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Abstract: This paper presents a sensitivity analysis methodology used for electric motor design. This innovative approach 
evaluates both global effects of parameter variations in their design range and of parameter deviations in their tolerance 
intervals on design objectives. For the purpose of robust optimization, this method helps to select the most influent design 
parameters and uncertain parameters, which are not necessarily the same. Suitable for any design approach, this method 
is particularly useful in dealing with objectives defined by non-linear and non-regular functions. In this paper, the method 
is applied to the sensitivity evaluation of an electric motor’s acoustic criteria. The objective functions are the levels of 
electromagnetic tangential excitations responsible for acoustic emissions. The output mean torque is another objective. 
The sensitivity analysis shows that acoustic criteria appear generally more sensitive to parameter deviations than mean 
torque. Parameter deviations can be even more influent on acoustic criteria than larger parameter variations in their 
design range. As can be expected from the sensitivity results, the paper eventually shows that the acoustic optimization of 
the electric motor faces robustness issues. 
 

1. Introduction 
The design of electric motors dedicated to the 

transport industry is a process which requires that many 
performance criteria be simultaneously brought to a 
satisfactory level. Typical performance criteria such as torque 
density, power density and efficiency should be maximized, 
while torque ripple, manufacturing complexity and material 
costs should be minimized [1]. Moreover, it is important to 
reduce electric motor noise and vibrations by minimizing 
Noise, Vibration and Harshness (NVH) criteria. 

The manufacturing and assembly of electric motor 
components leads to geometrical and material dispersions [2]. 
Moreover, some electric motor control parameter deviations 
can be observed in operation, e.g. because of position sensor 
errors [3]. These discrepancies between the parameters of a 
perfectly manufactured and perfectly operated motor and 
those in reality can affect the motor performance criteria, so 
the discrepancies must be taken into consideration in the 
design process. 

The effect of parameter deviations on a motor’s 
electro-technical performance criteria is explored in literature, 
particularly on cogging torque [4], [5], [6] or on mean torque 
and torque ripple [7], [8]. The impact of manufacturing 
dispersions on NVH criteria is more rarely studied. The 
effects of an oval stator shape and retracted teeth on the 
harmonic orders of radial force densities and the sound power 
level (SWL) of a claw-pole alternator were studied by Tan-
Kim et al. [9]. Kolb et al. performed an exhaustive global 
sensitivity analysis of the manufacturing tolerances in a 
Permanent Magnet Synchronous Machine (PMSM) on the 
radial Maxwell stresses [2]. These analyses all study the 
effect of parameter dispersions for a given design. 
Consequently, they enable the designers to identify the 
tolerances which should be tightened, and those which can be 

widened, without modifying the design. However, tightening 
some tolerances often causes additional cost. Instead, the 
present approach studies the effect of parameter dispersions 
for an entire set of possible designs. It is therefore intended 
for approaches aiming at finding a design making motor 
performance criteria robust to tolerances. The need to use 
such robust methods for electric motor design is pointed out 
in [10] and some examples of applications can be found in 
literature; using the Taguchi robust design method [11], [12], 
or robust optimization methods based on a probabilistic 
definition of robustness (six-sigma  method) [13], [14], or on 
a worst-case definition of robustness [13], [15], [16]. In a 
classical optimization approach, some design parameters 
must be chosen, and to reduce the size of the design space and 
the resulting optimization time, sensitivity analysis methods 
are usually used to select only the design parameters having 
the largest effects on the criteria of interest (i.e. the objective 
and constraint functions). Reducing the design space is also 
useful to shorten the computation time of robust design and 
robust optimization methods. In addition, robust design and 
robust optimization methods require considering the 
deviations of some parameters, which are not necessarily the 
optimization parameters, in order to calculate their specific 
robustness indicators (e.g. the signal-to-noise ratio for the 
Taguchi method, or the mean value and standard deviation of 
objectives for the six-sigma method). Whatever robust 
approach is used, the parameter deviations to consider should 
also be limited only to those which have a significant effect 
on the criteria of interest, in order to reduce the time necessary 
to determine the robustness estimators for a given design. A 
sensitivity analysis must therefore be run before the robust 
optimization, in order to identify on the one hand the most 
influent design parameters, and on the other hand the most 
influent parameter deviations. The global sensitivity analyses 
which are usually performed before a design optimization 
only determine the most influent design parameters [17], [18], 
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by evaluating the effect of parametric variations which are 
large compared with the size of the tolerance intervals. While 
the sensitivity of a smooth function to parameter deviations 
in their tolerance intervals can reasonably be approximated 
by such methods, this is particularly improper for non-linear 
and non-regular functions. On the other hand, the sensitivity 
analyses of manufacturing tolerance, such as those performed 
by Kolb et al. in [2], usually only evaluate their effect for a 
fixed design, even though a global overview of the effect of 
parameter deviations on the criteria of interest for the entire 
design space is preferable before running a robust design or 
optimization approach. 

This article presents a novel global sensitivity analysis 
method, which evaluates the global sensitivity of the criteria 
of interest for electric motor design, on the one hand to 
variations of the nominal values of the parameters, to select 
the most influent design parameters, and on the other hand to 
their deviations, to select the most influent deviations which 
must be simulated during the robust design process. It is 
particularly useful to handle non-linear and non-regular 
electric motor NVH criteria and was developed for this 
purpose, but it is also of interest when dealing with any non-
linear and non-regular criterion which is potentially sensitive 
to small parametric variations.  

