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Abstract
The main objective of this work is to study the effect
of the choice of the input uncertainty model on robust-
ness evaluations of probabilities of failure. Aleatory
and epistemic uncertainty are jointly propagated by
considering hybrid models and applying random set
theory. The notion of horizon of uncertainty found in
the info-gap theory, which is usually used to assess
the robustness of a model to uncertainty, allows the
bounds on the failure probability obtained from differ-
ent epistemic uncertainty models to be compared at in-
creasing levels of uncertainty. Info-gap robustness and
opportuneness curves are obtained and compared con-
sidering the interval model, triangular and trapezoidal
possibility distributions, the probabilistic uniform dis-
tribution and the paralellepiped convex model on two
toy cases. A specific demand value, as introduced in
the info-gap theory, is used as a value of information
metric to quantify the gain of information on the proba-
bility of failure between a less informative uncertainty
model and a more informative one.
Keywords: hybrid structural reliability; epistemic un-
certainty; robustness; info-gap; random sets

1. Introduction

In this paper, robust reliability analyses are conducted.
Structural reliability [14] is of main interest in particu-
lar for risk-sensitive industries as power generation [2] for
which evaluating the performance, and therefore the safety,
is subject to uncertainty. Two types of uncertainty are com-
monly distinguished, namely aleatory and epistemic [13].
Aleatory uncertainty is associated to natural randomness
and has been widely treated using the probabilistic frame-
work. Epistemic uncertainty is seen as ignorance due to a
lack of knowledge and is therefore potentially reducible.
Several representations that are less informative than prob-
ability theory exist to treat such uncertainty. Beer et al. [5]
and Zio and Pedroni [23] propose reviews of such meth-
ods. In many applications, both types of uncertainty coexist

which transforms standard reliability analysis (aleatory un-
certainty only) to hybrid reliability analysis. Such context
implies the need of a common framework to estimate hy-
brid reliability quantities of interest such as bounds on a
probability of failure. The notion of robustness has many
interpretations and mathematical representations [11]. In
this paper, it is applied to hybrid reliability analysis and is
seen as the capacity of the estimation of a reliability quan-
tity of interest to be guaranteed to be acceptable despite the
presence of epistemic uncertainty. A robustness analysis
depends on how the uncertainty is modeled which leads
to the following question: to what extent does the choice
of the epistemic uncertainty representation affect a robust-
ness analysis? In the context of hybrid reliability analysis, a
methodology is proposed to assess, using an info-gap analy-
sis [7], the robustness of the reliability estimation regarding
the choice of the epistemic uncertainty representation in
input. To do so, several epistemic uncertainty models are
considered through the common framework provided by
random set (RS) theory. This methodology enables to com-
pare info-gap metrics (i.e., the so-called robustness and
opportuneness curves) obtained from different uncertainty
representations. The paper is organized as follows: Sec-
tion 2 reminds to the readers the formulation of a standard
reliability problem before introducing hybrid reliability
analysis with the use of RS theory and ends with the main
aspects of an info-gap analysis, Section 3 describes the
framework that is used and how info-gap and RS theory are
combined to provide a comparison methodology, finally
Section 4 shows the results of the methodology applied on
two toy-cases.

2. Background Material

2.1. Structural Reliability Analysis (SRA)

The objective of a structural reliability analysis is to assess
the performance of a system subject to uncertainty. The
performance z ∈R (supposed to be scalar here, for the sake
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of simplicity) is evaluated through an analytical or numeri-
cal model M (x) where x ∈ Rd with d the number of input
variables on which the system’s performance depends such
as geometrical quantities, material properties, or loads. One
common practise in SRA is to check that the performance
of the model does not take a higher (or lower, depending on
the safety criterion) value than a given threshold zth which
is represented in the limit-state function g:

g(x) = zth−M (x) . (1)

The limit-state function separates the input domain DX into
the failure domain F and the safety domain S :

F = {x ∈ DX, g(x)≤ 0} (2a)
S = {x ∈ DX,g(x)> 0}. (2b)

The probabilistic theory offers a framework to treat uncer-
tainty when information about natural randomness of the
input vector is available. The input vector is considered as a
realization of the random vector X = (X1,X2, . . . ,XnX )

