.4Co 1540 °C (-) 860 8 [76] 

90W–6Ni–2Fe–0.5Co–1.5Mo 1480 °C (2 h) 886 24 [74] 

93W–4.9Ni–2.1Fe 1490 °C (2 h) 910 20 [72] 

90W–5Ni–5Fe 1480 °C (0.5 h) 840 - [75] 

93W–5.6Ni–1.4Fe-0.1Y2O3 1485 °C (1 h) 828 14.6 
[10] 

93W–5.6Ni–1.4Fe-0.1Y2O3 1485 °C (2 h) 883 18.4 

94W–5.9(Ni,Fe)-0.1PSZ 

1485 °C (1 h) 

890 - 

[51] 94W–5.8(Ni,Fe)-0.2PSZ 872 - 

94W–5.7(Ni,Fe)-0.3PSZ 850 - 

WHA0 

1400 °C (2 h) 

937 22.1 

Current 

study 

WHA0.25 906 9.5 

WHA0.5 875 6.7 

WHA0.70 782 3.9 

a* The heating rate is 3 °C/min; 

b* The heating rate is 20 °C/min; 

c* Alloy was fabricated by conventional sintering; 

d* Alloy was fabricated by microwave sintering. 

 

The compressive properties of WHAs reinforced with different amounts of 

Zr(Y)O2 particles were investigated and compared as shown in Fig. 12. The 

engineering stress-strain curves and the corresponding true stress-strain curves of 

WHA-Zr(Y)O2 were plotted at room temperature (27 °C) (Fig. 12a) and b), 

respectively). During compressive testing, elastic deformation occurs initially with a 

linear relationship between stress and strain, followed by plastic deformation in the 

alloy. Beyond an engineering strain of 0.813, stress increased while the strain 

remained constant, as shown in Fig. 12a). This indicates the high plasticity of WHAs. 

The matrix phase of WHAs is softer than the tungsten phase, which determines 

the plastic deformation capacity of the alloys during quasi-static compression. In the 

alloys described in the present study, the matrix phase containing a solid Zr(Y)O2 
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phase exhibited good plasticity. This is due to the fact that some nanosized Zr(Y)O2 

particles were uniformly distributed in the matrix with a good interface. These 

ultrafine oxide particles reduced stress and strain concentration during compressive 

deformation [80]. 

Based on the true stress-strain curves in Fig. 12b), the WHA containing 0.5% 

Zr(Y)O2 exhibited the best strengthening behaviour among all the tested alloys. The 

ultimate compressive strength of WHA0.50 was 1445 MPa, which was higher than that 

of the other three alloys. Furthermore, we observed that the ultimate compressive 

strength obtained during plastic deformation is affected by the strain rate; to illustrate 

this phenomenon, we tested the alloy samples at strain rates of 10–3, 10–2, 10–1, and 1 

s–1, as shown in Fig. 13. 

Fig. 13a) indicates that WHA-Zr(Y)O2 exhibited excellent plasticity at different 

strain rates. The ultimate stress increased with an increase in the strain rate, as shown 

in Fig. 13b). An ultimate stress of 1445 MPa was achieved at 10–3 s–1. The 

compressive strength of WHA0.50 was higher than that of several previously reported 

alloys, as shown in Fig. 13c). The comparison of the compressive strength value of 

heavy tungsten alloys with different sintering processes is summarised in Table 6. The 

ultimate compressive strength of WHA0.50 was 1445 MPa, which exhibits higher 

strength compared to state of the art. This higher value of strength may be due to the 

proper amount of Zr(Y)O2 particles and higher dispersed nanoparticles distribution. 

When the strain rate increases to 1 s-1, the peak stress increases to 1560 MPa. On the 

one hand, a high strain rate enhances dislocation density and work hardening. On the 

other hand, the change of phase’ deformation behaviors may be another main reason. 

The deformed microstructures produced at different strain rates are shown to illustrate 

the plastic deformation behaviour of WHA-Zr(Y)O2 (Fig. 14a)–d)).  

During compression, the matrix phase is the first to deform. When tests are 

conducted at low strain rates, the matrix phase has sufficient time to deform and flow 

between tungsten particles, as confirmed by the slightly elongated microstructure of 

tungsten grains in Fig. 14a). With the further increasing of plastic deformation, the 

matrix phase causes work hardening by plastic deformation, which induces a 
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simultaneous deformation in some tungsten particles. The deformation resistance of 

the matrix phase depends on the oxide particles used to reinforce it. When the strain 

rate during compression increases, there is not enough time for the matrix phase to 

flow between W particles, owing to which it gradually transmits stress to W grains, 

leading to their deformation. Beyond a critical strain rate, the deformation resistance 

of the alloy mainly depends on the tungsten phase. Therefore, W particles were 

seriously elongated at 1 s–1, as shown in Fig. 14d).  
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Fig. 12 a) Room temperature (27 °C) engineering stress-strain curves and b) true 

stress-strain curves of WHAs with different mass fractions of Zr(Y)O2. Compression 

tests were conducted at a constant strain rate of 10–3 s–1. 
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Fig. 13 a) Room temperature (27 °C) engineering stress-strain curves and b) true 

stress-strain curves of WHA0.50 generated during compression tests at different strain 

rates. c) Comparison of the compressive true stress-strain curve of WHA0.50 with 

those of previously reported alloys 

 

Table 6 An extensive literature review of the compressive strength value of heavy 

tungsten alloys coupled with various sintering processes. 

Alloys Sintering process 
Compressive 

strength (MPa) 
Ref. 

95W–2.8Ni–1.2Fe–1Al2O3 1525 °C (1.5 h) 1400 [52] 

93W-5.6 Ni-1.4 Fe 1410 °C (-) 1380 [81] 

90 W-7Ni-3Fe 1490 °C (1 h) 1150 [82] 

WHA0.5 1400 °C (2 h) 1445 Current research 
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Fig. 14 Microstructure of WHA0.75 after compression tests at room temperature (27 °C) 

at strain rates of a) 10−3, b) 10−2, c) 10−1, and d) 1 s−1 

 

4. Conclusion 

(1) WHAs strengthened by highly uniform nanosized Zr(Y)O2 particles were 

fabricated by hydrothermal processing followed by MA and hot isostatic 

pressing. 

(2) Zr(Y)O2 particles bonded well with the tungsten phase; they were smaller than 

200 nm in size and were distributed uniformly in tungsten grains and the 

matrix. TEM analysis indicated the presence of a large number of nanosized 

oxide particles smaller than 50 nm in the alloy microstructure. 

(3) The size of Zr(Y)O2 particles synthesised using combined hydrothermal and MA 

methods is much smaller than that in alloys previously reported; this small size 

also helped in tungsten grain refinement. 
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(4) The ultimate tensile and maximal compressive strengths of the fabricated alloys 

under quasi-static deformation at room temperature (27 °C) were 906 and 

1445 MPa, respectively, which are much higher than the values reported in 

literature. The ultimate tensile strength and fracture strain of WHAs decrease 

with the mass fraction of Zr(Y)O2 (from 0 to 0.75%). The alloys exhibit the 

brittle material behaviour in tension, compared to the pure tungsten with 

ductile material behaviour. The effect of Zr(Y)O2 particles and strain rate on 

the compressive properties of the alloys were investigated in detail and the 

corresponding compressive deformation mechanisms were discussed. 
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