The sensitivity analysis method is applied to study the 
mean torque produced by a PMSM dedicated to automotive 
traction, and also the most significant electromagnetic 
contributions responsible for its noise emissions at low speed. 
Therefore, this paper supplements the rare studies of electric 
motor NVH sensitivity to dispersions performed in [2] and 
[9], with new results showing the effect of several geometric 
and control parameter variations in their design space and in 
their tolerance intervals on the prevailing NVH criteria of the 
considered motor. These results show that specific attention 
should be paid to robustness when dealing with the design of 
silent electric motors, because their NVH indicators can be 
very sensitive to slight parameter dispersions. 

The main characteristics of the considered PMSM and 
its NVH issues are presented in section 2. The sensitivity 
analysis method is then described in section 3, and results are 
presented and discussed in section 4. Finally, in section 5, 
some conclusions of the sensitivity analysis are illustrated by 
performing a multi-objective motor optimization which does 
not account for the parameter deviations, and by evaluating 
the robustness of an optimized design. 

2. Motor characteristics and NVH diagnosis 
2.1. Motor characteristics 

The 2D section of the considered motor is depicted in 
Fig. 1.(a). Its main characteristics are specified in Table 1.  

 

 
The three rotor permanent magnets (PM) are grade 

N35UH Neodynium-Iron Boron magnets, and the active 
magnetic parts are made of standard silicon steel laminations 
which are 0.35 mm thick and have a core loss value of 2.5 
W/kg at 50 Hz and 1.7 T.  

A particularity of the motor is that the rotor is step-
skewed: the rotor is made of three parts, and the central part 
is shifted by 3.75° with respect to the external parts, as 
depicted in Fig. 1.(b). Skewing is generally an efficient 
solution to reduce torque ripple, and rotor step-skew can be 
selected for its more convenient manufacturability and more 
attractive cost compared with continuous skewing [19]. 

 
2.2. Simulation workflow 

To evaluate the motor’s performance, many criteria, 
including common electro-technical criteria and noise and 
vibration levels, can be calculated from a common transient 
electromagnetic simulation. Indeed, the electromagnetic 
surface force densities which are applied to both the rotor and 
the stator, and which are called Maxwell stresses, can be 
calculated from the radial and tangential airgap flux density 
outputs of the electromagnetic simulation, using the formulas: 

𝜎! =
1
2𝜇"

(𝐵!# − 𝐵$#), (1) 

and 

𝜎$ =
1
𝜇"
(𝐵!𝐵$), (2) 

where 𝜎 is the surface force density, 𝐵 is the magnetic flux 
density, 𝜇"  is the magnetic permeability of vacuum, and 𝑟 
and 𝑡 denote radial and tangential components. 

Torque can be computed by integrating the tangential 
components of the electromagnetic surface force densities 
along the airgap circumference. The radial and tangential 
surface force densities vary with time, i.e. with the rotation of 
the rotor, but they also have a distribution depending on space. 
Consequently, they dynamically excite the motor structure 
and cause vibrations, whose levels depend on the excitation’s 
harmonic and spatial content as well as on the structure’s 
properties. This step can be simulated using a structural 
model, which must be representative of the electric motor’s 
structural properties and in particular those of the laminated 
stator. Some modelling guidelines for the structural design of 
electric motor stators are given in [20] and [21]. Finally, an 
acoustic model can be used to compute the acoustic power 
level radiated by the motor. This multiphysical simulation 
workflow is detailed in [22], and an example of validation is 
given in [23]. 

2.3. NVH diagnosis of the motor 
The interest of analyzing and trying to minimize the 

acoustic emissions of the considered PMSM was 
demonstrated by prior experimental investigations on the 
complete powertrain including the PMSM, the gearbox and 
the power electronics unit. They are not detailed in this article. 
They show that high noise levels are reached at low speeds. 
This is particularly critical because at low motor speeds, 
electromagnetic noise prevails over aerodynamic and rolling 
noise in electric vehicles. 

Table 1 Motor characteristics 
Maximum output power  75 kW 
Maximum torque 180 N.m 
RMS value of the current 
limit 

240 A 

 

 

 

(a) (b) 
Fig. 1.  Motor geometry.  
(a) 2D section of the studied motor for one pole, (b) Rotor 
step-skewing 
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Therefore, to identify the causes of the noise emissions, 
the motor is simulated in the low-speed range from 500 rpm 
to 3000 rpm, using the simulation workflow detailed in2.2. 
Moreover, the torque is set to 40% of its maximum torque 
(72.7 N.m) for the simulations, which is a torque which is 
often required in electric vehicles. 

The step-skewing of the rotor is an additional 
difficulty regarding the simulation process. Indeed, the 
hypothesis that the electromagnetic behavior in 2-D sections 
taken at different axial positions is the same is often made to 
reduce the electromagnetic model to a 2-D model. This 
hypothesis is no longer valid for step-skewed rotors. 
Consequently, two options exist to model step-skewed 
motors using finite element analysis (FEA): multi-slice 2-D 
or 3-D FEA [19]. The 3D FEA requires a high computation 
time which is prohibitive for optimization, so a multi-slice 2-
D model is used, under the assumption that the 
electromagnetic behavior is the same in all 2-D sections 
belonging to a common rotor part. As the two external parts 
of the rotor are identical, only two electromagnetic 
simulations are required. After projecting the excitations 
produced by each rotor part on a structural finite-element 
model, the phenomenon causing the high noise levels is 
identified: the noise and vibrations are due to a resonance of 
an overall powertrain bending mode caused by the tangential 
excitations around this mode’s natural frequency, i.e. around 
1000 Hz. The shape of this overall bending mode, depicted in 
Fig. 2, is prone to be excited by the dynamic excitation of the 
tangential Maxwell surface force densities. Moreover, this 
mode shape involves deflections of the electric power unit 
and gearbox cover plates which have large radiating areas. In 
order to simplify the simulation workflow, it is decided to 
perform the sensitivity analysis of the spatial resultant of the 
tangential excitations causing the overall bending mode 
resonance, i.e. the engine orders 24, 48 and 96 of the torque. 
The engine order n of the torque corresponds to the sinusoidal 
wave of the instantaneous torque having a frequency which is 
n times larger than the rotation frequency. At the selected 
engine speeds, the torque engine orders of interest reach the 
natural frequency of the powertrain’s overall bending mode 
(1000 Hz, i.e. 2500 rpm for engine order 24, 1250 rpm for 
engine order 48 and 625 rpm for engine order 96).  