> to
which a supposedly known joint probability density func-
tion (pdf) fX is attributed. After propagating the uncertainty
through the computer model M (·), the performance z is
also a realization of the output random variable Z. The ex-
act pdf fZ is generally inaccessible but several quantities
of interest can be estimated such as moments or quantiles.
Often in reliability analysis, and therefore in this work, the
failure probability Pf is of interest:

Pf = Pr [g(X)≤ 0] =
∫

F
fX (x)dx. (3)

Generally in structural reliability assessments, failure prob-
abilities are low, computer models may be time consum-
ing and crude Monte Carlo evaluations are not tractable.
Consequently, advanced techniques are needed to evaluate
Equation (3) such as sampling methods (Subset Simulation,
Importance Sampling) or approximation methods (first- and
second-order reliability methods, a.k.a. FORM/SORM). In
this work, the Importance Sampling method [15] based on
the FORM design point is mainly used.

2.2. Hybrid Reliability Analysis Using Random Set
Theory

The probabilistic framework is a very powerful and detailed
way to model and propagate aleatory uncertainty. Neverthe-
less, the exact knowledge of fX requires the knowledge of
the pdf of each component Xi and the dependence structure
(i.e., the copula) between components which is often not
achieved especially when poor data is available. Epistemic
uncertainty characterizes the lack of information as it is
potentially reducible by gathering more knowledge. As
mentioned in introduction, many types of epistemic models
can be found in the literature depending on the nature of
the uncertainty and the available information. Here, the

main properties of the uncertainty representations investi-
gated in this paper, namely interval model, convex model,
evidence theory, possibility distributions and probability
box (p-box) theory, are reminded. In order to stay coher-
ent with the rest of the paper, the variables that are mod-
eled by such representations are described by the vector
Y = (Y1,Y2, . . . ,YnY )

>.

• Interval model: The interval representation only uses
bounds to model the uncertainty on an input quantity
Yi. Therefore, the only hypothesis made here is that Yi
belongs to IYi =

[
Y L

i ,Y
U
i
]
. When each Yi is represented

as an interval, the input space becomes the nY -box rep-
resented by the Cartesian product IY =×nY

i=1IYi where
nY is the number of interval variables. After propaga-
tion through the numerical model M , the performance
is also an interval with no additional information. The
bounds

[
ZL,ZU

]
may be estimated using an optimiza-

tion algorithm or the vertex method which states that
the extreme values of the performance are obtained
for combinations of the extreme values of Yi. Meth-
ods to treat hybrid reliability problems involving both
random and interval variables can be found in [10, 12].

• Convex model: Convex models [8] are also a non-
probabilistic representation of uncertainty which con-
tains the interval model. It enables to add the infor-
mation of possible dependencies between the input
variables. The ellipsoid and the parallelogram models
are common convex examples. When the input vari-
ables are independent, the convex model reduces to
the nY -box which characterizes the interval represen-
tation. In the same way as for the interval model, the
bounds on the performance function can be obtained
using an optimization algorithm in the convex set. The
multi-parallelepiped model [17] is used in this paper
as it has the advantage of combining dependent and
independent variables together and that a sample in
this convex set can be obtained from a sample u of the
hypercube U = [−1,1]nY with the following transfor-
mation:

Yi =
YW

i

∑
nY
j=1 |ρ (i, j)|

nY

∑
k=1

ρikuk +XC
i ,

i = 1,2, ...,nY

(4)

where YC
i =

YU
i +Y L

i
2 , YW

i = XU
i −XC

i and ρ is the cor-
relation matrix.

• Evidence theory: Evidence theory (also called
Dempster-Shafer theory) [9, 19] assigns weights to
subsets A, also called focal sets, of the power set Ω(Y )
using the following mass distribution ν :

ν : | Ω(Y )→ [0,1]

A→ ν (A) s.t. ∑
A∈Ω(Y )

ν (A) = 1. (5)
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It follows the definition of two measures namely the
belief function Bel (·) and the plausibility function
Pl (·) that bound the realization of any event E:

Bel (E) = ∑
A⊆E

ν (A) (6a)

Pl (E) = ∑
A∩E 6= /0

ν (A) . (6b)

The belief measure can be seen as an upper probability
of the event E while the plausibility measure can be
seen as a lower probability. When combining evidence
theory to a reliability analysis [22], the belief and plau-
sibility measures enable to bound the probability of
failure by considering the event E = {Y ∈F}. When
the focal sets are singletons, the belief measure is
equal to the plausibility measure and evidence theory
reduces to probability theory. When there is only one
focal set, it reduces to the interval representation.