 
These criteria of interest are expressed in decibels 

(dB): 
𝑂% = 20 log&"2𝑇'%4 , (3) 

where 𝑂%  is the ith criterion and 𝑇'%  is the torque harmonic 
contribution of engine order 𝑖.  

As this overall bending mode resonance prevails over 
the other phenomena between 500 and 3000 rpm, expressing 
the variations of each torque engine order in dB gives an 
accurate estimation of the SWL variations to be expected. 

Moreover, when modifying an electric motor design 
to improve its vibroacoustic behavior, attention must be paid 
to keeping the mean torque at an acceptable level. Therefore, 
this criterion is also investigated in the sensitivity analysis. 

3. Description of the methodology 
3.1. Presentation of the sensitivity analysis 

method 
The Morris method [24] is used to evaluate the effect 

of the parameters on the criteria of interest. Unlike local 
sensitivity methods, the sensitivity indicators of the Morris 
method are calculated by evaluating the effect of parameter 
variations on the criteria of interest for several designs in the 
design space. Moreover, it is a One-Factor-At-a-Time method, 
which requires much fewer evaluations of the criteria of 
interest than stochastic approaches [2]. The differences are 
that the results obtained using the Morris method are 
qualitative while those of stochastic approaches are 
quantitative, and that the effects of non-linearity and 
interaction between parameters cannot be distinguished using 
the Morris method. Still, it is well suited to optimization 
parameter selection, as it provides a classification of the 
parameters’ effects that relies on the entire design space. 

The principle of the Morris method is described 
precisely in [24]. To understand the results presented in this 
article, a brief description of the method is necessary. One can 
consider the case where the sensitivity of a function denoted 
by 𝑓  to 𝑁  parameters 𝑝&  to 𝑝(  must be estimated. For this 
purpose, a range of admissible values [𝑝)!"# , 𝑝)!$%] must be 
given for each parameter 𝑝). Several elementary effects are 
then calculated for each parameter 𝑝) , by evaluating the 
variation of 𝑓 when the parameter 𝑝) is subject to a variation 
of ∆) and the other parameters remain unchanged: 

𝐸𝐸*& =
𝑓2𝑝&, … , 𝑝) , … , 𝑝+4 − 𝑓2𝑝&, … , 𝑝) + ∆) , … , 𝑝+4

∆)+,!-
, (4) 

where ∆)+,!-=
∆&

*&!$%/*&!"#
 is the normalized value of the 

variation. The Morris method guarantees that ∆)+,!-> 0.5, 
i.e. that the increment always exceeds 50% of the size of the 
admissible range, ensuring the global nature of the sensitivity 
measure. 

The different elementary effects of each parameter 𝑝) 
are calculated for different values of the other parameters and 
of 𝑝) itself. Consequently, unless 𝑓 is a linear function of the 
parameters 𝑝&  to 𝑝( , the elementary effects 𝐸𝐸*&  of a 
parameter 𝑝) have different values. 
Two sensitivity indicators are then calculated:  
- 𝜇00'&

∗  is the mean value of the absolute elementary 
effects of the parameter 𝑝). It can be read as the mean 
normalized variation of the function 𝑓  when the 
parameter 𝑝) is incremented by ±∆𝑝). 

- 𝜎00'& is the standard deviation of the elementary effects.  
It is an indicator of the variability of the parameter effect 
within all the designs used to calculate the elementary 
effects. 

This method can be directly applied to perform a 
sensitivity analysis aiming at identifying the most influent 
design parameters. In this case, the boundaries of the 
admissible ranges must be chosen for each parameter as their 

 
Fig. 2.  Representation of the powertrain overall bending 
mode shape (1026 Hz) with unit maximum amplitude color 
scale. 
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minimum and maximum admissible values in the design 
space. These parameters are named design parameters and 
their admissible ranges are named design ranges. If the 
sensitivity analysis is made to prepare an optimization, the 
criteria of interest are the objective and constraint functions 
of the optimization, and the parameters having the highest 
absolute mean elementary effect 𝜇00'&

∗  on these criteria of 
interest should be selected as optimization parameters. 

Moreover, to perform robustness analyses and robust 
optimization, the effect of the parameter deviations must be 
taken into consideration. For this purpose, the sensitivity of 
the criteria of interest to variations of the parameters in their 
entire design space is distinguished from their sensitivity to 
generally much smaller variations of parameters in their 
tolerance interval. Indeed, if the sensitivity analysis is 
performed to prepare a robust optimization, the impact of the 
variations of a given parameter in its design space may be too 
low to select it as an optimization parameter, but its 
deviations may imply effects on the criteria of interest which 
may be large enough to be considered. On the contrary, a 
given parameter may have a significant effect when subject 
to large variations in its design space, but local variations may 
cause no significant impact on the criteria of interest. This is 
particularly the case for NVH criteria which are non-regular 
and non-linear with respect to geometric and control 
parameters. 

For this purpose, a parameter 𝑝) is considered as the 
sum of its nominal value, denoted by 𝑝)(23, and a deviation 
parameter 𝑝)405: 

𝑝) = 𝑝)(23 + 𝑝)405 .		(5) 
In this way, the effect of variations of the parameters’ 

nominal values in the design range, and of their deviations in 
the tolerance interval, can be estimated separately. The 
difference between the components 𝑝)(23  and 𝑝)405  is only 
their admissible range. A significant advantage of this method, 
apart from the reduced number of samples in comparison with 
stochastic approaches, is that the effect of parameter 
uncertainties is also evaluated globally. It is valuable for the 
selection of the parameter deviations, which should be taken 
into consideration in the search for an optimum robust design 
when dealing with non-linear and non-regular NVH criteria. 

3.2. Definition of design spaces and tolerance 
intervals 

To perform the motor’s sensitivity analysis, its 
parameters must be defined, as well as the limits of their 
design space and those of their tolerance intervals. 

 
The 8 geometric parameters which are considered are 

depicted in Fig. 3 and described in Table 2. For geometric 
parameters, the effect of variations in both nominal values 
and deviations on the criteria of interest, i.e. the torque 
harmonics 24, 48 and 96 (the objective functions), and the 
mean torque (the constrained function), are investigated. In 

addition, the control parameter ∆67 defines the rotor’s 
mechanical angular position with respect to the stator’s 
rotating field, so it directly defines the phase current shift 
angle. The nominal value of this parameter is directly defined 
by the control system so as to provide the maximum torque, 
and it is therefore considered as a fixed parameter which 
could not be modified during an optimization. However the 
effect of its deviation due to control system inaccuracies is 
studied.  

 The design ranges are defined to be as wide as 
possible and to provide a large design space offering good 
possibilities for the reduction of the objective functions. Their 
spans are specified in Table 2. These spans remain limited 
because the rotor geometry with three magnets provides 
limited design modification possibilities. 
 

 
The tolerance intervals can be defined from the 

measurements made on five sheets of a manufactured motor. 
The standard deviation of the parameters can be calculated 
using the corrected sample formula: 

𝜎) = F
1

𝑛 − 1H2𝑝)( − 𝑝8I 4
#

+

9:&

, (6) 

where 𝑛 is the number of available measures (5 in this case), 
𝑝)( the value of the parameter 𝑝) for the sample 𝑘, and 𝑝8I  the 
mean value of 𝑝) over the 𝑛 measurements. 

These standard deviations are also presented in Table 
2. The tolerance intervals are assumed to have the limits 
[𝑝)(23 − 3𝜎) , 𝑝)(23 + 3𝜎) ]. Under the hypothesis that the 
parameter deviations follow a normal distribution, this 
assumption means that 99.7 % of the deviations of each 
parameter are inside their tolerance intervals. However, it 
should be noted that the sensitivity analysis method does not 
assume any particular parameter deviation distribution. 

No experimental data is available for the deviations of 
the parameter 𝑤72. Its standard deviation is therefore fixed to 
the value of 0.07 mm, which is a large value in comparison 
with the standard deviations of other parameters given in 

  

Fig. 3.  Geometric parameters of the PMSM. 

Table 2 Characteristics of design ranges and tolerance 
intervals 

Param. 
symbol Description 

Design 
interval 

span 

Standard 
deviation of  
5 samples 

(𝜎)) 
𝑅; Rotor lobe radius 0,5 mm 0.007 mm 
𝑅< Rotor flux barrier 

radius 
0,5 mm 0.006 mm 

𝛼= Angle spanned by 
rotor chamfers 

5° 0.5° 

𝛼< Angle spanned by 
rotor flux barriers 

4° 0.28° 

𝑤72 Slot opening 
width 

0,5 mm Not 
measured 

𝑅5>37 Radial position of 
V-shaped PMs 

0,5 mm 0.011 mm 

𝑤<>3 Bridge between 
V-shaped PMs  

0,5 mm 0.014 mm 

𝑅?>3 Radial position of 
the horizontal PM 

0,5 mm 0.035 mm 
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Table 2 (twice as high as 𝑅?>3, which is the largest among 
the distance parameters). 

The standard deviation of the control parameter ∆67 is 
assumed to be 0.166°, and its tolerance interval [-0.5°,0.5°]. 
This corresponds to electrical shift angle deviations lying 
between -2° and 2° in 99.7% of the cases. 

4. Results 
The Morris sensitivity analysis following the 

described methodology is performed in Python using the 
SALib library [25]. The parameter names are followed by the 
exponent 	(23  when the effect of the variation of their 
nominal value in their design range is considered, and by the 
exponent 	405  when the effect of their deviations in their 
tolerance interval is considered. In this study, the average 
absolute effect of each parameter and its standard deviation 
are calculated using 9 elementary effect values. Each criterion 
must therefore be evaluated for 162 different sets of 
parameters. Evaluating the criteria of interest for one design 
requires building and solving the corresponding finite 
element electromagnetic model (Altair Flux is used), and 
post-processing the torque. The computational time for one 
design is approximately 34 minutes on the workstation (128 
GB RAM – 2 Intel Xeon CPU E5-2670 v2 processors), so the 
total computational time is around 93 hours. However, as the 
design evaluations are performed using 5 parallel threads, the 
computational time is reduced to approximately 19 hours.  