• Possibility theory: Possibility theory is a special case
of evidence theory where focal sets are nested and is
defined with the following possibility distribution π:

π : Ω(Y )→ [0,1] s.t. sup
y∈Ω(Y )

π (y) = 1. (7)

The triangular and trapezoidal distributions are com-
mon examples. It follows the definition of two mea-
sures, namely the possibility Π(·) and the necessity
N (·):

Π(E) = sup
y∈A

π(y) (8a)

N (E) = inf
y/∈A

(1−π (y)) . (8b)

α-cuts are commonly associated to a possibility dis-
tribution as they may be seen as nested confidence
intervals with the following expression:[

y
α
,yα

]
= {y,π (y)≥ α} . (9)

Baudrit and Dubois [4] propose a method to jointly
propagate probabilistic and possibilistic information.

• Probability boxes: The probability box (p-box) theory
assigns an imprecise cumulative distribution function
(cdf) to the uncertain variable Y . The true yet uncertain
cdf is bounded by an upper cdf FY and a lower cdf
FY :

FY (y)≤ FY (y)≤ FY (y) . (10)

Two groups of p-boxes are distinguished, namely free
p-boxes and parametric p-boxes. Free p-boxes do not
make any more assumptions than the bounds on the
true cdf. Any shape that respects the bounds and the
properties of a cdf is possible. Parametric p-boxes

assume that the distribution type is known (e.g., Gaus-
sian, uniform). The uncertainty lies in the parameters
of the distribution (e.g., mean, variance) that are mod-
eled using simple intervals. Therefore, at equal bounds,
parametric p-boxes are more informative than free p-
boxes by adding the information of the distribution
type. Many uncertainty models already mentioned can
be represented as free p-boxes. Indeed, by considering
the event Y ≤ y, plausibility and necessity measures
can be seen as lower cdfs while belief and possibil-
ity measures can be seen as upper cdfs. Probability
theory is retrieved when FY (y) = FY (y). Schöbi and
Sudret [18] compare results obtained from free and
parametric p-boxes using surrogate models.

This work falls in the scope of hybrid reliability analysis,
meaning that the input vector can be divided into two vec-
tors, namely X and Y where X is a random vector with a
fully determined pdf fX and Y contains the input variables
subject to epistemic uncertainty and described by one of
the models mentioned previously. As one realization of
the hybrid limit-state function g(X,Y) is a random set, one
cannot compute a single probability of failure as in standard
reliability analysis but only its bounds

[
Pf,Pf

]
:

Pf = Pr [g(X,Y)] = Pr [maxg(X,Y)≤ 0] (11a)

Pf = Pr
[
g(X,Y)

]
= Pr [ming(X,Y)≤ 0] . (11b)

In order to apply the existing failure probability estimation
methods to the hybrid problem, a framework that enables
the propagation of random variables with a mixture of
different epistemic models is needed. Random set theory
(denoted RS) makes it possible [1] as it generalizes proba-
bilistic and epistemic models. A random set is very closely
related to evidence theory and is defined by the function Γ:

Γ : | Ω→ A

α → Γ(α)
(12)

where A is the focal set and Γ(α) is a focal element. In
other words, a random set is like a random variable whose
realization is a set in A, not a number. The event E is
bounded by an upper probability and a lower probability
that are quite similar to Equations (6a) and (6b):

PΓ (E) = PΩ ({α ∈Ω : Γ(α)⊆ E,Γ(α) 6= /0}) (13a)

PΓ (E) = PΩ ({α ∈Ω : Γ(α)∩E 6= /0}) (13b)

with PΓ := PΩ ◦Γ−1. This definition links RS with the dif-
ferent uncertainty representations mentioned before as pre-
sented in Table 1 which gives the corresponding RS for
each uncertainty representation.
A RS can also be obtained from evidence theory by linking
it to the p-box representation as follows:

FY (y) = Pl(Y ≤ y) (14a)
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Table 1: The expression of Γ(α) for each uncertainty rep-
resentation.