4.1. Results interpretation 
The sensitivity results regarding the output torque are 

depicted in Fig. 4.  

 
For each parameter, the average value of absolute 

elementary effects is given at each line by the red point, while 
the blue star corresponds to the standard deviation of 
elementary effects. It appears that for the most influent 
parameter (the nominal value 𝑅;(23 of the rotor lobe radius 
𝑅; ), the mean elementary effect reaches 4.5 N.m (for an 
average mean torque value of 64.7 N.m among all the tested 
configurations). Therefore, the possibilities of significantly 
improving the motor’s torque performance by varying the 
geometric parameters’ nominal values are not very significant. 
Fig. 4 also shows that the standard deviations are significantly 
lower than the average elementary effect values for almost all 
parameters. This means that the elementary effects of each 
parameter have similar values for the different trajectories, i.e. 
for different designs. This can be explained by the fact that 

mean torque is an overall performance criterion which is not 
affected much by parameter interactions; most parameter 
variations impact mean torque independently of each other 
(e.g. increasing the nominal value of the rotor lobe radius 
parameter 𝑅;  almost always results in an increase of mean 
torque, regardless of the value of the other parameters, 
because it reduces airgap size). 

 

 

 
The sensitivity results regarding the NVH criteria to 

be minimized, i.e. the levels expressed in dB of the torque 
engine orders 24, 48 and 96, are respectively presented in Fig. 
5, Fig. 6 and Fig. 7. 

 
Fig. 4.  Mean torque sensitivity to parameter variations. 

 
Fig. 5.  Torque engine order 24 sensitivity to parameter 
variations. 

 
Fig. 6.  Torque engine order 48 sensitivity to parameter 
variations. 

 
Fig. 7.  Torque engine order 96 sensitivity to parameter 
variations. 
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For these criteria, a noticeable result is that the 
standard deviations of elementary effects are in the same 
order of magnitude as the average values of absolute 
elementary effects. This shows that the evolution of these 
NVH criteria is much more difficult to predict than that of 
mean torque, because the NVH criteria depend on the local 
distribution of the Maxwell stresses, which is highly 
dependent on the interaction between parameters. As a result, 
while a given parameter variation will generally have a 
similar effect on mean torque for any design, its effect on the 
NVH criteria will depend on the values of the other 
parameters, i.e. on the considered design. 

The criterion which is the most sensitive to the 
variation of parameters in their design range is the level of the 
torque engine order 48: in average, the effect of the variation 
of the nominal value of the flux barrier radius 𝑅<(23  is a 
normalized change of almost 10 dB of the torque engine order 
48. Three other parameters affecting the rotor’s outer shape 
have an average normalized effect of more than 5 dB. The 
standard deviations of these effects are also particularly high. 
This is due to the fact that the step-skewing angle of 3.75° 
was chosen in order to minimize the torque engine order 48; 
for certain designs, simulation results show that this engine 
order can almost be eliminated, so the associated variations 
of the torque engine order 48 level, expressed in dB, are very 
high. However, some parameter deviations, such as those of 
the angles spanned by the rotor flux barriers 𝛼<405  and the 
rotor chamfers 𝛼=405 , also have a significant effect on this 
criterion, so they could potentially cause robustness issues. 

The effect of the parameters on the two other NVH 
criteria is less significant. The results show that there are 
fewer design possibilities to reduce these criteria because the 
average effect of nominal value variations is lower, and also 
that the criteria are probably a bit less subject to robustness 
issues because the average effects of parameter deviations are 
also slightly lower. 

 
A noteworthy exception can be observed in Fig. 7: the 

level of the torque engine order 96 is most sensitive to 𝛼=405, 
the deviations of the angle spanned by the rotor chamfers in 
their tolerance intervals. It is surprising to observe that the 
sensitivity to variations of a parameter in its tolerance interval 
is higher than the sensitivity to its variations in its design 
range, which is more extended. This phenomenon also 
happens for the effect of the parameter 𝑅?>3, which defines 
the radial position of the horizontal magnet, on the level of 
the torque engine order 48. To investigate these results, the 
nine elementary effects of 𝑅?>3405  on torque engine order 48 

levels and of 𝛼=405 on torque engine order 96 levels are 
examined. 

Table 3 presents the values of the torque engine order 
48 levels, denoted by 𝑓, for the 9 designs used to calculate the 
elementary effects of the parameter 𝑅?>3405 . For that, the torque 
engine order 48 level is calculated for the sets of parameters 
p corresponding to the different designs 1 to 9, and for the 
sets of parameters 𝑝 + ∆ where ∆ contains only zeros except 
for the value of 𝑅?>3405 . The average value of the absolute 
elementary effects of this parameter reaches 2.21 dB. This is 
mainly due to the fourth elementary effect, which is much 
larger than the others. As a consequence, the 𝑅?>3405  
parameter’s elementary effect greatly depends on the 
considered design. This explains that the standard deviation 
of the elementary effects reaches the large value of 3.79 dB. 
The reason for this high fourth elementary effect is illustrated 
in Fig. 8. To build this curve, all parameters except 𝑅?>3(23 and 
𝑅?>3405  are set to the values corresponding to the design 4 used 
to evaluate the fourth elementary effect of the parameter 
𝑅?>3405 , equal to -11.10 dB. The possible values of 𝑅?>3 are 
then swept in its range defined by the design range, which 
covers 0.5 mm, and the tolerance interval, which is equal to 
[−3𝜎) , 3𝜎)] i.e. [-0.105 mm, 0.105 mm], and the value of the 
torque engine order 48 is calculated for each 𝑅?>3  value. 
Erreur ! Source du renvoi introuvable. shows that for this 
design the simulated engine order 48 can almost be 
eliminated, so the torque engine order 48 level is subject to 
very large variations when the parameter 𝑅?>3 varies, even 
for a variation of 0.126 mm (corresponding to 60% of the 
tolerance interval of 𝑅?>3 ) applied to calculate the 
elementary effect of 𝑅?>3405 . 

 
A similar case can be observed for the effect of the 

parameter 𝛼=405on torque engine order 96. The large average 
value of elementary effects (4.56 dB) and the high standard 
deviation (6.19 dB) are mainly due the sixth elementary effect 
of 𝛼=405. For the sake of conciseness, the table containing all 
elementary effects of 𝛼=405 on torque engine order 96 is not 
presented. Following the same methodology as for Fig. 8, the 
effect of 𝛼= for the mentioned sixth design is depicted in Fig. 
9. 

It appears that for this particular design, the parameter 
deviations within the tolerance interval can be more influent 
than larger variations in the design range. Indeed, it can be 
seen in Fig. 9 that this design is a local minimum, so the 
function variability is very high in the local minimum’s close 
neighborhood, and the function becomes more regular for 
designs which are more distant from the local minimum.  

Table 3 Elementary effects of the parameter 𝑅?>3405  on the 
torque engine order 48 level 

Design ∆+,!- 𝑓(𝑝) 
(dB) 

𝑓(𝑝 + ∆) 
(dB) 

Elementary 
effect (dB) 

1 -0.6 -11.31 -10.26 -1.75 
2 -0.6 -3.48 -3.07 -0.68 
3 +0.6 -0.89 -1.05 -0.27 
4 +0.6 -18.66 -25.32 -11.10 
5 -0.6 -7.26 -7.44 0.30 
6 +0.6 -4.54 -5.3 -1.27 
7 -0.6 -7.41 -6.26 -1.92 
8 +0.6 -10.18 -8.91 2.12 
9 +0.6 1.76 2.09 0.55 

 

 

 
Fig. 8. Effect of the parameter 𝑹𝑯𝑷𝑴 on the torque engine 
order 48 level, for the design used to calculate its largest 
elementary effect due to deviations. 
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The high average elementary effects of 𝛼=405  on 

torque engine order 96 and  𝑅?>3405  on torque engine order 48 
are due to the elementary effects calculated close to the local 
minima depicted in Erreur ! Source du renvoi introuvable. 
and Fig. 9. These high average elementary effects are not only 
because of the non-regular nature of torque engine orders 48 
and 96, but also because of the Morris method’s sampling 
including these local minima. Consequently, the obtained 
results are valid for the randomly generated trajectories of this 
analysis, but they cannot be generalized quantitatively to the 
entire design space. Still, they provide useful qualitative 
information about the global effect of parameter variations in 
design ranges and tolerance intervals. In addition, the more 
trajectories are used, the more generalizable the sensitivity 
analysis conclusions are. 

4.2. Parameter selection for robust 
optimization 

In addition to the overview of the parameter variations’ 
effects on the criteria of interest and the resulting physical 
interpretations, the role of this new sensitivity analysis 
method is to select the most influent design parameters, and 
the parameters whose deviations must be taken into 
consideration in a robust design or robust optimization 
approach. 

The chosen optimization parameters are the 
parameters for which the variation of the nominal value have 
the most effect on the criteria of interest. In the present case, 
these parameters are 𝑅; , 𝑅< , 𝛼<  and 𝛼= . Some better 
optimization results may be obtained by adding other 
optimization parameters, but only at the cost of an increased 
optimization time. 

The parameter deviations which should be taken into 
consideration for the robustness analyses and for robust 
optimization are those which have the most effect on the 
criteria of interest. Reducing the number of parameters whose 
deviations are considered reduces the number of simulations 
which must be run to evaluate the robustness of a design, 
regardless of the computed robustness indicator. 

To evaluate the robustness of the torque engine order 
48, shown to be the most likely to be subject to robustness 
issues, it is decided to consider the deviations of 𝛼=, 𝛼<	and 
𝑅?>3. This choice would also be adapted for the evaluation 
of the robustness of the torque engine orders 24 and 96, which 
are particularly sensitive to the deviations of 𝛼=  and 𝛼< . 
Finally, to study mean torque robustness, the deviations of 
∆67 and 𝑅?>3 could be considered. 

5. Verification of the main sensitivity analysis 
results 

It is difficult to validate the presented sensitivity 
analysis method itself, because this method involves 
simulating many different designs (162 in the example of 
section 4) to provide the sensitivity indicators. Consequently, 
it would not make sense to verify the effect of each parameter 
variation individually. A more meaningful approach is to 
confirm the sensitivity analysis results. Just as any sensitivity 
analysis method, the presented method identifies the 
parameters whose variations in their design range are the 
most influent. Moreover, two novel types of results are 
obtained using this two-level sensitivity analysis method, and 
should be verified:  
- The first concerns the criteria minimization possibilities 

and their likeliness to face robustness issues if the 
parameters’ tolerances are not taken into account during 
the design or optimization process. It appears that the 
torque engine order 48 has the best minimization 
possibilities, but that it is also the most subject to 
robustness issues. For the torque engine orders 24 and 96, 
fewer reduction opportunities are expected. Although 
more limited, some robustness issues can also be 
expected for these two engine orders if no robust design 
or optimization approach is adopted. These results are 
confirmed in this section by conducting a classical 
optimization minimizing the three criteria of interest, and 
analyzing the Pareto front as well as the robustness of a 
Pareto-optimal design. 