Uncertainty model Γ(α)

Interval I
Convex C (I,ρ)
Possibility {y ∈ Y : π (y)≥ α}
Free p-box

[
FY
−1

(α) ,FY
−1 (α)

]
Probability F−1

Y (α)

FY (y) = Bel(Y ≤ y) . (14b)

The interval and convex models are special cases where
the random set is actually a constant set as the function
does not depend on α . The probability model is a special
case where the random set is a singleton. A sample of the
random set in higher dimension than one is obtained by
sampling the vector α from a copula C and computing
the Cartesian product ×nα

k=1Γk (αk) which is a nα -box with
nα = nX + nY being the number of input variables. The
limit-state functions in Equations (11a) and (11b) can be
rewritten as follows:

g(X,Y) = g(α) = max
ΓXY (α)

g(α) (15a)

g(X,Y) = g(α) = min
ΓXY (α)

g(α) (15b)

which yields for the bounds on Pf:

Pf =
∫

Ω

1g(α)≤0dC (α) (16a)

Pf =
∫

Ω

1g(α)≤0dC (α) (16b)

where 1E is the indicator function that equals to one when
the event E is valid or to zero when it is not. The hybrid
reliability analysis problem is reduced to two standard reli-
ability analyses on which standard estimation methods may
be used.

2.3. Robustness Analysis

Robustness analysis is of main interest in engineering ap-
plications. A system is considered robust if small variations
on an expected state of operation do not considerably de-
teriorate the expected performance. A robust solution may
be preferable over a non-robust optimal solution [20]. The
info-gap method aims at quantitavely measuring this no-
tion of robustness in the context of decision making by
introducing the following robustness function h∗IG given by:

h∗IG = max
h

 max
u∈U

(
h,
∼
u
)R(q,u)≤ rc

 (17)

Figure 1: Nested convex sets (left) and associated robust-
ness curves with preference reversal (right).

where h∗IG is defined as the maximum amount of uncertainty
that can be tolerated, i.e., for which the worst possible
performance is still acceptable. Three components appear
in an info-gap model and in Equation (17):

• the performance function R(q,u) that evaluates the
quantity of interest of a system of characteristic vector
q at specific values of the uncertain vector u;

• the critical performance rc which is the value that
the quantity of interest must not exceed (to be dis-
tinguished with the threshold zth introduced in Equa-
tion (1)). Its value may be determined or not in an IG
analysis;

• the uncertainty model U
(

h,
∼
u
)

which is a non-
probabilistic generally convex set, as introduced in
Section 2.2, of horizon of uncertainty h containing the
best estimation ũ (nominal value of u) of the uncertain
vector u. For h = 0, U (h, ũ) reduces to ũ.

A key feature of the convex uncertainty models is that they
are nested as the example depicted in Figure 1:

U
(

h1,
∼
u
)
⊆U

(
h2,
∼
u
)

for h1 ≤ h2. (18)

Therefore, the robustness function is monotonous with re-
spect to the horizon of uncertainty. Uncertainty can also
be beneficial as the real performance of the system may be
better than the expected one. To illustrate this point, the
opportuneness function β ∗IG is defined as:

β
∗
IG = min

h

 min
u∈U

(
h,
∼
u
)R(q,u)≤ rw

 (19)

where rw can be seen as a reward threshold. The idea with
the IG framework is to compare the robustness values of
different possible decisions d in order to keep the most
robust one given a critical performance value. The most
robust decision may depend on the choice of the critical
performance value as seen in Figure 1 where both curves
cross each others. The decision d2 is more robust before
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the curves intersect but the decision d1 is more robust after.
This is called the reversal of preference. Not many hypothe-
ses are needed in an IG analysis as it can be conducted
only with the choice of a non-probabilistic convex uncer-
tainty model and the best guess of the uncertain vector u.
However, both hypotheses may have an influence on the
robustness evaluation. The effect of the uncertainty model
on the robustness curve can be seen as a value of infor-
mation (VoI) analysis [6] where the aim is to quantify the
gain in robustness when using a more informative uncer-
tainty model than another. An IG uncertainty model U1 is
more informative than U2 if the following set inclusion is
obtained:

U1

(
h,
∼
u
)
⊂U2

(
h,
∼
u
)
,∀ h≥ 0. (20)

For a given critical performance rc, U1 will yield a higher
robustness value. For a given horizon of uncertainty, the
worst performance in U1 will be better than the one in
U2. These comparisons are expressed respectively as the
robustness premium ∆h∗ and the demand value ∆rc.