- The second one concerns the parameters whose 
tolerances must be taken into consideration for a robust 
optimization. To evaluate the robustness of the torque 
engine orders 24, 48 and 96, it is decided to only consider 
the deviations of 𝛼= , 𝛼<  and 𝑅?>3 . To confirm this 
conclusion, a possible approach is to conduct a robust 
optimization accounting for the three selected parameters’ 
deviations, and verify that the optimized design 
robustness is satisfying when the all parameter 
deviations are considered. However, robust optimization 
methods are very time-consuming, even though the 
authors are investigating simplifying assumptions to 
reduce computational time. The parameter deviation 
selection based on the present sensitivity analysis 
method belongs to the computational time reduction 
process. Robust optimization results including this 
verification procedure should be presented in the future. 

5.1. Classical multi-objective optimization results 
To confirm the first results of the sensitivity analysis 

study, a multi-objective optimization aiming at minimizing 
the torque engine orders 24, 48 and 96 without reducing the 
mean torque by more than one percent is performed. 
Following the sensitivity analysis results, the chosen 
optimization parameters are 𝑅; , 𝑅< , 𝛼<  and 𝛼=  which can 
vary within the spans given in Table 2. To solve this multi-
objective optimization problem, the Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) algorithm is used [26]. It is 
a genetic algorithm which very commonly serves to handle 
multi-objective problems because of its fast convergence 
towards sets of solutions which are close to the Pareto fronts 
of these problems and well spread over them. For this purpose, 
the python library pymoo is used [27]. An initial population 
of 40 individuals is first sampled randomly. After that, 50 

 
Fig. 9.  Effect of the parameter 𝜶𝑪 on the torque engine order 
96 level, for the design used to calculate its largest 
elementary effect due to deviations. 
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generations of offspring are generated by performing random 
crossovers between parent designs and random mutations. In 
all, 540 design evaluations are performed. The same 
workstation is used as for the sensitivity analysis, and 5 
parallel threads are also used. With this setup, the 
computational time is approximately 62 hours. 

 

 
Fig. 10 and Fig. 11 display the estimated Pareto front 

in the 3-dimensional objective space. The axes represent the 
variation of each objective with respect to the initial design, 
so that the initial design corresponds to the coordinates (0,0,0). 
Both figures depict the same Pareto front: they provide two 
overviews which are shifted by a 90° angle around the 
vertical axis.  

The largest objective reductions are achieved on the 
torque engine order 48 level, as expected when looking at the 
sensitivity analysis results. In addition, the torque engine 
orders 24 and 96 levels can be reduced to a lesser but still 
significant extent by varying the four optimization parameters. 
The high dependency of the torque engine order 48 level on 
design can also be seen in the span of reductions covered by 
the Pareto-optimal designs regarding this objective, from a 
20.0 dB reduction to a 4.3 dB increase, while the reductions 

of the torque engine order 24 and 96 levels expressed in dB 
respectively cover the much more restricted ranges [-9.3,-6.0] 
and [-4.0,-1.6]. 

5.2. Robustness analysis of the design minimizing 
the torque engine order 48 

The sensitivity analysis results leads to the prediction 
that the torque engine order 48 level could be significantly 
reduced by using an optimization algorithm, but that the 
resulting designs might be non-robust if, as it is the case in 
the multi-objective optimization presented in section 5.1, the 
parameters’ tolerances are not taken into consideration in the 
optimization process. To verify this assumption, in the Pareto 
front depicted in Fig. 10 and Fig. 11, the design which 
features the largest reduction of the torque engine order 48 
level, denoted by “selected optimum”, is subjected to a 
robustness analysis. The values of each objective for this 
design are depicted in Table 4. 

 

 
To evaluate the robustness of this design, its design 

parameters are fixed, and a probability distribution is 
assigned to the considered parameter deviations. The results 
of the sensitivity analysis presented in section 4.2 are used, so 
only the deviations of 𝛼= , 𝛼<  and 𝑅?>3  are taken into 
consideration. Normal distributions are widely used for the 
definition of parameter deviations [13], [14], and this choice 
is made for this article. 

 
The mean value of the deviation distribution is supposed 

to be zero: if it is not, the systematic deviation can be included 
in the design. Consequently, considering a parameter 𝑝), the 
mean value 𝜇)  of its distribution is its nominal value, as 
depicted in Fig. 12. To define the standard deviation 𝜎) of the 
normal distribution of each parameter 𝑝) , the experimental 
data on five rotor sheets depicted in Table 2 are reused. 