3. Robust HRA
3.1. HRA Framework

The goal in this work is to analyse the effect of the choice
of an epistemic uncertainty model on the robustness of a
reliability quantity. Here, one considers the bounds of the
failure probability obtained by hybrid reliability analysis
as the two quantities of interest. As mentioned in Section 2,
the limit-state function g(X,Y) depends on both vectors
X and Y. The vector X contains the input variables Xi that
are modeled as random variables. The joint distribution
fX (x) is considered perfectly determined (no epistemic un-
certainty). The vector Y contains the input variables Yi for
which epistemic uncertainty does not allow a well defined
deterministic or probabilistic modeling. As it was seen in
Section 2, RS theory enables to model and propagate many
different uncertainty models together (including probabilis-
tic cumulative distribution functions). In order to compare
the effect of each epistemic uncertainty model, the bounds
on the probability of failure are estimated and compared for
a same epistemic representation of each input variable Yi.
The different epistemic models for which results are shown
in this paper are:

• interval model;

• parallelepiped convex model;

• possibility triangular distribution;

• possibility trapezoidal distribution.

Probabilistic uniform distributions on Yi are also added to
the comparison. Results obtained by considering the p-box

representation and evidence theory are not presented in or-
der to respect the page limit. In order to estimate the bounds
on the probability of failure, Equations (16a) and (16b) need
to be evaluated. The inner loop which corresponds to the
search of the minimum and maximum of the limit-state
function for one realization of the random set Γ(α) is per-
formed using an optimization algorithm. The outer loop
corresponds to the estimation method of the probability of
failure. As an inner optimization loop is involved, hybrid
reliability analysis usually requires more evaluation of the
limit-state function than with a standard reliability analysis.
Moreover, the lower bound of the probability of failure to
be estimated may be very small (e.g., such that Pf < 10−5).
Therefore, some estimation methods such as Monte Carlo
sampling are not tractable. In this paper, the outer loop is
performed with an Importance Sampling around the most
probable failure point obtained with a FORM analysis [15].
However, note that several other advanced sampling meth-
ods could have been used here (e.g., subset sampling, line
sampling) [16].

3.2. Comparison by means of Info-gap Robustness
and Opportuneness Curves

As seen in Section 2.3, the info-gap framework quantifies
the notions of robustness and opportunity to uncertainty by
building nested convex sets around a nominal state which
represents the analyst’s best guess. When the performance
of the model is characterized by its probability of failure,
an info-gap analysis requires to perform several hybrid reli-
ability analysis at increasing horizons of uncertainty where
the epistemic uncertainty model is the interval or convex
model (that can be applied directly on the input variable but
also on parameters of a distribution function as for p-box
representation). An interesting feature is that it enables to
compare different possible decisions in view of choosing
the one that maximizes the robustness given a critical per-
formance. Info-gap analysis can also be used to assess the
VoI. Indeed, the different decisions can be directly linked
to the choice of different uncertainty models Ui (h, ũ) that
each has its own degree of information. Therefore, it is
possible to compare robustness and opportuneness curves
of different uncertainty models for Y by considering the
random set function as the IG uncertainty model as follows:

Ui

(
h, Ỹ

)
= Γi (α) (21)

with:

Γi : | [0,1]nY → SY

(
h, Ỹ

)
α → Γi (α)

(22)

where [0,1]nY is the unit hypercube and SY is the support
of Y that gets wider when the horizon of uncertainty h
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increases:

SY

(
h, Ỹ

)
=
{

Y, Ỹ(1−h)≤ Y≤ Ỹ(1+h)
}
,

h≥ 0.
(23)

Whatever the type of uncertainty model that is used for Y,
for a given h, the same support is used to compare bounds
obtained from each model which enables a meaningful
comparison. Moreover, the fact that bounds are calculated
for increasing horizons of uncertainty and, therefore, grow-
ing supports, enables a comparison in terms of robustness
and opportuneness functions. The larger the support, the
more impact the choice of the uncertainty model has on the
bounds of the probability of failure. The following quantity
R(i j)

Pf
is defined in this paper as the demand value between

a less informative uncertainty model Ui and a more infor-
mative uncertainty model U j and is used as the VoI metric:

R(i j)
Pf

= 1− Pf (Γi (h))
Pf (Γ j (h))

(24)

The value of this metric, which is negative as Pf (Γi (h))≥
Pf (Γ j (h)), shows how the added information from model
Ui to model U j diminishes, in terms of percentage, the
upper bound of the failure probability. A similar metric
could be defined with the lower bound to quantify how a
more informative model reduces the best possible outcome.
Such metric is not used in this paper as, generally in a
reliability analysis, the concern of how the worst possible
outcome may be reduced with more information is of higher
interest.

3.3. Proposed Methodology

This part aims at summarizing the steps that are followed
to apply the proposed methodology to two numerical relia-
bility problems.

1. Seperate the uncertain input variables into the random
vector X with fully determined joint cdf and the epis-
temic vector Y with corresponding nominal values;

2. Define groups of gradually informative epistemic un-
certainty representations of same finite support;

3. Compute the random set function of each uncertainty
representation (e.g., inverse cdf, α-cuts, parallelepiped
convex model);

4. Compute the two optimization problems for each limit-
state function;

5. Build the same nested supports parametrized with a
finite number of horizons of uncertainty hi ∈ [0,hmax]
on which each epistemic uncertainty model is defined;

6. Estimate, for each uncertainty representation and for
each horizon of uncertainty, the bounds of the failure
probability;

7. Plot the robustness and opportuneness curves for each
uncertainty representation and plot the VoI metric
R(i j)

Pf
.

4. Numerical Applications

Two toy cases are used in order to apply the proposed
methodology. The first one is purely mathematical while
the second one corresponds to a cantilever beam problem.
In both cases, the limit-state function g(X,Y) has an an-
alytical expression and is therefore easy to compute and
evaluate. The comparison of the uncertainty models ap-
plied to Y is divided into two groups, namely G1 and G2.
G1 compares the following uncertainty models: the interval
model, the trapezoidal possibility distribution, the triangu-
lar possibility distribution and the probabilistic uniform
distribution. G2 compares the interval model with the paral-
lelepiped convex model for different correlation coefficients
ρi j. Robustness and opportuneness curves obtained with
each epistemic uncertainty model and their corresponding
95% confidence interval are shown. A surface plot is also
used for G1 to show the values of R(i j)

Pf
from one model

to another depending on the horizon of uncertainty. The
methodology was numerically implemented on Python us-
ing mainly the Scipy package to solve the optimization
problems induced by both hybrid limit-state functions and
the OpenTURNS software [3] to estimate failure probabili-
ties using Importance Sampling.

4.1. Toy Case 1

The first toy case is taken from Xiao et al. [21] and has the
following limit-state function:

g(X,Y ) = Y + sin
(

5(X1 +1.5)
2

)

−

(
(X1 +1.5)2 +4

)
(X2 +1.5)

20

(25)

where X1 and X2 follow a standard Gaussian distribution
and Y is the unique epistemic variable that has the nom-
inal value Ỹ = 3.5. The fact that the input dimension
nα = nX + nY = 3 enables to draw the iso-lines of both
limit-state functions g(α,h) = 0 and g(α,h) = 0 in the
α-space for different values of h and different uncertainty
models. As Y is here one-dimensional, any convex model
reduces to the simple interval model. Therefore, only the
results for the G1 group are presented. The robustness and
opportuneness curves are obtained by discretizing h with
15 values in [0,0.5]. Figure 2 and Figure 3 show the shapes
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Figure 2: The iso-lines of g(α1,α2,h) with the interval
model.

Figure 3: The iso-lines of g(α1,α2,h) with the interval
model.

Figure 4: G1 comparison of robustness and opportuneness
curves for toy case 1.

Figure 5: G1 VoI comparison for toy case 1.

of g(α,h) = 0 and g(α,h) = 0. Figure 4 shows the robust-
ness and opportuneness curves for G1. As expected, the
larger the horizon of uncertainty and therefore the support
of Y the larger the interval on Pf for the three representa-
tions that are not purely probabilistic. One can see how the
gain of information, first from the interval to the trapezoidal
one, then to the triangular one, and finally to the uniform
distribution, reduces the uncertainty on the quantity of in-
terest. Figure 5 shows the VoI metric R(i j)

Pf
. The highest

gain of robustness between two consecutive (in terms of
information) uncertainty models is between the interval
and trapezoidal models. Indeed, for h = 0.5, going from
the interval model to the trapezoidal model (point A) leads
to a decrease on Pf of 309% while only 38% from the trape-
zoidal model to the triangular model (point B) and 102%
from the triangular model to the uniform model (point C).
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Figure 6: Cantilever beam.