A Monte-Carlo sampling is then performed to generate 
random sets of parameter deviation values, and the levels of 
torque engine orders 24, 48 and 96 are calculated for each of 
these random sets of parameters. The distribution of these 
three objectives are depicted in Fig. 13 for all the sets of 

 
Fig. 10.  Values of the objectives of the designs belonging to 
the estimated Pareto front for the classical multiobjective 
optimization aiming at minimizing the torque engine orders 
24, 48 and 96 – first overview 

 
Fig. 11.  Values of the objectives of the designs belonging to 
the estimated Pareto front for the classical multiobjective 
optimization aiming at minimizing the torque engine orders 
24, 48 and 96 – second overview 

Table 4 Results of a deterministic optimization for the 
nominal design 

 

Torque 
engine 

order 24 
(dB) 

Torque 
engine 

order 48 
(dB) 

Torque 
engine 

order 96 
(dB) 

Mean 
torque 
(N.m) 

Initial 
design 

3.99 -4.29 8.39 72.74 

Selected 
optimum 

-2.03 -24.32 6.68 72.24 

Variation - 6.02 -20.03 -1.71 -0.6 % 
 

 
Fig. 12.  Example of the normal probability density 
functions for a parameter 𝒑𝒋. 
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parameter deviations. The distribution of this design’s order 
48 level has a very high variability, and confirms that the 
classical optimization method potentially leads to non-robust 
designs. However, robustness is criterion- and design-
dependent: for this Pareto front design, the torque engine 
orders 24 and 96 levels are not significantly variable when 
taking parameter deviations into consideration. 

 
Most of the designs in the Pareto front which feature 

reductions of the torque engine order 48 level are very close 
to the design whose robustness was investigated, and will 
therefore be subject to similar robustness issues. To achieve 
robust torque engine order 48 reductions, robust design or 
robust optimization methods should therefore be applied. 

6. Conclusions 
This article addresses the use of sensitivity analyses to 

prepare the robust vibroacoustic optimization of electric 
motors. Sensitivity analyses enabled the comparison of the 
global effect, i.e. in the entire design space, of parameter 
variations in their design range and tolerance intervals, on 
NVH criteria and on mean torque. The selection of pertinent 
NVH criteria is important: when the airborne motor noise is 
considered, the criteria must be good indicators of the 
acoustic power level variations. In this article, the specific 
excitation harmonic contributions which directly cause high 
motor noise levels at low rotating speeds were considered. 

The definition of tolerance intervals also has an impact 
on the sensitivity results. Some values in this article were 
selected based on experimental results or on assumptions, but 
the described methodology can be applied to any other 
tolerance intervals. 

The sensitivity analysis method presented is a novel 
and efficient tool to reduce the number of parameters 
considered in electric motor robust design or robust 
optimization processes when dealing with functions which 
are highly non-linear and non-regular. Indeed, for motor 
NVH criteria and a reasonable number of 162 design 
evaluations, an estimation of the most influent parameters for 
variations in their design space and for variations in their 
tolerance intervals was obtained. In the presented example, it 
resulted in the selection of four optimization parameters 
among eight possible candidates. This reduces the design 

space dimension, and consequently the number of design 
evaluations necessary for the optimization algorithm 
convergence towards the Pareto front. Moreover, three 
parameter dispersions were selected out of nine possible 
candidates. This reduces the number of simulations necessary 
to estimate the robustness indicators for a given design. For 
example, in a probabilistic robustness definition approach, if 
the objective functions are approximated by second-order 
Taylor expansions to estimate their expected value and 
variance [28], considering three parameter dispersions 
instead of nine decreases the number of required simulation 
from 55 to 10. For this problem, this complete sensitivity 
estimation could not have been obtained using existing 
sensitivity analysis methods. By employing methods from [2], 
[4]-[9], the effect of tolerances could have been estimated for 
a given design, but the dependence of this effect on the 
considered design would not have been brought to light, and 
some potential robustness issues could have been missed. 
Using global sensitivity analysis methods applying parameter 
variations which are large with respect to the tolerance 
interval spans, like those used in [17] and [18], the high 
sensitivity of some criteria to parameter variations in their 
tolerance intervals would not have been raised: a good 
example is the parameter 𝑅?>3, which has a moderate effect 
on torque engine order 48 for large variations, but whose 
deviations can be very influent on this criterion for some 
designs and should therefore be considered in a robust design 
or optimization approach to avoid robustness issues. 

Moreover, the presented results improve the 
knowledge of the effect of tolerances on electric motor noise 
and vibrations. In particular, the following conclusions 
regarding electric motor robustness can be made: 
- For the studied motor, the NVH indicators are more 

sensitive to parameter variations than the mean output 
torque. The effect of a given parameter on the NVH 
criteria is generally more dependent on the design (i.e. 
the values of the other parameters) than its effect on 
mean torque. This means that the possibilities of 
optimizing NVH criteria are broader but are potentially 
subject to more robustness issues than the mean torque. 
Robust vibroacoustic design approaches are therefore 
particularly relevant, even in cases where robust motor 
optimization to improve its other electrotechnical 
performance criteria is not necessary. 

- Depending on the prevailing phenomena in the noise 
generation process and on the motor topology, the 
different NVH criteria of the considered motor are more 
or less likely to have robustness issues. For some criteria, 
one could expect classical optimization methods to 
converge towards designs having acceptable robustness 
characteristics. For other criteria, the variations of some 
parameters in their tolerance intervals may have a 
significant influence, for some specific designs even 
more than larger parameter variations in their design 
range. In this case, robust optimization methods may be 
necessary.  

Future work should include the combination of the 
presented sensitivity analysis method with a robust 
optimization method to achieve robust reductions of 
optimization objectives which cannot be robustly minimized 
using classical optimization methods. Robust optimization 
methods are very time-consuming; the effectivity and validity 

 
Fig. 13.  Distribution of the objectives when considering 
deviations of the parameters 𝜶𝑪, 𝜶𝑩 and 𝑹𝑯𝑷𝑴 
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of the parameter deviation selection approach presented in 
this paper to reduce robustness evaluation time will be 
evaluated in the course of this future work. 
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