4.2. Cantilever Beam

The second toy case [1] corresponds to the cantilever beam
subjected to a torsional moment T , lateral forces F1 and F2
and an axial force P, as depicted in Figure 6. The limit-state
function has the following expression:

g(X,Y) = σy−
√

σ2
x +3τ2

xz (26)

where σx =
P+F1 sinθ1+F2 sinθ2

A + Md
2I is the normal stress and

τxz =
T d
4I is the shear stress with A = π

(
d2− (d−2t)2

)
/4

the cross-sectional area and I = π

(
d4− (d−2t)4

)
/64

the second moment of inertia. The random vector X
is X = [P(kN), t(mm),d(mm),L1(mm),L2(mm)]. The
distribution of each independent random variable is
given in Table 2. The epistemic vector Y is Y =

Table 2: Distributions of the random variables in toy case
2.

Variable Distribution Param. 1 Param. 2

P Normal 12 1.2
t Normal 5 0.1
d Normal 42 0.5
L1 Uniform 119 121
L2 Uniform 59 60

[F1(kN),F2(kN),θ1(rad),θ2(rad),T (N.m)] with its nomi-
nal values Ỹ = [3,3,0.175,0.350,90]. The robustness and
opportuneness curves are obtained by discretizing h with
10 values in [0,0.05]. Figure 7 shows the robustness and
opportuneness curves for group G1. Figure 8 shows the VoI
surface plot for group G1. Once again, the choice of the
uncertainty model has a significant impact on the interval
obtained for Pf as soon as the horizon of uncertainty in-
creases. Going from the interval model to the trapezoidal

Figure 7: G1 comparison of robustness and opportuneness
curves for toy case 2.

Figure 8: G1 VoI comparison for toy case 2.
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Figure 9: G2 comparison of robustness and opportuneness
curves for toy case 2.

model or from the triangle model to the uniform model con-
siderably improves the robustness of the quantity of interest.
Figure 9 shows the robustness and opportuneness curves for
group G2 by assigning a non-zero coefficient of correlation
ρF1F2 between the two lateral forces F1 and F2. It appears
that a positive coefficient of correlation gives similar results
than the ones obtained with the interval model whereas a
negative coefficient will reduce the interval on Pf. This can
be explained by the fact that the extreme values of the limit-
state function are obtained for both combinations of the
highest values of F1 and F2 and the lowest values of F1 and
F2 (bottow left and top right vertices of the parallelepiped).

5. Conclusion

In this paper, a methodology was proposed in order to
analyse the robustness of different epistemic uncertainty
representations in function of the information they each
enable to model. In the context of hybrid reliability anal-
ysis, the random set framework is suitable to model and
propagate different representations of uncertainty to esti-
mate reliability quantities of interest such as bounds on
a probability of failure. An info-gap robustness analysis
was performed by considering each type of uncertainty
model in an increasing support of the epistemic variables.
This methodology enabled to compare robustness and op-
portuneness curves between uncertainty models that are
more or less informative on two toy cases. As expected, the
larger the support the more effect the choice of the uncer-
tainty model has on the bounds of the probabilty of failure
and therefore on the robustness analysis. The objective is
obviously not to determine the best representation of un-
certainty as it mainly depends on the available information

but to give insight on how the uncertainty model can im-
pact a robustness analysis. The methodology may also be
applied considering Dempster-Shafer structures and proba-
bility box representation. An analagous work is currently
performed on an industrial case relevant to the French elec-
tric company EDF and concerns the reliability assessment
of penstocks. A hybrid reliability analysis requires a high
computational effort when no specific hypotheses are made
as it demands a very large number of evaluations of the
initial limit-state function. A research perspective would be
to analyse and to compare the computational effort when
using different uncertainty models in a robustness analy-
sis. Such comparison would depend on many factors and
especially on hypotheses that can be made (e.g., monotony
of the limit-state function with respect to the epistemic
variables) and the numerous strategies that have already
been developed to reduce this computational burden (e.g.,
combination of surrogate models with smart optimization
algorithms).
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